ORACLE

Oracle Database 11g

DBA Handbook

Administer a Scalable, Secure Oracle Enterprise Database

e

ORICINAL # AUTHENTH

Oracle Press

ONLY FROM DXROENE

Bob Bryla
Oracle DBA and Data Analyst

Kevin Loney
Bestselling Oracle Press Author and Consultant

ORACLE® Oracle Press”

Oracle Database
11g DBA Handbook

http://dx.doi.org/10.1036/0071496637

About the Authors

Bob Bryla is an Oracle 9i and 10g Certified Professional with more than 20 years of experience in
database design, database application development, training, and Oracle database administration.
He is the primary Internet database designer and an Oracle DBA at Lands’ End in Dodgeville,
Wisconsin.

In his spare time, he is a technical editor for a number of Oracle Press and Apress books, in
addition to authoring several certification study guides for Oracle 10g and Oracle 11g. He has
also been known to watch science fiction movies and read science fiction novels in his spare time.

Kevin Loney, Director of Data Management for a major financial institution, is an internationally
recognized expert in the design, development, administration, and tuning of Oracle databases.
An Oracle developer and DBA since 1987, he has implemented large-scale transaction processing
systems and data warehouses.

He is the author of numerous technical articles and the lead author or coauthor of such
best-selling books as Oracle: The Complete Reference. He regularly presents at Oracle user
conferences in North America and Europe, and in 2002 was named Consultant of the Year
by ORACLE Magazine.

About the Technical Editor

Scott Gossett is a Technical Director for Oracle Corporation’s Advanced Technology Solutions
organization specializing in RAC, performance tuning and high availability databases. Prior to
becoming a technical director, Scott was a Senior Principal Instructor for Oracle Education for
over twelve years, primarily teaching Oracle Internals, performance tuning, RAC and database
administration classes. In addition, Scott is one of the architects and primary authors of the Oracle
Certified Masters exam.

ORACLE® Oracle Press”

Oracle Database
11g DBA Handbook

Bob Bryla
Kevin Loney

T

all

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071496637

The McGraw-Hill Companies

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159579-1
The material in this eBook also appears in the print version of this title: 0-07-149663-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/0071496637

http://dx.doi.org/10.1036/0071496637

¥ Professional

Want to learn more?

We hope you enjoy this
McGraw-Hill eBook! If
you’d like more information about this book,
its author, or related books and websites,
please click here.

http://dx.doi.org/10.1036/0071496637

To the gang at home: I couldn’t have done it without you! And the pizzas.
—B.B.

This page intentionally left blank

B W N =

© & N o u

10
11
12
13
14

PART I
Database Architecture

Getting Started with the Oracle Architecture
Upgrading to Oracle Database 11g

Planning and Managing Tablespaces

Physical Database Layouts and Storage Management

PART II
Database Management

Developing and Implementing Applications
Monitoring Space Usageccvvuen.
Managing Transactions with Undo Tablespaces
Database Tuningcoviiian.n.

Database Security and Auditing

PART Il
High Availability

Real Application Clusters
Backup and Recovery Options
Using Recovery Manager RMAN)
Oracle DataGuard

Miscellaneous High Availability Features

Vil

viil Oracle Database 11g DBA Handbook

PART IV
Networked Oracle
LT © - T -0 511
16 Managing Large Databases ittt 543
17 Managing Distributed Databases i, 599
Appendix: Installation and Configuration i, 635

e (<3 653

For more information about this title, click here

Acknowledgments Xix
INtroduction . .o Xxi

PART I
Database Architecture

1 Getting Started with the Oracle Architectureol 3
An Overview of Databases and Instances it . 4
Databases 4
INStANCES .o 5

Oracle Logical Storage Structures i 6
Tablespaces 6

Blocks .. 7

EXteNts .. e 7
SegmMents ... 7

Oracle Logical Database Structures i 8
Tables ..o 8
Constraints 15
INdeXes .. 17

N BWS 19

Users and Schemas 21
Profiles ... 21
SEQUENCES .ottt 22
SYNONYMS .o 22
PL/SQL o 22
External File ACCESS ... 23
Database Links and Remote Databases 24

Oracle Physical Storage Structures i 24
Datafiles 25

Redo Log Files 26
Control Files 26
Archived Log Files 27
Initialization Parameter Files 27

http://dx.doi.org/10.1036/0071496637

X Oracle Database 11g DBA Handbook

Alert and Trace Log Files o 28
Backup Files . ..o 28

Oracle Managed Files 29
Password Files 29
Multiplexing Database Files 29
Automatic Storage Management L o oo 29
Manual Multiplexing 30

Oracle Memory StruCtUresttt e e 32
System Global Area 32
Program Global Area 35
Software Code Area 35
Background Processes 35
Backup/Recovery Overview it 38
Export/Import 38

Offline Backups 38
Online Backups ... o 39

RMAN 39
Security Capabilities 39
Privileges and Roles 39
Auditing ..o 40
Fine-grained Auditing 40

Virtual Private Database 41

Label Security ... o 41

Real Application Clusters 41
Oracle Streams 42
Oracle Enterprise Manager it 42
Oracle Initialization Parameters 43
Basic Initialization Parameters 43
Advanced Initialization Parameters oL, 47

2 Upgrading to Oracle Database 11g ciiiiiiiiiiiiiiiinnennnn. 49
Choosing an Upgrade Method 51
Before Upgrading oo 52
Using the Database Upgrade Assistant 53
Performing a Manual Direct Upgrade 54
Using Exportand Import 57
Export and Import Versions to Use 57
Performing the Upgrade 57

Using the Data-Copying Method 58
After Upgrading o 59
3 Planning and Managing Tablespacesottt 61
Tablespace Architecture 62
Tablespace Types ..ot 62
Optimal Flexible Architecture 68

Oracle Installation Tablespaces i 72
SYSTEM 72

SY S AU X 72

Contents

TEMP 72
UNDOTBST o 73

USERS o 73
EXAMPLE 73
Segment Segregation 73
Physical Database Layouts and Storage Management 75
Traditional Disk Space Storage i 76
Resizing Tablespaces and Datafiles 76
Moving Datafiles 92
Moving Online Redo Log Files 94
Moving Control Files 96
Automatic Storage Management 98
ASM Architecture 98
Creatingan ASM Instance 99

ASM Instance Components 101

ASM Dynamic Performance Views 103

ASM Filename Formatst 103

ASM File Types and Templatest 105
Administering ASM Disk Groups 107

PART 1l
Database Management

Developing and Implementing Applications o .. 123
Tuning by Design: Best Practices i 124
Do As Little As Possible 124

Do It As Simply As Possible 127

Tell the Database What It Needs to Know 129
Maximize the Throughput in the Environment 129

Divide and Conquer Your Datao .. 130

Test Correctly 131
Standard Deliverables 133
Resource Management and Stored Outlines 136
Implementing the Database Resource Manager —.......... 136
Implementing Stored Outlines 140

Sizing Database Objects 143

Using Temporary Tables 149
Supporting Tables Based on Abstract Datatypesc..cviininnennn.. 150
Using Object Views o 151
Security for Abstract Datatypes 154
Indexing Abstract Datatype Attributes L i 156
Quiescing and Suspending the Database 157
Supporting Iterative Development — o o 158
Iterative Column Definitions 159
Forcing Cursor Sharing i 159
Managing Package Development 160
Generating Diagrams 160

Xi

Oracle Database 11g DBA Handbook

Space Requirements
Tuning Goals ...
Security Requirements
Data Requirements
Version Requirements
Execution Plans
Acceptance Test Procedures
The Testing Environment i

6 Monitoring Space Usage ...ttt i i i e
Common Space Management Problems i
Running Out of Free Space in a Tablespace
Insufficient Space for Temporary Segments —...........,

Too Much or Too Little Undo Space Allocated
Fragmented Tablespaces and Segments

Oracle Segments, Extents, and Blocks
Data Blocks

EXtents ...
Segments ...

Data Dictionary Views and Dynamic Performance Views
DBA_TABLESPACES
DBA_SEGMENTS ..o

DBA _EXTENTS o
DBA_FREE_SPACE ...
DBA_LMT_FREE_SPACE e
DBA_THRESHOLDS e
DBA_OUTSTANDING_ALERTS ...
DBA_ALERT_HISTORY ...
VSALERT _TYPES o
VEUND OSTAT e e
VSOBJECT_USAGE ..o e
V$SORT_SEGMENT .. o
VSTEMPSEG_USAGE ...

Space Management Methodologies i
Locally Managed Tablespaces ,

Using OMF to Manage Space i,

Bigfile Tablespaces
Automatic Storage Management L o oo

Undo Management Considerations,
SYSAUX Monitoring and Usage i
Archived Redo Log File Management i
Built-in Space Management ToOls i
Segment AdVISOr

Undo Advisor and the Automatic Workload Repository —............

Index USage . ..ottt

Space Usage Warning Levels
Resumable Space Allocation
Managing Alert and Trace Files with ADR

OS Space Management —

Contents
Space Management SCripts 197
Segments That Cannot Allocate Additional Extents 197
Used and Free Space by Tablespace and Datafile 198
Automating and Streamlining the Notification Process 199
Using DBMS_SCHEDULER 199
OEM Job Control and Monitoring o i 200
Managing Transactions with Undo Tablespaces 207
Transaction Basics 208
Undo Basicso 209
Rollback ... 209
Read Consistencyot 209
Database Recovery i 210
Flashback Operations e 210
Managing Undo Tablespaces i 210
Creating Undo Tablespaces i 210
Undo Tablespace Dynamic Performance Views —........................ 216
Undo Tablespace Initialization Parameters 216
Multiple Undo Tablespaces i 217
Sizing and Monitoring the Undo Tablespace 220
Read Consistency vs. Successful DML o i 222
Flashback Features 223
Flashback Query 223
DBMS_FLASHBACK . . 225
Flashback Transaction Backout 227
Flashback Table 227
Flashback Version Query 232
Flashback Transaction Query i 234
Flashback Data Archive 236
Flashback and LOBso i 239
Migrating to Automatic Undo Management 239
Database TUNiNgttt i i i i i i it e 241
Tuning Application Design 243
Effective Table Design 243
Distribution of CPU Requirements 244
Effective Application Design 245
Tuning SQL ..o 247
Impact of Order on Load Rates i .. 248
Additional Indexing Options i 249
Generating Explain Plans 250
Tuning Memory Usage 252
Specifying the Size of the SCGA 255
Using the Cost-Based Optimizer 256
Implications of the COMPUTE STATISTICS Option 257
Tuning Data ACCESS o 257
Locally Managed Tablespaces i 257
Identifying Chained Rows 258

Increasing the Oracle Block Size 259

xiii

XiV Oracle Database 11g DBA Handbook

Using Index-Organized Tables i i
Tuning Issues for Index-Organized Tables
Tuning Data Manipulation
Bulk Inserts: Using the SQL*Loader Direct Path Option
Bulk Data Moves: Using External Tables
Bulk Inserts: Common Traps and Successful Tricks
Bulk Deletes: The truncate Command
Using Partitions
Tuning Physical Storage
Using Raw Devices
Using Automatic Storage Management
Reducing Network Traffic
Replication of Data Using Materialized Views —........
Using Remote Procedure Calls i
Using the Automatic Workload Repository
Managing Snapshots
Managing Baselines
Generating AWR Reports
Running the Automatic Database Diagnostic Monitor Reports
Using the Automatic SQL Tuning Advisor
Tuning Solutions

9 Database Security and Auditing i il
Non-Database Security
Database Authentication Methods

Database Authentication
Database Administrator Authentication —
Operating System Authentication
Network Authentication i
3-Tier Authentication
Client-Side Authentication i
Oracle Identity Management i
User ACCOUNES . ..o
Database Authorization Methods L L
Profile Management
System Privileges
Object Privileges
Creating, Assigning, and MaintainingRoles
Using a VPD to Implement Application Security Policies
Auditing ..
Auditing Locations
Statement Auditingo
Privilege Auditing
Schema Object Auditing
Fine-Grained Auditing
Auditing-Related Data Dictionary Views
Protecting the Audit Trail
Enabling Enhanced Auditing

10

11

Contents

Data Encryption Techniques 342
DBMS_CRYPTO Packageo 342
Transparent Data Encryption 342

PART Il
High Availability

Real Application Clustersottt ittt 349

Overview of Real Application Clusters 350
Hardware Configuration i 351
Software Configuration 351
Network Configuration 351
Disk Storage 352

Installation and Setup 353
Operating System Configuration 354
Software Installation L 360

RAC Characteristics 378
Server Parameter File Characteristics 379
RAC-related Initialization Parameters 380
Dynamic Performance Views i 380

RAC Maintenance 382
Starting Up a RAC ... 382
Redo Logs in a RAC Environment 383
Undo Tablespaces in a RAC Environment 383
Failover Scenarios and TAF 383
RAC Node Failure Scenario i 385
Tuninga RAC Node 389
Tablespace Management 390

Backup and Recovery Optionsoiuiuiiiininiiiiiinnnenenenenns 391

Capabilities ... 392

Logical Backups 392

Physical Backups ... o 393
Offline Backups o 393
Online Backups . ..o 394

Using Data Pump Export and Import 395
Creating a Directory 395
Data Pump Export Options 396
Starting a Data Pump Export Job L L 399

Data Pump Import Options 403
Starting a Data Pump ImportJob 406
Comparing Data Pump Export/Import to Export/Import 410
Implementing Offline Backups 411
Implementing Online Backups, 411

Integration of Backup Procedures 414
Integration of Logical and Physical Backups 415

Integration of Database and Operating System Backups 416

XV

XVi

12

13

Oracle Database 11g DBA Handbook

Using Recovery Manager (RMAN) .. . ittt ittt eneans 417
RMAN Features and COmMpoNnentst 418
RMAN Components 419
RMAN vs. Traditional Backup Methods, 420
Backup Types . oo 421
Overview of RMAN Commands and Options 423
Frequently Used Commands 423
Setting Up a Repository 423
Registeringa Database i 428
Persisting RMAN Settings 428
Initialization Parameters 432
Data Dictionary and Dynamic Performance Views 433
Backup Operations 434
Full Database Backups 435
Tablespace 439
Datafiles o 442
Image Copies 442
Control File, SPFILE Backup 444
Archived Redo Logso 444
Incremental Backups 445
Incrementally Updated Backups 447
Incremental Backup Block Change Tracking 450
Backup Compression 451
Using a Flash Recovery Area i 452
Validating Backups 453
Recovery Operations 455
Block Media Recovery 455
Restoring a Control File 456
Restoring a Tablespace 456
Restoring a Datafile 459
Restoring an Entire Database i 461
Validating Restore Operationsttt 464
Pointin Time Recovery i 465
Data Recovery AdVisOr 465
Miscellaneous Operationsttt 470
Cataloging Other Backups 470
Catalog Maintenancet 471
REPORT and LIST .ot e e 472
Oracle Data Guard i ittt 475
Data Guard Architecture o 476
Physical vs. Logical Standby Databases 477
Data Protection Modes 477
LOG_ARCHIVE_DEST_n Parameter Attributes 478
Creating the Standby Database Configuration 479
Preparing the Primary Database 480
Creating Logical Standby Databases 484
Using Real-Time Apply 486
Managing Gaps in Archive Log Sequences 486
Managing Roles—Switchovers and Failovers —........ 487

SWItChOVers .. . 487

14

15

16

Contents
Switchovers to Physical Standby Databases 487
Switchovers to Logical Standby Databases 489
Failovers to Physical Standby Databases 490
Failovers to Logical Standby Databases — 490
Administering the Databases 491
Startup and Shutdown of Physical Standby Databases 491
Opening Physical Standby Databases in Read-Only Mode 491
Managing Datafiles in Data Guard Environments —....................... 492
Performing DDL on a Logical Standby Database 492
Miscellaneous High Availability Features oot 495
Recovering Dropped Tables Using Flashback Drop 496
The Flashback Database Command 498
Using LogMiner 500
How LogMiner Works 500
Extracting the Data Dictionary — 501
Analyzing One or More Redo Log Files 502
LogMiner Features Introduced in Oracle Database 10g 504
LogMiner Features Introduced in Oracle Database 11g 505
Online Object Reorganizationt 506
Creating Indexes Online i 506
Rebuilding Indexes Online 506
Coalescing Indexes Online i 506
Rebuilding Index-Organized Tables Online 506
Redefining Tables Online 507
PART IV
Networked Oracle
Oracle Net i i it it ettt 511
Overview of Oracle Net e 512
Connect Descriptors 515
Net Service Names 516
Replacing tnsnames.ora with Oracle Internet Directory —.................. 517
Listeners 517
Using the Oracle Net Configuration Assistant 520
Configuring the Listener 521
Using the Oracle Net Manager it 525
Starting the Listener Server Process 527
Controlling the Listener Server Process 528
The Oracle Connection Manager —......... 531
Using Connection Manager —........... 531
Directory Naming with Oracle Internet Directory 534
Using Easy Connect Naming i 537
Using Database Links 538
Tuning Oracle Net 540
Limiting Resource Usage i 541
Debugging Connection Problems 541
Managing Large Databasesottt i i 543
Creating Tablespaces in a VLDB Environment —o, 545

Bigfile Tablespace Basics i 545

XVil

XViii Oracle Database 11g DBA Handbook

17

Creating and Modifying Bigfile Tablespaces
Bigfile Tablespace ROWID Format
DBMS_ROWID and Bigfile Tablespaces
Using DBVERIFY with Bigfile Tablespaces
Bigfile Tablespace Initialization Parameter Considerations
Bigfile Tablespace Data Dictionary Changes
Advanced Oracle Table Types o
Index-Organized Tables
Global Temporary Tables
External Tables
Partitioned Tables
Materialized Views
Using Bitmap Indexes
Understanding Bitmap Indexes
Using Bitmap Indexes
Using Bitmap Join Indexes i
Oracle Data Pump ... o
Data Pump Export
Data Pump Import
Using Transportable Tablespaces

Managing Distributed Databases i it
Remote QUeries
Remote Data Manipulation: Two-Phase Commit
Dynamic Data Replication
Managing Distributed Data
The Infrastructure: Enforcing Location Transparency
Managing Database Links
Managing Database Triggers
Managing Materialized Views
Using DBMS_MVIEW and DBMS_ADVISOR
What Kind of Refreshes Can Be Performed?
Using Materialized Views to Alter Query Execution Paths —
Managing Distributed Transactions
Resolving In-Doubt Transactions oo ..
Commit Point Strength
Monitoring Distributed Databases
Tuning Distributed Databases i

Appendix: Installation and Configuration
Software Installation
Overview of Licensing and Installation Options
Using OUI to Install the Oracle Software
Using the DBCA to Create a Database
Manually Creating a Database

Acknowledgments

) | any technical books need the expertise of more than one person, and this one
! is no exception. Thanks to Kevin for his expertise on the previous editions of
* this book making this book a success.

Thanks also go out to Carolyn Welch and Lisa McClain for filling in the gaps in my
college English courses, Mandy Canales for keeping me on schedule, and Scott Gossett,
who gave me good advice when the theoretical met the practical.

Many of my professional colleagues at Lands’ End were a source of both inspiration and
guidance: Joe Johnson, Brook Swenson, and Ann Van Dyn Hoven. In this case, the whole
is truly greater than the sum of its parts.

If you have any questions or comments about any part of this book, please do not

hesitate to contact me at rjbryla@centurytel.net.
—Bob Bryla

XiX

This page intentionally left blank

Introduction

hether you’re an experienced DBA, a new DBA, or an application developer,
you need to understand how Oracle11g’s new features can help you best meet
your customers’ needs. In this book, you will find coverage of the newest

| features as well as ways of merging those features into the management of
an Oracle database. The emphasis throughout is on managing the database’s
capabllltles in an effective and efficient manner to deliver a quality product. The end result
will be a database that is dependable, robust, secure, and extensible.

Several components are critical to this goal, and all of them are covered in depth after
we introduce the Oracle Architecture, Oracle 11g upgrade issues, and tablespace planning
in Part I. A well-designed logical and physical database architecture will improve performance
and ease administration by properly distributing database objects. You'll see appropriate
monitoring, security, and tuning strategies for stand-alone and networked databases in Part
Il of this book. Backup and recovery strategies are provided to help ensure the database’s
recoverability. Each section focuses on both the features and the proper planning and
management techniques for each area.

High availability is covered in all of its flavors: Real Application Clusters (RAC), Recovery
Manager (RMAN), and Oracle Data Guard, to name a few of the topics covered in-depth in
Part 1l of this book.

Networking issues and the management of distributed and client/server databases are
thoroughly covered. Oracle Net, networking configurations, materialized views, location
transparency, and everything else you need to successfully implement a distributed or
client/server database are described in detail in Part IV of this book. You’ll also find
real-world examples for every major configuration.

In addition to the commands needed to perform DBA activities, you will also see the
Oracle Enterprise Manager web pages from which you can perform similar functions. By
following the techniques in this book, your systems can be designed and implemented so
well that tuning efforts will be minimal. Administering the database will become easier as
the users get a better product, while the database works—and works well.

XXI

This page intentionally left blank

PART

Database Architecture

This page intentionally left blank

CHAPTER

Getting Started with the
Oracle Architecture

Oracle Database 11g DBA Handbook

racle Database 11g is an evolutionary step from the previous release of Oracle 10g;
Oracle 10g was, in turn, a truly revolutionary step from Oracle9i in terms of its “set
it and forget it” features. Oracle 11g continues the tradition of feature enhancement
I by making memory management more automated, adding several new advisors,

- and significantly improving availability and failover capabilities. Part | of this book
covers the basics of the Oracle architecture and lays the foundation for deploying a successful
Oracle infrastructure by giving practical advice for a new installation or upgrading from a previous
release of Oracle. To provide a good foundation for the Oracle 11g software, we cover server
hardware and operating system configuration issues in the relevant sections.

In Part Il of this book, we will cover several areas relevant to the day-to-day maintenance and
operation of an Oracle 11g database. The first chapter in Part Il discusses the requirements that a
DBA needs to gather long before you mount the install CD on your server. Successive chapters deal
with ways the DBA can manage disk space, CPU usage, and adjust Oracle parameters to optimize
the server’s resources, using a variety of tools at the DBA's disposal for monitoring database
performance. Transaction management is greatly simplified by Automated Undo Management
(AUM), an Oracle Database feature introduced in Oracle9i and enhanced in Oracle 10g and
Oracle 11g.

Part 11l of this book focuses on the high availability aspects of Oracle 11g. This includes using
Oracle’s Recovery Manager (RMAN) to perform and automate database backups and recovery,
along with other features, such as Oracle Data Guard, to provide a reliable and easy way to
recover from a database failure. Last, but certainly not least, we will show how Oracle 11g Real
Application Clusters (RAC) can at the same time provide extreme scalability and transparent
failover capabilities to a database environment. Even if you don’t use Oracle 11g’s RAC features,
the standby features make Oracle 11g almost as available as a clustered solution; being able to
easily switch between standby and primary databases as well as query a physical standby database
provides a robust high-availability solution until you are ready to implement a RAC database.

In Part IV of this book, we will cover a variety of issues revolving around Networked Oracle.
Not only will we cover how Oracle Net can be configured in an N-tier environment, but also
how we manage large and distributed databases that may reside in neighboring cities or around
the world.

In this chapter, we cover the basics of Oracle Database 11g, highlighting many of the features
we will cover in the rest of the book as well as the basics of installing Oracle 11g using Oracle
Universal Installer (OUI) and the Database Configuration Assistant (DBCA). We will take a tour
of the elements that compose an instance of Oracle 11g, ranging from memory structures to disk
structures, initialization parameters, tables, indexes, and PL/SQL. Each of these elements plays a
large role in making Oracle 11g a highly scalable, available, and secure environment.

An Overview of Databases and Instances

Although the terms “database” and “instance” are often used interchangeably, they are quite
different. They are very distinct entities in an Oracle datacenter, as you shall see in the following
sections.

Databases

A database is a collection of data on disk in one or more files on a database server that collects
and maintains related information. The database consists of various physical and logical
structures, the table being the most important logical structure in the database. A table consists

Chapter 1: Getting Started with the Oracle Architecture 5

of rows and columns containing related data. At a minimum, a database must have at least tables
to store useful information. Figure 1-1 shows a sample table containing four rows and three
columns. The data in each row of the table is related: Each row contains information about a
particular employee in the company.

In addition, a database provides a level of security to prevent unauthorized access to the data.
Oracle Database 11g provides many mechanisms to facilitate the security necessary to keep
confidential data confidential. Oracle Security and access control are covered in more detail in
Chapter 9.

Files composing a database fall into two broad categories: database files and non-database
files. The distinction lies in what kind of data is stored in each. Database files contain data and
metadata; non-database files contain initialization parameters, logging information, and so forth.
Database files are critical to the ongoing operation of the database on a moment-by-moment
basis. Each of these physical storage structures is discussed later, in the section titled “Oracle
Physical Storage Structures.”

Instances

The main components of a typical enterprise server are one or more CPUs, disk space, and
memory. Whereas the Oracle database is stored on a server’s disk, an Oracle instance exists

in the server’s memory. An Oracle instance is composed of a large block of memory allocated
in an area called the System Global Area (SGA), along with a number of background processes
that interact between the SGA and the database files on disk.

In an Oracle Real Application Cluster (RAC), more than one instance will use the same
database. Although the instances that share the database can be on the same server, most likely
the instances will be on separate servers that are connected by a high-speed interconnect and
access a database that resides on a specialized RAID-enabled disk subsystem. More details on
how a RAC installation is configured are provided in Chapter 10.

TABLE: HR_EMPLOYEE¢——— table name

column names

. . I}

EMPLOYEE_NUMBER LAST _NAME FIRST _NAME
1 KRAUSE JULIE
rov;/s 2 PYEATT JOHN
o
data 3 TYLER LIV
5 MUNN OLIVIA
columns

FIGURE 1-1 Sample database table

Oracle Database 11g DBA Handbook

Oracle Logical Storage Structures

The datafiles in an Oracle database are grouped together into one or more tablespaces. Within
each tablespace, the logical database structures, such as tables and indexes, are segments that are
further subdivided into extents and blocks. This logical subdivision of storage allows Oracle to
have more efficient control over disk space usage. Figure 1-2 shows the relationship between the
logical storage structures in a database.

Tablespaces

An Oracle tablespace consists of one or more datafiles; a datafile can be a part of one and only
one tablespace. For an installation of Oracle 11g, a minimum of two tablespaces are created: the
SYSTEM tablespace and the SYSAUX tablespace; a default installation of Oracle 11g creates six
tablespaces (see the appendix “Installation and Configuration” for sample Oracle 11g installations).

Oracle 11g allows you to create a special kind of tablespace called a bigfile tablespace, which
can be as large as 128TB (terabytes). Using bigfiles makes tablespace management completely
transparent to the DBA; in other words, the DBA can manage the tablespace as a unit without
worrying about the size and structure of the underlying datafiles.

Using Oracle Managed Files (OMF) can make tablespace datafile management even easier.
With OMEF, the DBA specifies one or more locations in the file system where datafiles, control
files, and redo log files will reside, and Oracle automatically handles the naming and management
of these files. We discuss OMF in more detail in Chapter 4.

If a tablespace is temporary, the tablespace itself is permanent; only the segments saved in
the tablespace are temporary. A temporary tablespace can be used for sorting operations and for
tables that exist only for the duration of the user’s session. Dedicating a tablespace for these kinds

SYSTEM USERS SYSAUX
Tablespace || Tablespace || Tablespace

K \ Segment
/ \\\ o Extent 1
//, Tablespace N
| Segment 1 | | Segment 2 [Extent 2
| Segment 3 | | Segment 4 |

| Segment 5 | | Segment 6 |

Blocks

FIGURE 1-2 Logical storage structures

Chapter 1: Getting Started with the Oracle Architecture 7

of operations helps to reduce the I/O contention between temporary segments and permanent
segments stored in another tablespace, such as tables.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, extent management is recorded in data dictionary tables. Therefore, even if all
application tables are in the USERS tablespace, the SYSTEM tablespace will still be accessed for
managing DML on application tables. Because all users and applications must use the SYSTEM
tablespace for extent management, this creates a potential bottleneck for write-intensive applications.
In a locally managed tablespace, Oracle maintains a bitmap in each datafile of the tablespace to
track space availability. Only quotas are managed in the data dictionary, dramatically reducing
the contention for data dictionary tables.

As of Oracle9i, if the SYSTEM tablespace is locally managed, then all other tablespaces must
be locally managed if both read and write operations are to be performed on them. Dictionary-
managed tablespaces must be read-only in databases with a locally managed SYSTEM tablespace.

Blocks

A database block is the smallest unit of storage in the Oracle database. The size of a block is a
specific number of bytes of storage within a given tablespace within the database.

A block is usually a multiple of the operating system block size to facilitate efficient disk I/O.
The default block size is specified by the Oracle initialization parameter DB_BLOCK_SIZE. As many
as four other block sizes may be defined for other tablespaces in the database, although the blocks
in the SYSTEM, SYSAUX, and any temporary tablespaces must be of the size DB_BLOCK_SIZE.

Extents

The extent is the next level of logical grouping in the database. An extent consists of one or more
database blocks. When you enlarge a database object, the space added to the object is allocated
as an extent.

Segments

The next level of logical grouping in a database is the segment. A segment is a group of extents
that form a database object that Oracle treats as a unit, such as a table or index. As a result, this is
typically the smallest unit of storage that an end user of the database will deal with. Four types of
segments are found in an Oracle database: data segments, index segments, temporary segments,
and rollback segments.

Data Segment

Every table in the database resides in a single data segment, consisting of one or more extents;
Oracle allocates more than one segment for a table if it is a partitioned table or a clustered table .
| discuss partitioned and clustered tables later in this chapter. Data segments include LOB (large
object) segments that store LOB data referenced by a LOB locator column in a table segment (if
the LOB is not stored inline in the table).

Index Segment

Each index is stored in its own index segment. As with partitioned tables, each partition of a
partitioned index is stored in its own segment. Included in this category are LOB index segments;
a table’s non-LOB columns, a table’s LOB columns, and the LOBs’ associated indexes can all
reside in their own tablespace to improve performance.

Oracle Database 11g DBA Handbook

Temporary Segment

When a user’s SQL statement needs disk space to complete an operation, such as a sorting
operation that cannot fit in memory, Oracle allocates a temporary segment. Temporary segments
exist only for the duration of the SQL statement.

Rollback Segment

As of Oracle 10g, rollback segments only exist in the SYSTEM tablespace, and typically the DBA
does not need to maintain the SYSTEM rollback segment. In previous Oracle releases, a rollback
segment was created to save the previous values of a database DML operation in case the
transaction was rolled back, and to maintain the “before” image data to provide read-consistent
views of table data for other users accessing the table. Rollback segments were also used during
database recovery for rolling back uncommitted transactions that were active when the database
instance crashed or terminated unexpectedly.

Automatic Undo Management handles the automatic allocation and management of rollback
segments within an undo tablespace. Within an undo tablespace, the undo segments are structured
similarly to rollback segments, except that the details of how these segments are managed is under
control of Oracle, instead of being managed (often inefficiently) by the DBA. Automatic undo
segments were available staring with Oracle9/, but manually managed rollback segments are
still available in Oracle 10g. However, this functionality is deprecated as of Oracle 10g, and will
no longer be available in future releases. In Oracle 11g, Automatic Undo Management is enabled
by default; in addition, a PL/SQL procedure is provided to help you size the UNDO tablespace.

[discuss Automatic Undo Management in detail in Chapter 7.

Oracle Logical Database Structures

In this section, we will cover the highlights of all major logical database structures, starting with
tables and indexes. Next, we discuss the variety of datatypes we can use to define the columns of
a table. When we create a table with columns, we can place restrictions, or constraints, on the
columns of the table.

One of the many reasons we use a relational database management system (RDBMS) to
manage our data is to leverage the security and auditing features of the Oracle database. We will
review the ways we can segregate access to the database by user or by the object being accessed.

We'll also touch upon many other logical structures that can be defined by either the DBA or
the user, including synonyms, links to external files, and links to other databases.

Tables

A table is the basic unit of storage in an Oracle database. Without any tables, a database has
no value to an enterprise. Regardless of the type of table, data in a table is stored in rows and
columns, similar to how data is stored in a spreadsheet. But that is where the similarity ends.
The robustness of a database table due to the surrounding reliability, integrity, and scalability
of the Oracle database makes a spreadsheet a poor second choice when deciding on a place
to store critical information.

In this section, we will review the many different types of tables in the Oracle database and
how they can satisfy most every data-storage need for an organization. You can find more details
on how to choose between these types of tables for a particular application, and how to manage
them, in Chapter 5 and Chapter 8.

Chapter 1: Getting Started with the Oracle Architecture 9

Relational Tables
A relational table is the most common type of table in a database. A relational table is heap-
organized; in other words, the rows in the table are stored in no particular order. In the create
table command, you can specify the clause organization heap to define a heap-organized table,
but because this is the default, the clause can be omitted.

Each row of a table contains one or more columns; each column has a datatype and a length.
As of Oracle version 8, a column may also contain a user-defined object type, a nested table, or a
VARRAY. In addition, a table can be defined as an object table. We will review object tables and
objects later in this section.

The built-in Oracle datatypes are presented in Table 1-1.

Oracle also supports ANSI-compatible datatypes; the mapping between the ANSI datatypes
and Oracle datatypes is provided in Table 1-2.

Oracle Built-in Datatype Description

VARCHAR?2 (size) [BYTE | CHAR] A variable-length character string with a maximum length of 4000 bytes,
minimum of 1 byte. CHAR indicates that character semantics are used to
size the string; BYTE indicates that byte semantics are used.

NVARCHAR2(size) A variable-length character string with a maximum length of 4000 bytes.

NUMBER(p,s) A number with a precision (p) and scale (s). The precision ranges from 1
to 38, and the scale can be from -84 to 127.

LONG A variable-length character data with a length up to 2GB (2°'-1).

DATE Date values from January 1st, 4712 B.C. to December 31st, 9999 A.D.

BINARY_FLOAT A 32-bit floating point number.

BINARY_DOUBLE A 64-bit floating point number.

TIMESTAMP (fractional_seconds) Year, month, day, hour, minute, second, and fractional seconds. Value

of fractional_seconds can range from O to 9; in other words, up to one
billionth of a second precision. The default is 6 (one millionth).

TIMESTAMP (fractional_seconds) Contains a TIMESTAMP value in addition to a time zone displacement
WITH TIME ZONE value. Time zone displacement can be an offset from UTC (such as
-06:00) or a region name (e.g., ‘US/Central’).

TIMESTAMP (fractional_seconds) Similar to TIMESTAMP WITH TIMEZONE, except that (1) data is

WITH LOCAL TIME ZONE normalized to the database time zone when it is stored and (2) when
retrieving columns with this datatype, the user sees the data in the
session’s time zone.

INTERVAL YEAR (year_precision) Stores a time period in years and months. The value of year_precision is

TO MONTH the number of digits in the YEAR field.

INTERVAL DAY (day_precision) Stores a period of time as days, hours, minutes, seconds, and fractional

TO SECOND (fractional_seconds_ seconds. The value for day_precision is from 0 to 9, with a default of

precision) 2. The value of fractional_seconds_precision is similar to the fractional
seconds in a TIMESTAMP value; the range is from 0 to 9, with a default
of 6.

RAW(size) Raw binary data, with a maximum size of 2000 bytes.

TABLE 1-1 Oracle Built-in Datatypes

10 Oracle Database 11g DBA Handbook

Oracle Built-in Datatype Description
LONG RAW Raw binary data, variable length, up to 2GB in size.
ROWID A base-64 string representing the unique address of a row in its

corresponding table. This address is unique throughout the database.

UROWID [(size)] A base-64 string representing the logical address of a row in an index-
organized table. The maximum for size is 4000 bytes.

CHAR(size) [BYTE | CHAR | A fixed- length character string of length size. The minimum size is 1,
and the maximum is 2000 bytes. The BYTE and CHAR parameters are
BYTE and CHAR semantics, as in VARCHAR2.

NCHAR(size) A fixed-length character string up to 2000 bytes; the maximum size
depends on the national character set definition for the database. The
default sizeis 1.

CLOB A character large object containing single-byte or multibyte characters;
supports both fixed-width or variable-width character sets. The
maximum size is (4GB — 1) * DB_BLOCK_SIZE.

NCLOB Similar to CLOB, except that Unicode characters are stored from either
fixed-width and variable-width character sets. The maximum size is
(4GB - 1) * DB_BLOCK_SIZE.

BLOB A binary large object; the maximum size is (4GB — 1) * DB_BLOCK_SIZE.

BFILE A pointer to a large binary file stored outside the database. Binary files
must be accessible from the server running the Oracle instance. The
maximum size is 4GB.

TABLE 1-1 Oracle Built-in Datatypes (continued)

ANSI SQL Datatype Oracle Datatype
CHARACTER(n) CHAR(n)
CHAR(n)

CHARACTER VARYING(n) VARCHAR(n)
CHAR VARYING(n)

NATIONAL CHARACTER(n) NCHAR(n)
NATIONAL CHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n) NVARCHAR2(n)

NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NUMERIC(p,s) NUMBER(p,s)
DECIMAL(p,s)

INTEGER NUMBER(38)
INT
SMALLINT

FLOAT(b) NUMBER
DOUBLE PRECISION
REAL

TABLE 1-2 ANSI-Equivalent Oracle Datatypes

Chapter 1: Getting Started with the Oracle Architecture 11

Temporary Tables

Temporary tables have been available since Oracle8i. They are temporary in the sense of the data
that is stored in the table, not in the definition of the table itself. The command create global
temporary table creates a temporary table.

As long as other users have permissions to the table itself, they may perform select statements
or Data Manipulation Language Commands (DML), such as insert, update, or delete, on a temporary
table. However, each user sees their own and only their own data in the table. When a user
truncates a temporary table, only the data that they inserted is removed from the table.

There are two different flavors of temporary data in a temporary table: temporary for the
duration of the transaction, and temporary for the duration of the session. The longevity of the
temporary data is controlled by the on commit clause; on commit delete rows removes all rows
from the temporary table when a commit or rollback is issued, and on commit preserve rows
keeps the rows in the table beyond the transaction boundary. However, when the user’s session
is terminated, all of the user’s rows in the temporary table are removed.

There are a few other things to keep in mind when using temporary tables. Although you can
create an index on a temporary table, the entries in the index are dropped along with the data
rows, as with a regular table. Also, due to the temporary nature of the data in a temporary table,
no redo information is generated for DML on temporary tables; however, undo information is
created in the undo tablespace.

Index Organized Tables

As you will find out later in the subsection on indexes, creating an index makes finding a particular
row in a table more efficient. However, this adds a bit of overhead, because the database must
maintain the data rows and the index entries for the table. What if your table does not have many
columns, and access to the table occurs primarily on a single column? In this case, an index-
organized table (IOT) might be the right solution. An 10T stores rows of a table in a B-tree index,
where each node of the B-tree index contains the keyed (indexed) column along with one or
more non-indexed columns.

The most obvious advantage of an 10T is that only one storage structure needs to be maintained
instead of two; similarly, the values for the primary key of the table are stored only once in an
IOT, versus twice in a regular table.

There are, however, a few disadvantages to using an IOT. Some tables, such as tables for
logging events, may not need a primary key, or any keys for that matter; an IOT must have a
primary key. Also, IOTs cannot be a member of a cluster. Finally, an IOT might not be the best
solution for a table if there are a large number of columns in the table and many of the columns
are frequently accessed when table rows are retrieved.

Object Tables

Since Oracle8, the Oracle Database has supported many object-oriented features in the database.
User-defined types, along with any defined methods for these object types, can make an
implementation of an object-oriented (OO) development project in Oracle seamless.

Object tables have rows that are themselves objects, or instantiations of type definitions.
Rows in an object table can be referenced by object ID (OID), in contrast to a primary key in a
relational, or regular, table; however, object tables can still have both primary and unique keys,
just as relational tables do.

12 Oracle Database 11g DBA Handbook

Let's say, for example, that you are creating a Human Resources (HR) system from scratch, so
you have the flexibility to design the database from an entirely OO point of view. The first step is
to define an employee object, or type, by creating the type:

B create type PERS TYP as object

(Last Name varchar2 (45),
First Name varchar2 (30),
Middle Initial char (1),
Surname varchar2 (10)
SSN varchar?2 (15));

In this particular case, you’re not creating any methods with the PERS_TYP object, but by
default Oracle creates a constructor method for the type that has the same name as the type itself
(in this case, PERS_TYP). To create an object table as a collection of PERS_TYP objects, you can
use the familiar create table syntax, as follows:

B create table pers of pers_typ;

To add an instance of an object to the object table, you can specify the constructor method in
the insert command:

I insert into pers

values (pers typ('Graber', 'Martha','E', 'Ms."', '123-45-6789"));

As of Oracle Database 10g, you do not need the constructor if the table consists of instances
of a single object; here is the simplified syntax:

I insert into pers values('Graber', 'Martha','E','Ms.','123-45-6789");

References to instances of the PERS_TYP object can be stored in other tables as REF objects,
and you can retrieve data from the PERS table without a direct reference to the PERS table itself.

More examples of how you can use objects to implement an object-oriented design project
can be found in Chapter 5.

External Tables

External tables were introduced in Oracle9i. In a nutshell, external tables allow a user to access
a data source, such as a text file, as if it were a table in the database. The metadata for the table
is stored within the Oracle data dictionary, but the contents of the table are stored externally.

The definition for an external table contains two parts. The first and most familiar part is the
definition of the table from the database user’s point of view. This definition looks like any typical
definition that you’d see in a create table statement.

The second part, however, is what differentiates an external table from a regular table. This
is where the mapping between the database columns and the external data source occurs—what
column(s) the data element starts in, how wide the column is, and whether the format of the
external column is character or binary. The syntax for the default type of external table, ORACLE_
LOADER, is virtually identical to that of a control file in SQL*Loader. This is one of the
advantages of external tables; the user only needs to know how to access a standard database
table to get to the external file.

There are a few drawbacks, however, to using external tables. You cannot create indexes on
an external table, and no inserts, updates, or deletes can be performed on external tables. These
drawbacks are minor when considering the advantages of using external tables for loading native
database tables, for example, in a data warehouse environment.

Chapter 1: Getting Started with the Oracle Architecture 13

Clustered Tables

If two or more tables are frequently accessed together (for example, an order table and a line item
detail table), then creating a clustered table might be a good way to boost the performance of
queries that reference those tables. In the case of an order table with an associated line-item detail
table, the order header information could be stored in the same block as the line-item detail
records, thus reducing the amount of I/O needed to retrieve the order and line-item information.

Clustered tables also reduce the amount of space needed to store the columns the two tables
have in common, also known as a cluster key value. The cluster key value is also stored in a
cluster index. The cluster index operates much like a traditional index in that it will improve
queries against the clustered tables when accessed by the cluster key value. In our example with
orders and line items, the order number is only stored once, instead of repeating for each line-
item detail row.

The advantages to clustering a table are reduced if frequent insert, update, and delete
operations occur on the table relative to the number of select statements against the table. In
addition, frequent queries against individual tables in the cluster may also reduce the benefits
of clustering the tables in the first place.

Hash Clusters

A special type of clustered table, a hash cluster, operates much like a regular clustered table,
except that instead of using a cluster index, a hash cluster uses a hashing function to store and
retrieve rows in a table. The total estimated amount of space needed for the table is allocated
when the table is created, given the number of hash keys specified during the creation of the
cluster. In our order-entry example, let's assume that our Oracle database needs to mirror the
legacy data-entry system, which reuses order numbers on a periodic basis. Also, the order number
is always a six-digit number. We might create the cluster for orders as in the following example:

create cluster order cluster (order number number (6))
size 50
hash is order number hashkeys 1000000;

create table cust order (
order number number (6) primary key,
order date date,
customer number number)

cluster order cluster (order number) ;

Hash clusters have performance benefits when you select rows from a table using an equality
comparison, as in this example:

select order number, order date from cust order
where order number = 196811;

Typically, this kind of query will retrieve the row with only one I/O if the number of hashkeys
is high enough and the hash is clause, containing the hashing function, produces an evenly
distributed hash key.

Sorted Hash Clusters

Sorted hash clusters are new as of Oracle 10g. They are similar to regular hash clusters in that a
hashing function is used to locate a row in a table. However, in addition, sorted hash clusters
allow rows in the table to be stored by one or more columns of the table in ascending order. This

14 Oracle Database 11g DBA Handbook

allows the data to be processed more quickly for applications that lend themselves to first in, first
out (FIFO) processing.

You create sorted hash clusters using the same syntax as regular clustered tables, with the
addition of the SORT positional parameter after the column definitions within the cluster. Here is
an example of creating a table in a sorted hash cluster:

- create table order detail (
order number number,
order timestamp timestamp sort,
customer number number)
cluster order detail cluster (
order number,
order timestamp);

Due to the FIFO nature of a sorted hash cluster, when orders are accessed by order_number
the oldest orders are retrieved first based on the value of order_timestamp.

Partitioned Tables

Partitioning a table (or index, as you will see in the next section) helps make a large table more
manageable. A table may be partitioned, or even subpartitioned, into smaller pieces. From an
application point of view, partitioning is transparent (that is, no explicit references to a particular
partition are necessary in any end-user SQL). The only effect that a user may notice is that queries
against the partitioned table using criteria in the where clause that matches the partitioning
scheme run a lot faster!

There are many advantages to partitioning from a DBA point of view. If one partition of a table
is on a corrupted disk volume, the other partitions in the table are still available for user queries
while the damaged volume is being repaired. Similarly, backups of partitions can occur over a
period of days, one partition at a time, rather than requiring a single backup of the entire table.

Partitions are one of three types: range partitioned, hash partitioned, or, as of Oracle9i, list
partitioned; as of Oracle 11g, you can also partition by parent/child relationships, application-
controlled partitioning, and many combinations of basic partition types, including list-hash, list-
list, list-range, and range-range. Each row in a partitioned table can exist in one, and only one,
partition. The partition key directs the row to the proper partition; the partition key can be a
composite key of up to 16 columns in the table. There are a few minor restrictions on the types
of tables that can be partitioned; for example, a table containing a LONG or LONG RAW column
cannot be partitioned. The LONG restriction should rarely be a problem; LOBs (CLOBs and
BLOBs, character large objects and binary large objects) are much more flexible and encompass
all the features of LONG and LONG RAW datatypes.

TIP
“ Oracle Corporation recommends that any table greater than 2GB in
size be seriously considered for partitioning.

No matter what type of partitioning scheme is in use, each member of a partitioned table
must have the same logical attributes, such as column names, datatypes, constraints, and so forth.
The physical attributes for each partition, however, can be different depending on its size and
location on disk. The key is that the partitioned table must be logically consistent from an
application or user point of view.

Chapter 1: Getting Started with the Oracle Architecture 15

Range Partitions A range partition is a partition whose partition key falls within a certain range.
For example, visits to the corporate e-commerce website can be assigned to a partition based on
the date of the visit, with one partition per quarter. A website visit on May 25, 2004, will be
recorded in the partition with the name FY2004Q2, whereas a website visit on December 2,
2004, will be recorded in the partition with the name FY2004Q4.

List Partitions A list partition is a partition whose partition key falls within groups of distinct
values. For example, sales by region of the country may create a partition for NY, CT, MA, and VT,
and another partition for IL, WI, 1A, and MN. Any sales from elsewhere in the world may be
assigned to its own partition when the state code is missing.

Hash Partitions A hash partition assigns a row to a partition based on a hashing function,
specifying the column or columns used in the hashing function, but not explicitly assigning
the partition, only specifying how many partitions are available. Oracle will assign the row
to a partition and ensure a balanced distribution of rows in each partition.

Hash partitions are useful when there is no clear list or range-partitioning scheme given
the types of columns in the table, or when the relative sizes of the partitions change frequently,
requiring repeated manual adjustments to the partitioning scheme.

Composite Partitions Even further refinement of the partitioning process is available with
composite partitions. For example, a table may be partitioned by range, and within each range,
subpartitioned by list or by hash. New combinations in Oracle 11g include list-hash, list-list, list-
range, and range-range partitioning.

Partitioned Indexes

You can also partition indexes on a table, either matching the partition scheme of the table being
indexed (local indexes) or partitioned independently from the partition scheme of the table (global
indexes). Local partitioned indexes have the advantage of increased availability of the index when
partition operations occur; for example, archiving and dropping the partition FY2002Q4 and its
local index will not affect index availability for the other partitions in the table.

Constraints

An Oracle constraint is a rule or rules that you can define on one or more columns in a table

to help enforce a business rule. For example, a constraint can enforce the business rule that an
employee’s starting salary must be at least $25,000.00. Another example of a constraint enforcing
a business rule is to require that if a new employee is assigned a department (although they need
not be assigned to a particular department right away), the department number must be valid and
exist in the DEPT table.

Six types of data integrity rules can be applied to table columns: null rule, unique column
values, primary key values, referential integrity values, complex in-line integrity, and trigger-based
integrity. We will touch upon each of these briefly in the following sections.

All the constraints on a table are defined either when the table is created or when the table is
altered at the column level, except for triggers, which are defined according to which DML operation
you are performing on the table. Constraints may be enabled or disabled at creation or at any
point of time in the future; when a constraint is either enabled or disabled (using the keyword
enable or disable), existing data in the table may or may not have to be validated (using the
keyword validate or novalidate) against the constraint, depending on the business rules in effect.

16 Oracle Database 11g DBA Handbook

For example, a table in an automaker’s database named CAR_INFO containing new automobile
data needs a new constraint on the AIRBAG_QTY column, where the value of this column must
not be NULL and must have a value that is at least 1 for all new vehicles. However, this table
contains data for model years before air bags were required, and as a result, this column is either
0 or NULL. One solution, in this case, would be to create a constraint on the AIRBAG_QTY table
to enforce the new rule for new rows added to the table, but not to validate the constraint for
existing rows.

Here is a table created with all constraint types. Each constraint is reviewed in the following
subsections.

B create table CUST ORDER

(Order Number NUMBER (6) PRIMARY KEY,

Order Date DATE NOT NULL,

Delivery Date DATE,

Warehouse Number NUMBER DEFAULT 12,

Customer Number NUMBER NOT NULL,

Order Line Item Qty NUMBER CHECK (Order Line Item Qty < 100),

UPS_Tracking_Number VARCHARZ2 (50) UNIQUE,
foreign key (Customer Number) references CUSTOMER (Customer Number));

Null Rule

The NOT NULL constraint prevents NULL values from being entered into the Order_Date or
Customer_Number column. This makes a lot of sense from a business rule point of view: Every
order must have an order date, and an order doesn’t make any sense unless a customer places it.
Note that a NULL value in a column doesn’t mean that the value is blank or zero; rather, the
value does not exist. A NULL value is not equal to anything, not even another NULL value. This
concept is important when using SQL queries against columns that may have NULL values.

Unique Column Values

The UNIQUE integrity constraint ensures that a column or group of columns (in a composite
constraint) is unique throughout the table. In the preceding example, the UPS_Tracking_Number
column will not contain duplicate values.

To enforce the constraint, Oracle will create a unique index on the UPS_Tracking_Number
column. If there is already a valid unique index on the column, Oracle will use that index to
enforce the constraint.

A column with a UNIQUE constraint may also be declared as NOT NULL. If the column is
not declared with the NOT NULL constraint, then any number of rows may contain NULL values,
as long as the remaining rows have unique values in this column.

In a composite unique constraint that allows NULLs in one or more columns, the columns
that are not NULL determine whether the constraint is being satisfied. The NULL column always
satisfies the constraint, because a NULL value is not equal to anything.

Primary Key Values
The PRIMARY KEY integrity constraint is the most common type of constraint found in a database
table. At most, only one primary key constraint can exist on a table. The column or columns that
comprise the primary key cannot have NULL values.

In the preceding example, the Order_Number column is the primary key. A unique index
is created to enforce the constraint; if a usable unique index already exists for the column, the
primary key constraint uses that index.

Chapter 1: Getting Started with the Oracle Architecture 17

Referential Integrity Values

The referential integrity or FOREIGN KEY constraint is more complicated than the others we have
covered so far because it relies on another table to restrict what values can be entered into the
column with the referential integrity constraint.

In the preceding example, a FOREIGN KEY is declared on the Customer_Number column;
any values entered into this column must also exist in the Customer_Number column of another
table (in this case, the CUSTOMER table).

As with other constraints that allow NULL values, a column with a referential integrity
constraint can be NULL without requiring that the referenced column contain a NULL value.

Furthermore, a FOREIGN KEY constraint can be self-referential. In an EMPLOYEE table whose
primary key is Employee_Number, the Manager_Number column can have a FOREIGN KEY
declared against the Employee_Number column in the same table. This allows for the creation
of a reporting hierarchy within the EMPLOYEE table itself.

Indexes should almost always be declared on a FOREIGN KEY column to improve performance;
the only exception to this rule is when the referenced primary or unique key in the parent table is
never updated or deleted.

Complex In-Line Integrity
More complex business rules may be enforced at the column level by using a CHECK constraint.
In the preceding example, the Order_Line_ltem_Qty column must never exceed 99.

A CHECK constraint can use other columns in the row being inserted or updated to evaluate
the constraint. For example, a constraint on the STATE_CD column would allow NULL values
only if the COUNTRY_CD column is not USA. In addition, the constraint can use literal values
and built-in functions such as TO_CHAR or TO_DATE, as long as these functions operate on
literals or columns in the table.

Multiple CHECK constraints are allowed on a column. All the CHECK constraints must evaluate
to TRUE to allow a value to be entered in the column. For example, we could modify the preceding
CHECK constraint to ensure that Order_Line_ltem_Qty is greater than 0 in addition to being less
than 100.

Trigger-Based Integrity

If the business rules are too complex to implement using unique constraints, a database trigger
can be created on a table using the create trigger command along with a block of PL/SQL code
to enforce the business rule.

Triggers are required to enforce referential integrity constraints when the referenced table
exists in a different database. Triggers are also useful for many things outside the realm of
constraint checking (auditing access to a table, for example).l cover database triggers in-depth
in Chapter 17.

Indexes

An Oracle index allows faster access to rows in a table when a small subset of the rows will be
retrieved from the table. An index stores the value of the column or columns being indexed, along
with the physical RowID of the row containing the indexed value, except for index-organized
tables (I0Ts), which use the primary key as a logical RowID. Once a match is found in the index,
the RowlID in the index points to the exact location of the table row: which file, which block
within the file, and which row within the block.

18 Oracle Database 11g DBA Handbook

Indexes are created on a single column or multiple columns. Index entries are stored in a
B-tree structure so that traversing the index to find the key value of the row uses very few /O
operations. An index may serve a dual purpose in the case of a unique index: Not only will it
speed the search for the row, but it enforces a unique or primary key constraint on the indexed
column. Entries within an index are automatically updated whenever the contents of a table row
are inserted, updated, or deleted. When a table is dropped, all indexes created on the table are
also automatically dropped.

Several types of indexes are available in Oracle, each suitable for a particular type of table,
access method, or application environment. We will present the highlights and features of the
most common index types in the following subsections.

Unique Indexes

A unique index is the most common form of B-tree index. It is often used to enforce the primary
key constraint of a table. Unique indexes ensure that duplicate values will not exist in the column
or columns being indexed. A unique index may be created on a column in the EMPLOYEE table
for the Social Security Number because there should not be any duplicates in this column.
However, some employees may not have a Social Security Number, so this column would
contain a NULL value.

Non-Unique Indexes
A non-unique index helps speed access to a table without enforcing uniqueness. For example, we
can create a non-unique index on the Last_Name column of the EMPLOYEE table to speed up our
searches by last name, but we would certainly have many duplicates for any given last name.

A non-unique B-tree index is created on a column by default if no other keywords are
specified in a CREATE INDEX statement.

Reverse Key Indexes

A reverse key index is a special kind of index used typically in an OLTP (online transaction
processing) environment. In a reverse key index, all the bytes in each column’s key value of
the index are reversed. The reverse keyword specifies a reverse key index in the create index
command. Here is an example of creating a reverse key index:

B create index IE LINE ITEM ORDER NUMBER
on LINE ITEM(Order Number) REVERSE;

If an order number of 123459 is placed, the reverse key index stores the order number as
954321. Inserts into the table are distributed across all leaf keys in the index, reducing the
contention among several writers all doing inserts of new rows. A reverse key index also reduces
the potential for these “hot spots” in an OLTP environment if orders are queried or modified soon
after they are placed.

Function-Based Indexes
A function-based index is similar to a standard B-tree index, except that a transformation of a
column or columns, declared as an expression, is stored in the index instead of the columns
themselves.

Function-based indexes are useful in cases where names and addresses might be stored in the
database as mixed case. A regular index on a column containing the value ‘SmiTh’ would not
return any values if the search criterion was ‘Smith’. On the other hand, if the index stored the last

Chapter 1: Getting Started with the Oracle Architecture 19

names in all uppercase, all searches on last names could use uppercase. Here is an example of
creating a function-based index on the Last_Name column of the EMPLOYEE table:

B create index up name on employee (upper (Last Name)) ;

As a result, searches using queries such as the following will use the index we just created
instead of doing a full table scan:

B sclect Employee Number, Last Name, First Name, from employee
where upper (Last Name) = 'SMITH';

Bitmap Indexes

A bitmap index has a significantly different structure from a B-tree index in the leaf node of the index.
It stores one string of bits for each possible value (the cardinality) of the column being indexed. The
length of the string of bits is the same as the number of rows in the table being indexed.

In addition to saving a tremendous amount of space compared to traditional indexes, a
bitmap index can provide dramatic improvements in response time because Oracle can quickly
remove potential rows from a query containing multiple where clauses long before the table itself
needs to be accessed. Multiple bitmaps can use logical and and or operations to determine which
rows to access from the table.

Although you can use a bitmap index on any column in a table, it is most efficient when the
column being indexed has a low cardinality, or number of distinct values. For example, the
Gender column in the PERS table will either be NULL, M, or F. The bitmap index on the Gender
column will have only three bitmaps stored in the index. On the other hand, a bitmap index on
the Last_Name column will have close to the same number of bitmap strings as rows in the table
itself! The queries looking for a particular last name will most likely take less time if a full table
scan is performed instead of using an index. In this case, a traditional B-treenon-unique index
makes more sense.

A variation of bitmap indexes called bitmap join indexes creates a bitmap index on a table
column that is frequently joined with one or more other tables on the same column. This provides
tremendous benefits in a data warehouse environment where a bitmap join index is created on a
fact table and one or more dimension tables, essentially pre-joining those tables and saving CPU
and I/O resources when an actual join is performed.

NOTE
“ Bitmap indexes are only available in the Enterprise Edition of
Oracle 11g.

Views

Views allow users to see a customized presentation of the data in a single table or even a join
between many tables. A view is also known as a stored query—the query details underlying the
view are hidden from the user of the view. A regular view does not store any data, only the definition,
and the underlying query is run every time the view is accessed. Extensions to a regular view,
called a materialized view, allows the results of the query to be stored along with the definition
of the query to speed processing, among other benefits. Object views, like traditional views, hide
the details of the underlying table joins and allow object-oriented development and processing to
occur in the database while the underlying tables are still in a relational format.

20 Oracle Database 11g DBA Handbook

In the following subsections, I'll review the basics of the types of views a typical database
user, developer, or DBA will create and use on a regular basis.

Regular Views
A regular view, or more commonly referred to as a view, is not allocated any storage; only its
definition, a query, is stored in the data dictionary. The tables in the query underlying the view
are called base tables; each base table in a view can be further defined as a view.

The advantages of a view are many. Views hide data complexity—a senior analyst can define
a view containing the EMPLOYEE, DEPARTMENT, and SALARY tables to make it easier for upper
management to retrieve information about employee salaries by using a select statement against
what appears to be a table but is actually a view containing a query that joins the EMPLOYEE,
DEPARTMENT, and SALARY tables.

Views can also be used to enforce security. A view on the EMPLOYEE table called EMP_INFO
may contain all columns except for salary, and the view can be defined as read only to prevent
updates to the table:

I create view EMP_INFO as
select Employee Number, Last Name,
First Name, Middle Initial, Surname
from EMPLOYEE
with READ ONLY;

Without the read only clause, it is possible to update or add rows to a view, even to a view
containing multiple tables. There are some constructs in a view that prevent it from being
updatable, such as having a distinct operator, an aggregate function, or a group by clause.

When Oracle processes a query containing a view, it substitutes the underlying query
definition in the user’s select statement and processes the resulting query as if the view did not
exist. As a result, the benefits of any existing indexes on the base tables are not lost when a view
is used.

Materialized Views

In some ways, a materialized view is very similar to a regular view: The definition of the view is
stored in the data dictionary, and the view hides the details of the underlying base query from the
user. That is where the similarities end. A materialized view also allocates space in a database
segment to hold the result set from the execution of the base query.

You can use a materialized view to replicate a read-only copy of table to another database,
with the same column definitions and data as the base table. This is the simplest implementation
of a materialized view. To enhance the response time when a materialized view needs to be
refreshed, a materialized view log can be created to refresh the materialized view. Otherwise, a
full refresh is required when a refresh is required—the results of the base query must be run in
their entirety to refresh the materialized view. The materialized view log facilitates incremental
updates of the materialized views.

In a data warehouse environment, materialized views can store aggregated data from a group
by rollup or a group by cube query. If the appropriate initialization parameter values are set, such
as QUERY_REWRITE_ENABLED, and the query itself allows for query rewrites (with the query
rewrite clause), then any query that appears to do the same kind of aggregation as the materialized
view will automatically use the materialized view instead of running the original query.

Regardless of the type of materialized view, it can be refreshed automatically when a committed
transaction occurs in the base table, or it can be refreshed on demand.

Chapter 1: Getting Started with the Oracle Architecture 21

Materialized views have many similarities to indexes, in that they are directly tied to a table
and take up space, they must be refreshed when the base tables are updated, their existence is
virtually transparent to the user, and they can aid in optimizing queries by using an alternate
access path to return the results of a query.

More details on how to use materialized views in a distributed environment can be found in
Chapter 17.

Object Views
Object-oriented (OO) application development environments are becoming increasingly prevalent,
and the Oracle 10g database fully supports the implementation of objects and methods natively in
the database. However, a migration from a purely relational database environment to a purely
OO database environment is not an easy transition to make; few organizations have the time and
resources to build a new system from the ground up. Oracle 10g makes the transition easier with
object views. Object views allow the object-oriented applications to see the data as a collection
of objects that have attributes and methods, while the legacy systems can still run batch jobs
against the INVENTORY table. Object views can simulate abstract datatypes, object identifiers
(OIDs), and references that a purely OO database environment would provide.

As with regular views, you can use instead of triggers in the view definition to allow DML
against the view by running a block of PL/SQL code instead of the actual DML statement supplied
by the user or application.

Users and Schemas

Access to the database is granted to a database account known as a user. A user may exist in the
database without owning any objects. However, if the user creates and owns objects in the database,
those objects are part of a schema that has the same name as the database user. A schema can own
any type of object in the database: tables, indexes, sequences, views, and so forth. The schema
owner or DBA can grant access to these objects to other database users. The user always has full
privileges and control over the objects in the user’s schema.

When a user is created by the DBA (or by any other user with the create user system privilege),
a number of other characteristics can be assigned to the user, such as which tablespaces are
available to the user for creating objects, and whether the password is pre-expired.

You can authenticate users in the database with three methods: database authentication,
operating system authentication, and network authentication. With database authentication, the
encrypted password for the user is stored in the database. In contrast, operating system authentication
makes an assumption that a user who is already authenticated by an operating system connection
has the same privileges as a user with the same or similar name (depending on the value of the
OS_AUTHENT_PREFIX initialization parameter). Network authentication uses solutions based
on Public Key Infrastructure (PKI). These network authentication methods require Oracle 11g
Enterprise Edition with the Oracle Advanced Security option.

Profiles

Database resources are not unlimited; therefore, a DBA must manage and allocate resources
among all database users. Some examples of database resources are CPU time, concurrent
sessions, logical reads, and connect time.

A database profile is a named set of resource limits that you can assigned to a user. After Oracle
is installed, the DEFAULT profile exists and is assigned to any user not explicitly assigned a profile.
The DBA can add new profiles or change the DEFAULT profile to suit the needs of the enterprise.
The initial values for the DEFAULT profile allow for unlimited use of all database resources.

22 Oracle Database 11g DBA Handbook

Sequences

An Oracle sequence assigns sequential numbers, guaranteed to be unique unless the sequence

is re-created or reset. It produces a series of unique numbers in a multi-user environment without
the overhead of disk locking or any special I/O calls, other than what is involved in loading the
sequence into the shared pool.

Sequences can generate numbers up to 38 digits in length; the series of numbers can be
ascending or descending, the interval can be any user-specified value, and Oracle can cache
blocks of numbers from a sequence in memory for even faster performance.

The numbers from sequences are guaranteed to be unique, but not necessarily sequential.

If a block of numbers is cached, and the instance is restarted, or a transaction that uses a number
from a sequence is rolled back, the next call to retrieve a number from the sequence will not
return the number that was not used in the original reference to the sequence.

Synonyms

An Oracle synonym is simply an alias to a database object, to simplify references to database

objects and to hide the details of the source of the database objects. Synonyms can be assigned

to tables, views, materialized views, sequences, procedures, functions, and packages. Like views,

a synonym allocates no space in the database, other than its definition in the data dictionary.
Synonyms can be either public or private. A private synonym is defined in the schema of

a user and is available only to the user. A public synonym is usually created by a DBA and is

automatically available for use by any database user.

TIP
“ After creating a public synonym, make sure the users of the synonym
have the correct privileges to the object referenced by the synonym.

When referencing a database object, Oracle first checks whether the object exists in the user’s
schema. If no such object exists, Oracle checks for a private synonym. If there is no private synonym,
Oracle checks for a public synonym. If there is no public synonym, Oracle returns an error.

PL/SQL

Oracle PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL is useful when the
standard DML and select statements cannot produce the desired results in an easy fashion
because of the lack of the procedural elements found in a traditional third-generation language
such as C++ and Ada. As of Oracle9i, the SQL processing engine is shared between SQL and PL/
SQL, which means that all new features added to SQL are automatically available to PL/SQL.

In the next few sections, I'll take a whirlwind tour of the benefits of using Oracle PL/SQL.

Procedures/Functions
PL/SQL procedures and functions are examples of PL/SQL named blocks. A PL/SQL block is a
sequence of PL/SQL statements treated as a unit for the purposes of execution, and it contains up
to three sections: a variable declaration section, an executable section, and an exception section.
The difference between a procedure and function is that a function will return a single value
to a calling program such as a SQL select statement. A procedure, on the other hand, does not
return a value, only a status code. However, procedures may have one or many variables that
can be set and returned as part of the argument list to the procedure.

Chapter 1: Getting Started with the Oracle Architecture 23

Procedures and functions have many advantages in a database environment. Procedures are
compiled and stored in the data dictionary once; when more than one user needs to call the
procedure, it is already compiled, and only one copy of the stored procedure exists in the shared
pool. In addition, network traffic is reduced, even if the procedural features of PL/SQL are not
used. One PL/SQL call uses up much less network bandwidth than several SQL select and insert
statements sent separately over the network, not to mention the reparsing that occurs for each
statement sent over the network.

Packages

PL/SQL packages group together related functions and procedures, along with common variables
and cursors. Packages consist of two parts: a package specification and a package body. In the
package specification, the methods and attributes of the package are exposed; the implementation
of the methods along with any private methods and attributes are hidden in the package body.
Using a package instead of a standalone procedure or function allows the embedded procedure
or function to be changed without invalidating any objects that refer to elements of the package
specification, thus avoiding recompilation of the objects that reference the package.

Triggers
Triggers are a specialized type of a PL/SQL or Java block of code that is executed, or triggered,
when a specified event occurs. The types of events can be DML statements on a table or view, DDL
statements, and even database events such as startup or shutdown. The specified trigger can be
refined to execute on a particular event for a particular user as part of an auditing strategy.
Triggers are extremely useful in a distributed environment to simulate a foreign key relationship
between tables that do not exist in the same database. They are also very useful in implementing
complex integrity rules that cannot be defined using the built-in Oracle constraint types.
More information on how triggers can be used in a robust distributed environment can be
found in Chapter 17.

External File Access

In addition to external tables, there are a number of other ways Oracle can access external files:

B From SQL*Plus, either by accessing an external script containing other SQL commands
to be run or by sending the output from a SQL*Plus speol command to a file in the
operating system’s file system.

B Text information can be read or written from a PL/SQL procedure using the UTL_FILE
built-in package; similarly, dbms_output calls within a PL/SQL procedure can generate
text messages and diagnostics that can be captured by another application and saved to
a text file.

B External data can be referenced by the BFILE datatype. A BFILE datatype is a pointer to
an external binary file. Before BFILEs can be used in a database, a directory alias needs
to be created with the create directory command that specifies a prefix containing the
full directory path where the BFILE target is stored.

B DBMS_PIPE can communicate with any 3GL language that Oracle supports, such as
C++, Ada, Java, or COBOL, and exchange information.

B UTL_MAIL, a new package in Oracle 10g, allows a PL/SQL application to send e-mails
without knowing how to use the underlying SMTP protocol stack.

24 Oracle Database 11g DBA Handbook

When using an external file as a data source, for either input or output, a number of cautions
are in order. The following should be carefully considered before you use an external data source:

B The database data and the external data may be frequently out of synch when one of the
data sources changes without synchronizing with the other.

B [tis important to make sure that the backups of the two data sources occur at nearly the
same time to ensure that the recovery of one data source will keep the two data sources
in synch.

B Script files may contain passwords; many organizations forbid the plain-text representation
of any user account in a script file. In this situation, operating system validation may be a
good alternative for user authentication.

B You should review the security of files located in a directory that is referenced by each
DIRECTORY object. Extreme security measures on database objects are mitigated by lax
security on referenced operating system files.

Database Links and Remote Databases

Database links allow an Oracle database to reference objects stored outside of the local database.
The command create database link creates the path to a remote database, which in turn allows
access to objects in the remote database. A database link wraps together the name of the remote
database, a method for connecting to the remote database, and a username/password
combination to authenticate the connection to the remote database. In some ways, a database
link is similar to a database synonym: A database link can be public or private, and it provides

a convenient shorthand way to access another set of resources. The main difference is that the
resource is outside of the database instead of in the same database, and therefore requires more
information to resolve the reference. The other difference is that a synonym is a reference to a
specific object, whereas a database link is a defined path used to access any number of objects
in a remote database.

For links to work between databases in a distributed environment, the global database name
of each database in the domain must be different. Therefore, it is important to assign the initialization
parameters DB_NAME and DB_DOMAIN correctly.

To make using database links even easier, you can assign a synonym to a database link to
make the table access even more transparent; the user does not know if the synonym accesses an
object locally or on a distributed database. The object can move to a different remote database,
or to the local database, and the synonym name can remain the same, making access to the
object transparent to users.

How database links to remote databases are leveraged in a distributed environment is covered
further in Chapter 17.

Oracle Physical Storage Structures

The Oracle database uses a number of physical storage structures on disk to hold and manage the
data from user transactions. Some of these storage structures, such as the datafiles, redo log files,
and archived redo log files, hold actual user data; other structures, such as control files, maintain
the state of the database objects, and text-based alert and trace files contain logging information
for both routine events and error conditions in the database. Figure 1-3 shows the relationship

Chapter 1: Getting Started with the Oracle Architecture 25

Instance Memory structures

Background processes

Physical

database . . Archived redo

structure Datafiles || Control file > log files
Datafile 1 Datafile 2 Datafile 3 Datafile 4

v

Logical v

database SYSTEM USERS SYSAUX

structure Tablespace || Tablespace || Tablespace

FIGURE 1-3 Oracle physical storage structures

between these physical structures and the logical storage structures we reviewed in the earlier
section “Oracle Logical Database Structures.”

Datafiles

Every Oracle database must contain at least one datafile. One Oracle datafile corresponds to one
physical operating system file on disk. Each datafile in an Oracle database is a member of one
and only one tablespace; a tablespace, however, can consist of many datafiles. (A BIGFILE
tablespace consists of exactly one datafile.)

An Oracle datafile may automatically expand when it runs out of space, if the DBA created
the datafile with the AUTOEXTEND parameter. The DBA can also limit the amount of expansion
for a given datafile by using the MAXSIZE parameter. In any case, the size of the datafile is
ultimately limited by the disk volume on which it resides.

26 Oracle Database 11g DBA Handbook

TIP

“ The DBA often has to decide whether to allocate one datafile that
can autoextend indefinitely or to allocate many smaller datafiles with
a limit to how much each can extend. Although the performance of
each solution is likely very similar, it is probably a better idea to stick
with more datafiles that are each less than 2GB in size. It is a lot easier
to move around relatively smaller files, and some file systems may
limit the size of an individual file to 2GB anyway. Also, if you need to
temporarily move all the datafiles for a tablespace to another server,
it is often easier to find several volumes, each with enough space to
hold one of the datafiles, rather than one volume with enough space
to hold a single datafile that is 25GB.

The datafile is the ultimate resting place for all data in the database. Frequently accessed
blocks in a datafile are cached in memory; similarly, new data blocks are not immediately written
out to the datafile but rather are written to the datafile depending on when the database writer
process is active. Before a user’s transaction is considered complete, however, the transaction’s
changes are written to the redo log files.

Redo Log Files

Whenever data is added, removed, or changed in a table, index, or other Oracle object, an entry
is written to the current redo log file. Every Oracle database must have at least two redo log files,
because Oracle reuses redo log files in a circular fashion. When one redo log file is filled with
redo log entries, the current log file is marked as ACTIVE, if it is still needed for instance recovery,
or INACTIVE, if it is not needed for instance recovery; the next log file in the sequence is reused
from the beginning of the file and is marked as CURRENT.

Ideally, the information in a redo log file is never used. However, when a power failure
occurs, or some other server failure causes the Oracle instance to fail, the new or updated data
blocks in the database buffer cache may not yet have been written to the datafiles. When the
Oracle instance is restarted, the entries in the redo log file are applied to the database datafiles
in a roll forward operation, to restore the state of the database up to the point where the failure
occurred.

To be able to recover from the loss of one redo log file within a redo log group, multiple
copies of a redo log file can exist on different physical disks. Later in this chapter, you will
see how redo log files, archived log files, and control files can be multiplexed to ensure the
availability and data integrity of the Oracle database.

Control Files

Every Oracle database has at least one control file that maintains the metadata of the database
(in other words, data about the physical structure of the database itself). Among other things, it
contains the name of the database, when the database was created, and the names and locations
of all datafiles and redo log files. In addition, the control file maintains information used by
Recovery Manager (RMAN), such as the persistent RMAN settings and the types of backups

that have been performed on the database. RMAN is covered in depth in Chapter 12. Whenever
any changes are made to the structure of the database, the information about the changes is
immediately reflected in the control file.

Chapter 1: Getting Started with the Oracle Architecture 27

Because the control file is so critical to the operation of the database, it can also be multiplexed.
However, no matter how many copies of the control file are associated with an instance, only one
of the control files is designated as primary for purposes of retrieving database metadata.

The alter database backup controlfile to trace command is another way to back up the
control file. It produces a SQL script that you can use to re-create the database control file in
case all multiplexed binary versions of the control file are lost due to a catastrophic failure.

This trace file can also be used, for example, to re-create a control file if the database needs
to be renamed, or to change various database limits that could not otherwise be changed without
re-creating the entire database.

Archived Log Files

An Oracle database can operate in one of two modes: archivelog or noarchivelog mode. When
the database is in noarchivelog mode, the circular reuse of the redo log files (also known as the
online redo log files) means that redo entries (the contents of previous transactions) are no longer
available in case of a failure to a disk drive or another media-related failure. Operating in
noarchivelog mode does protect the integrity of the database in the event of an instance failure
or system crash, because all transactions that are committed but not yet written to the datafiles
are available in the online redo log files.

In contrast, archivelog mode sends a filled redo log file to one or more specified destinations
and can be available to reconstruct the database at any given point in time in the event that a
database media failure occurs. For example, if the disk drive containing the datafiles crashes,
the contents of the database can be recovered to a point in time before the crash, given a recent
backup of the datafiles and the redo log files that were generated since the backup occurred.

The use of multiple archived log destinations for filled redo log files is critical for one of
Oracle’s high-availability features known as Oracle Data Guard, formerly known as Oracle
Standby Database. Oracle Data Guard is covered in detail in Chapter 13.

Initialization Parameter Files

When a database instance starts, the memory for the Oracle instance is allocated, and one of
two types of initialization parameter files is opened: either a text-based file called init<SID>.ora
(known generically as init.ora or a PFILE) or a server parameter file (otherwise known as an
SPFILE). The instance first looks for an SPFILE in the default location for the operating system
($ORACLE_HOME/dbs on Unix, for example) as either spfile<SID>.ora or spfile.ora. If neither
of these files exists, the instance looks for a PFILE with the name init<SID>.ora. Alternatively, the
startup command can explicitly specify a PFILE to use for startup.

Initialization parameter files, regardless of the format, specify file locations for trace files,
control files, filled redo log files, and so forth. They also set limits on the sizes of the various
structures in the System Global Area (SGA) as well as how many users can connect to the
database simultaneously.

Until Oracle9i, using the init.ora file was the only way to specify initialization parameters
for the instance. Although it is easy to edit with a text editor, it has some drawbacks. If a dynamic
system parameter is changed at the command line with the alter system command, the DBA must
remember to change the init.ora file so that the new parameter value will be in effect the next
time the instance is restarted.

An SPFILE makes parameter management easier and more effective for the DBA. If an SPFILE
is in use for the running instance, any alter system command that changes an initialization

28 Oracle Database 11g DBA Handbook

parameter can change the initialization parameter automatically in the SPFILE, change it only for
the running instance, or both. No editing of the SPFILE is necessary, or even possible without
corrupting the SPFILE itself.

Although you cannot mirror a parameter file or SPFILE per se, you can back up an SPFILE to an
init.ora file, and both the init.ora and the SPFILE for the Oracle instance should be backed up using
conventional operating system commands or using Recovery Manager in the case of an SPFILE.

When the DBCA is used to create a database, an SPFILE is created by default.

Alert and Trace Log Files

When things go wrong, Oracle can and often does write messages to the alert log and, in the case
of background processes or user sessions, trace log files.

The alert log file, located in the directory specified by the initialization parameter
BACKGROUND_DUMP_DEST, contains both routine status messages as well as error conditions.
When the database is started up or shut down, a message is recorded in the alert log, along with
a list of initialization parameters that are different from their default values. In addition, any alter
database or alter system commands issued by the DBA are recorded. Operations involving
tablespaces and their datafiles are recorded here, too, such as adding a tablespace, dropping a
tablespace, and adding a datafile to a tablespace. Error conditions, such as tablespaces running
out of space, corrupted redo logs, and so forth, are also recorded here.

The trace files for the Oracle instance background processes are also located in
BACKGROUND_DUMP_DEST. For example, the trace files for PMON and SMON contain
an entry when an error occurs or when SMON needs to perform instance recovery; the trace
files for QMON contain informational messages when it spawns a new process.

Trace files are also created for individual user sessions or connections to the database. These
trace files are located in the directory specified by the initialization parameter USER_DUMP_
DEST. Trace files for user processes are created in two situations: The first is when some type of
error occurs in a user session because of a privilege problem, running out of space, and so forth.
In the second situation, a trace file can be created explicitly with the command alter session set
sql_trace=true. Trace information is generated for each SQL statement that the user executes,
which can be helpful when tuning a user’s SQL statement.

The alert log file can be deleted or renamed at any time; it is re-created the next time an alert
log message is generated. The DBA will often set up a daily batch job (either through an operating
system mechanism or using Oracle Enterprise Manager’s scheduler) to rename and archive the
alert log on a daily basis.

Backup Files

Backup files can originate from a number of sources, such as operating system copy commands
or Oracle Recovery Manager (RMAN). If the DBA performs a “cold” backup (see the section titled
“Backup/Recovery Overview” for more details on backup types), the backup files are simply operating
system copies of the datafiles, redo log files, control files, archived redo log files, and so forth.

In addition to bit-for-bit image copies of datafiles (the default in RMAN), RMAN can generate
full and incremental backups of datafiles, control files, archived redo log files, and SPFILEs that
are in a special format, called backupsets, only readable by RMAN. RMAN backupset backups
are generally smaller than the original datafiles because RMAN does not back up unused blocks.

Chapter 1: Getting Started with the Oracle Architecture 29

Oracle Managed Files

Oracle Managed Files (OMF), introduced in Oracle version 9/, makes the DBA's job easier by
automating the creation and removal of the datafiles that make up the logical structures in the
database.

Without OMF, a DBA might drop a tablespace and forget to remove the underlying operating
system files. This makes inefficient use of disk resources, and it unnecessarily increases backup
time for datafiles that are no longer needed by the database.

OMF is well suited for small databases with a low number of users and a part-time DBA,
where optimal configuration of a production database is not necessary.

Password Files

An Oracle password file is a file within the Oracle administrative or software directory structure
on disk used to authenticate Oracle system administrators for tasks such as creating a database
or starting up and shutting down the database. The privileges granted through this file are the
SYSDBA and SYSOPER privileges. Authenticating any other type of user is done within the
database itself; because the database may be shut down or not mounted, another form of
administrator authentication is necessary in these cases.

The Oracle command-line utility orapwd creates a password file if one does not exist or is
damaged. Because of the extremely high privileges granted via this file, it should be stored in a
secure directory location that is not available to anyone except for DBAs and operating system
administrators. Once this file is created, the initialization parameter REMOTE_LOGIN_
PASSWORDFILE should be set to EXCLUSIVE to allow users other than SYS to use the password file.

TIP

“ Create at least one user other than SYS or SYSTEM who has DBA
privileges for daily administrative tasks. If there is more than one DBA
administering a database, each DBA should have their own account
with DBA privileges.

Alternatively, authentication for the SYSDBA and SYSOPER privileges can be done with OS
authentication; in this case, a password file does not have to be created, and the initialization
parameter REMOTE_LOGIN_PASSWORDFILE is set to NONE.

Multiplexing Database Files

To minimize the possibility of losing a control file or a redo log file, multiplexing of database files
reduces or eliminates data-loss problems caused by media failures. Multiplexing can be somewhat
automated by using an Automatic Storage Management (ASM) instance, available starting in
Oracle 10g. For a more budget-conscious enterprise, control files and redo log files can be
multiplexed manually.

Automatic Storage Management

Using Automatic Storage Management is a multiplexing solution that automates the layout of
datafiles, control files, and redo log files by distributing them across all available disks. When
new disks are added to the ASM cluster, the database files are automatically redistributed across

30 Oracle Database 11g DBA Handbook

all disk volumes for optimal performance. The multiplexing features of an ASM cluster minimize
the possibility of data loss and are generally more effective than a manual scheme that places
critical files and backups on different physical drives.

Manual Multiplexing

Without a RAID or ASM solution, you can still provide some safeguards for your critical database
files by setting some initialization parameters and providing an additional location for control
files, redo log files, and archived redo log files.

Control Files

Control files can be multiplexed immediately when the database is created, or they can be
multiplexed later with a few extra steps to manually copy them to multiple destinations. You
can multiplex up to eight copies of a control file.

Whether you multiplex the control files when the database is created or you multiplex them
later, the initialization parameter value for CONTROL_FILES is the same.

If you want to add another multiplexed location, you need to edit the initialization parameter
file and add another location to the CONTROL_FILES parameter. If you are using an SPFILE
instead of an init.ora file, then use a command similar to the following to change the CONTROL _
FILES parameter:

- alter system
set control files = '/uOl/oracle/whse2/ctrlwhsel.ctl,
/ul02/oracle/whse2/ctrlwhse2.ctl,
/u03/oracle/whse2/ctrlwhse3.ctl’
scope=spfile;

The other possible values for SCOPE in the alter system command are MEMORY and BOTH.
Specifying either one of these for SCOPE returns an error, because the CONTROL_FILES
parameter cannot be changed for the running instance, only for the next restart of the instance.
Therefore, only the SPFILE is changed.

In either case, the next step is to shut down the database. Copy the control file to the new
destinations, as specified in CONTROL_FILES, and restart the database. You can always verify
the names and locations of the control files by looking in one of the data dictionary views:

B select value from vSspparameter where name='control files';

This query will return one row for each multiplexed copy of the control file. In addition, the
view VSCONTROLFILE contains one row for each copy of the control file along with its status.

Redo Log Files

Redo log files are multiplexed by changing a set of redo log files into a redo log file group. In a
default Oracle installation, a set of three redo log files is created. As you learned in the previous
section on redo log files, after each log file is filled, it starts filling the next in sequence. After the
third is filled, the first one is reused. To change the set of three redo log files to a group, we can
add one or more identical files as a companion to each of the existing redo log files. After the
groups are created, the redo log entries are concurrently written to the group of redo log files.
When the group of redo log files is filled, it begins to write redo entries to the next group.

Figure 1-4 shows how a set of four redo log files can be multiplexed with four groups, each
group containing three members.

Chapter 1: Getting Started with the Oracle Architecture 31

Redo log Redo log Redo log Redo log
group 1 group 2 group 3 group 4
LGWR log LGWR log LGWR log
file switch ¢ | fileswitch ¢ | file switch ¢
P P N .
| B B © Physical
Member 1 Member 1 Member 1 Member 1 disk 1
- o W - -
e e e
— | B——d b— © Physical
Member 2 Member 2 Member 2 Member 2 disk 2
- o W - -
e e e
| — | © Physical
Member 3 Member 3 Member 3 Member 3 disk 3
- o W - o

y

LGWR log file switch

FIGURE 1-4 Multiplexing redo log files

Adding a member to a redo log group is very straightforward. In the alter database command,
we specify the name of the new file and the group to add it to. The new file is created with the
same size as the other members in the group:

alter database
add logfile member '/u05/oracle/dc2/log 3d.dbf’
to group 3;

If the redo log files are filling up faster than they can be archived, one possible solution is to
add another redo log group. Here is an example of how to add a fifth redo log group to the set of
redo log groups in Figure 1-4:

alter database
add logfile group 5
('/u02/oracle/dc2/log 3a.dbf"',
'/u03/oracle/dc2/log 3b.dbf',
'/ul04/oracle/dc2/log 3c.dbf') size 250m;

All members of a redo log group must be the same size. However, the log file sizes between
groups may be different. In addition, redo log groups may have a different number of members. In
the preceding example, we started with four redo log groups, added an extra member to redo log
group 3 (for a total of four members), and added a fifth redo log group with three members.

As of Oracle 10g, you can use the Redo Logfile Sizing Advisor to assist in determining the
optimal size for redo log files to avoid excessive I/O activity or bottlenecks. See Chapter 8 for
more information on how to use the Redo Logfile Sizing Advisor.

32 Oracle Database 11g DBA Handbook

Archived Redo Log Files

If the database is in archivelog mode, Oracle copies redo log files to a specified location before
they can be reused in the redo log switch cycle.

Oracle Memory Structures

Oracle uses the server’s physical memory to hold many things for an Oracle instance: the Oracle
executable code itself, session information, individual processes associated with the database,
and information shared between processes (such as locks on database objects). In addition,

the memory structures contain user and data dictionary SQL statements, along with cached
information that is eventually permanently stored on disk, such as data blocks from database
segments and information about completed transactions in the database. The data area allocated
for an Oracle instance is called the System Global Area (SGA). The Oracle executables reside in
the software code area. In addition, an area called the Program Global Area (PGA) is private to
each server and background process; one PGA is allocated for each process. Figure 1-5 shows the
relationships between these Oracle memory structures.

System Global Area

The System Global Area is a group of shared memory structures for an Oracle instance, shared by
the users of the database instance. When an Oracle instance is started, memory is allocated for the

SGA
Database buff('er cache l KEEP Buffer Pool I Shared Pool Reserved Pool
(default size) [RECYCLE Buffer Pool |
Library cache
I Database buffer cache (size nK) l . Data oraty
dictionary Shared
I Database buffer cache (size nK) l cache sQL
Shared
Memory Large Pool area
PL/SQL
Java Pool procedures
Control Structures and packages
l Streams Pool I
l Redo log buffer cache I l Fixed SGA
Software Code Area
PGA
Non-shared Stack space l l Session information l I Sort, hash, merge area
memory

FIGURE 1-5 Oracle logical memory structures

Chapter 1: Getting Started with the Oracle Architecture 33

SGA based on the values specified in the initialization parameter file or hard-coded in the Oracle
software. Many of the parameters that control the size of the various parts of the SGA are dynamic;
however, if the parameter SGA_MAX_SIZE is specified, the total size of all SGA areas must not
exceed the value of SGA_MAX_SIZE. If SGA_MAX_SIZE is not specified, but the parameter SGA_
TARGET is specified, Oracle automatically adjusts the sizes of the SGA components so that the total
amount of memory allocated is equal to SGA_TARGET. SGA_TARGET is a dynamic parameter; it
can be changed while the instance is running. The parameter MEMORY_TARGET, new to Oracle
11g, balances all memory available to Oracle between the SGA and the Program Global Area
(discussed later in this chapter) to optimize performance.

Memory in the SGA is allocated in units of granules. A granule can be either 4MB or 16MB,
depending on the total size of the SGA. If the SGA is less than or equal to 128MB, a granule is
4MB; otherwise, it is T6MB.

In the next few subsections, we will cover the highlights of how Oracle uses each section in
the SGA. You can find more information on how to adjust the initialization parameters associated
with these areas in Chapter 8.

Buffer Caches

The database buffer cache holds blocks of data from disk that have been recently read to satisfy

a select statement or that contain modified blocks that have been changed or added from a DML
statement. As of Oracle9i, the memory area in the SGA that holds these data blocks is dynamic.
This is a good thing, considering that there may be tablespaces in the database with block sizes
other than the default block size; tablespaces with up to five different block sizes (one block size
for the default, and up to four others) require their own buffer cache. As the processing and
transactional needs change during the day or during the week, the values of DB_CACHE_SIZE
and DB_nK_CACHE_SIZE can be dynamically changed without restarting the instance to enhance
performance for a tablespace with a given block size.

Oracle can use two additional caches with the same block size as the default (DB_CACHE_
SIZE) block size: the KEEP buffer pool and the RECYCLE buffer pool. As of Oracle9i, both of these
pools allocate memory independently of other caches in the SGA.

When a table is created, you can specify the pool where the table’s data blocks will reside by
using the BUFFER_POOL KEEP or BUFFER_POOL_RECYCLE clause in the STORAGE clause. For
tables that you use frequently throughout the day, it would be advantageous to place this table
into the KEEP buffer pool to minimize the I/O needed to retrieve blocks in the table.

Shared Pool

The shared pool contains two major subcaches: the library cache and the data dictionary cache.
The shared pool is sized by the SHARED_POOL_SIZE initialization parameter. This is another
dynamic parameter that can be resized as long as the total SGA size is less than SGA_MAX_SIZE
or SGA_TARGET.

Library Cache The library cache holds information about SQL and PL/SQL statements that are
run against the database. In the library cache, because it is shared by all users, many different
database users can potentially share the same SQL statement.

Along with the SQL statement itself, the execution plan and parse tree of the SQL statement
are stored in the library cache. The second time an identical SQL statement is run, by the same
user or a different user, the execution plan and parse tree are already computed, improving the
execution time of the query or DML statement.

34 Oracle Database 11g DBA Handbook

If the library cache is sized too small, the execution plans and parse trees are flushed out of
the cache, requiring frequent reloads of SQL statements into the library cache. See Chapter 8 for
ways to monitor the efficiency of the library cache.

Data Dictionary Cache The data dictionary is a collection of database tables, owned by the
SYS and SYSTEM schemas, that contain the metadata about the database, its structures, and the
privileges and roles of database users. The data dictionary cache holds a subset of the columns
from data dictionary tables after first being read into the buffer cache. Data blocks from tables
in the data dictionary are used continually to assist in processing user queries and other DML
commands.

If the data dictionary cache is too small, requests for information from the data dictionary will
cause extra I/O to occur; these I/O-bound data dictionary requests are called recursive calls and
should be avoided by sizing the data dictionary cache correctly.

Redo Log Buffer

The redo log buffer holds the most recent changes to the data blocks in the datafiles. When the
redo log buffer is one-third full, or every three seconds, Oracle writes redo log records to the redo
log files. As of Oracle Database 10g, the LGWR process will write the redo log records to the redo
log files when TMB of redo is stored in the redo log buffer. The entries in the redo log buffer, once
written to the redo log files, are critical to database recovery if the instance crashes before the
changed data blocks are written from the buffer cache to the datafiles. A user’s committed
transaction is not considered complete until the redo log entries have been successfully written

to the redo log files.

Large Pool
The large pool is an optional area of the SGA. It is used for transactions that interact with more
than one database, message buffers for processes performing parallel queries, and RMAN parallel
backup and restore operations. As the name implies, the large pool makes available large blocks
of memory for operations that need to allocate large blocks of memory at a time.

The initialization parameter LARGE_POOL_SIZE controls the size of the large pool and is a
dynamic parameter as of Oracle9j release 2.

Java Pool

The Java pool is used by the Oracle JVM (Java Virtual Machine) for all Java code and data within
a user session. Storing Java code and data in the Java pool is analogous to SQL and PL/SQL code
cached in the shared pool.

Streams Pool

New to Oracle 10g, the streams pool is sized by using the initialization parameter STREAMS_
POOL_SIZE. The streams pool holds data and control structures to support the Oracle Streams
feature of Oracle Enterprise Edition. Oracle Streams manages the sharing of data and events

in a distributed environment. If the initialization parameter STREAMS_POOL_SIZE is uninitialized
or set to zero, the memory used for Streams operations is allocated from the shared pool and
may use up to 10 percent of the shared pool. For more information on Oracle Streams, see
Chapter 17.

Chapter 1: Getting Started with the Oracle Architecture 35

Program Global Area

The Program Global Area is an area of memory allocated and private for one process. The
configuration of the PGA depends on the connection configuration of the Oracle database:
either shared server or dedicated.

In a shared server configuration, multiple users share a connection to the database, minimizing
memory usage on the server, but potentially affecting response time for user requests. In a shared
server environment, the SGA holds the session information for a user instead of the PGA. Shared
server environments are ideal for a large number of simultaneous connections to the database
with infrequent or short-lived requests.

In a dedicated server environment, each user process gets its own connection to the database;
the PGA contains the session memory for this configuration.

The PGA also includes a sort area. The sort area is used whenever a user request requires a
sort, bitmap merge, or hash join operation.

As of Oracle9i, the PGA_AGGREGATE_TARGET parameter, in conjunction with the
WORKAREA_SIZE_POLICY initialization parameter, can ease system administration by allowing
the DBA to choose a total size for all work areas and let Oracle manage and allocate the memory
between all user processes. As | mentioned earlier in this chapter, the parameter MEMORY _
TARGET manages the PGA and SGA memory as a whole to optimize performance.

Software Code Area

Software code areas store the Oracle executable files that are running as part of an Oracle instance.
These code areas are static in nature and only change when a new release of the software is installed.
Typically, the Oracle software code areas are located in a privileged memory area separate from
other user programs.

Oracle software code is strictly read-only and can be installed either shared or non-shared.
Installing Oracle software code as sharable saves memory when multiple Oracle instances are
running on the same server at the same software release level.

Background Processes

When an Oracle instance starts, multiple background processes start. A background process is

a block of executable code designed to perform a specific task. Figure 1-6 shows the relationship
between the background processes, the database, and the Oracle SGA. In contrast to a
foreground process, such as a SQL*Plus session or a web browser, a background process
works behind the scenes. Together, the SGA and the background processes compose an
Oracle instance.

SMON

SMON is the System Monitor process. In the case of a system crash or instance failure, due to a
power outage or CPU failure, the SMON process performs crash recovery by applying the entries
in the online redo log files to the datafiles. In addition, temporary segments in all tablespaces are
purged during system restart.

One of SMON's routine tasks is to coalesce the free space in tablespaces on a regular basis if
the tablespace is dictionary managed.

36 Oracle Database 11g DBA Handbook

RECO PMON SMON

A A

v v v

System Global Area

Buffer Cache Buffer

A A

User Shared Dedicated
Proi“ Server Server
Process Process

‘ Database {Redo Log J

User Processes A A A A
\ CKPT
D000
v
DBWOJ

Legend: LGWR
RECO Recoverer process U
PMON Process monitor p ser
SMON System monitor Locess

CKPT Checkpoint

ARCO Archiver

DBWO Database writer
LGWR Log writer

D000 Dispatcher Process

Redo Log
Files

Datafiles

FIGURE 1-6 Oracle background processes

PMON

If a user connection is dropped, or a user process otherwise fails, PMON, also known as the
Process Monitor, does the cleanup work. It cleans up the database buffer cache along with any
other resources that the user connection was using. For example, a user session may be updating
some rows in a table, placing a lock on one or more of the rows. A thunderstorm knocks out the
power at the user’s desk, and the SQL*Plus session disappears when the workstation is powered
off. Within moments, PMON will detect that the connection no longer exists and perform the
following tasks:

B Roll back the transaction that was in progress when the power went out.

B Mark the transaction’s blocks as available in the buffer cache.

Chapter 1: Getting Started with the Oracle Architecture 37

B Remove the locks on the affected rows in the table.
B Remove the process ID of the disconnected process from the list of active processes.

PMON will also interact with the listeners by providing information about the status of the
instance for incoming connection requests.

DBWn
The database writer process, known as DBWR in older versions of Oracle, writes new or changed
data blocks (known as dirty blocks) in the buffer cache to the datafiles. Using an LRU algorithm,
DBWn writes the oldest, least active blocks first. As a result, the most commonly requested
blocks, even if they are dirty blocks, are in memory.

Up to 20 DBWhn processes can be started, DBWO through DBW9 and DBWa through DBW;.
The number of DBWn processes is controlled by the DB_WRITER_PROCESSES parameter.

LGWR

LGWR, or Log Writer, is in charge of redo log buffer management. LGWR is one of the most
active processes in an instance with heavy DML activity. A transaction is not considered complete
until LGWR successfully writes the redo information, including the commit record, to the redo log
files. In addition, the dirty buffers in the buffer cache cannot be written to the datafiles by DBWn
until LGWR has written the redo information.

If the redo log files are grouped, and one of the multiplexed redo log files in a group is
damaged, LGWR writes to the remaining members of the group and records an error in the alert
log file. If all members of a group are unusable, the LGWR process fails and the entire instance
hangs until the problem can be corrected.

ARCn

If the database is in ARCHIVELOG mode, then the archiver process, or ARCn, copies redo logs to
one or more destination directories, devices, or network locations whenever a redo log fills up
and redo information starts to fill the next redo log in sequence. Optimally, the archive process
finishes before the filled redo log is needed again; otherwise, serious performance problems
occur—users cannot complete their transactions until the entries are written to the redo log files,
and the redo log file is not ready to accept new entries because it is still being written to the
archive location. There are at least three potential solutions to this problem: make the redo log
files larger, increase the number of redo log groups, and increase the number of ARCn processes.
Up to ten ARCn processes can be started for each instance by increasing the value of the LOG_
ARCHIVE_MAX_PROCESSES initialization parameter.

CKPT

The checkpoint process, or CKPT, helps to reduce the amount of time required for instance recovery.
During a checkpoint, CKPT updates the header of the control file and the datafiles to reflect the
last successful SCN (System Change Number). A checkpoint occurs automatically every time a redo
log file switch occurs. The DBWn processes routinely write dirty buffers to advance the checkpoint
from where instance recovery can begin, thus reducing the Mean Time to Recovery (MTTR).

RECO

The RECO, or recoverer process, handles failures of distributed transactions (that is, transactions
that include changes to tables in more than one database). If a table in the CCTR database is
changed along with a table in the WHSE database, and the network connection between the
databases fails before the table in the WHSE database can be updated, RECO will roll back the
failed transaction.

38 Oracle Database 11g DBA Handbook

Backup/Recovery Overview

Oracle supports many different forms of backup and recovery. Some of them can be managed at
the user level, such as export and import; most of them are strictly DBA-centric, such as online or
offline backups and using operating system commands or the RMAN utility.

Details for configuring and using these backup and recovery methods can be found in
Chapter 11 and also in Chapter 12.

Export/Import

The export command is a standalone utility on all Oracle hardware and software platforms, and
it’s started by running the command exp at the operating system command-line prompt or through
the Oracle Enterprise Manager console in a GUI environment. Export is considered a logical
backup, because the underlying storage characteristics of the tables are not recorded, only the
table metadata, user privileges, and table data. Depending on the task at hand, and whether you
have DBA privileges or not, the exp command can either export all tables in the database, all the
tables of one or more users, or a specific set of tables.

For restoring from a database export, the import command, started by running the command
imp, takes a binary format file created by export and imports it into the database with the
assumption that the users in the exported database tables exist in the database where the import
command is performed.

One advantage to using export and import is that a database power user may be able to manage
their own backups and recoveries, especially in a development environment. Also, a binary file
generated by export is typically readable across Oracle versions, making a transfer of a small set
of tables from an older version to a newer version of Oracle fairly straightforward.

Export and import are inherently “point in time” backups and therefore are not the most
robust backup and recovery solutions if the data is volatile.

In Oracle 10g, Oracle Data Pump takes import and export operations to a new performance
level. Exports to an external data source can be up to two times faster, and an import operation
can be up to 45 times faster because Data Pump Import uses direct path loading, unlike traditional
import. In addition, an export from the source database can be simultaneously imported into the
target database without an intermediate dump file, saving time and administrative effort. Oracle
Data Pump is implemented using the DBMS_DATAPUMP package with the expdb and impdb
commands and includes numerous other manageability features, such as fine-grained object
selection. More information on Oracle Data Pump is provided in Chapter 17.

Offline Backups

One of the ways to make a physical backup of the database is to perform an offline backup. To
perform an offline backup, the database is shut down and all database-related files, including
datafiles, control files, SPFILEs, password files, and so forth, are copied to a second location.
Once the copy operation is complete, the database instance can be started.

Offline backups are similar to export backups because they are point-in-time backups and
therefore of less value if up-to-the minute recovery of the database is required and the database
is not in archivelog mode. Another downside to offline backups is the amount of downtime
necessary to perform the backup; any multinational company that needs 24/7 database access
will most likely not do offline backups very often.

Chapter 1: Getting Started with the Oracle Architecture 39

Online Backups

If a database is in archivelog mode, it is possible to do online backups of the database. The
database can be open and available to users even while the backup is in process. The procedure
for doing online backups is as easy as placing a tablespace into a backup state by using the alter
tablespace users begin backup command, backing up the datafiles in the tablespace with operating
system commands, and then taking the tablespace out of the backup state with the alter tablespace
users end backup command.

RMAN

The backup tool Recovery Manager, known more commonly as RMAN, has been around since
Oracle8. RMAN provides many advantages over other forms of backup. It can perform incremental
backups of only changed data blocks in between full database backups while the database remains
online throughout the backup.

RMAN keeps track of the backups via one of two methods: through the control file of the
database being backed up, or through a recovery catalog stored in another database. Using the
target database’s control file for RMAN is easy, but it's not the best solution for a robust enterprise
backup methodology. Although a recovery catalog requires another database to store the metadata
for the target database along with a record of all backups, it is well worth it when all the control
files in the target database are lost due to a catastrophic failure. In addition, a recovery catalog
retains historical backup information that may be overwritten in the target database’s control file
if the value of CONTROL_FILE_RECORD_KEEP_TIME is set too low.

RMAN is discussed in detail in Chapter 12.

Security Capabilities
In the next few sections, I'll give a brief overview of the different ways that the Oracle 11g
Database controls and enforces security in a database. Account security based on user and
schema objects was covered in the section on database objects; the other security topics are
covered here.

An in-depth look at these and other security capabilities within Oracle is covered in Chapter 9.

Privileges and Roles

In an Oracle database, privileges control access to both the actions a user can perform and the
objects in the database. Privileges that control access to actions in the database are called system
privileges, whereas privileges that control access to data and other objects are called object
privileges.

To make assignment and management of privileges easier for the DBA, a database role groups
privileges together. To put it another way, a role is a named group of privileges. In addition, a role
can itself have roles assigned to it.

Privileges and roles are granted and revoked with the grant and revoke commands. The user
group PUBLIC is neither a user nor a role, nor can it be dropped; however, when privileges are
granted to PUBLIC, they are granted to every user of the database, both present and future.

40 Oracle Database 11g DBA Handbook

System Privileges

System privileges grant the right to perform a specific type of action in the database, such as
creating users, altering tablespaces, or dropping any view. Here is an example of granting a
system privilege:

I grant DROP ANY TABLE to SCOTT WITH ADMIN OPTION;

The user SCOTT can drop anyone’s table in any schema. The with grant option clause allows
SCOTT to grant his newly granted privilege to other users.

Object Privileges

Obiject privileges are granted on a specific object in the database. The most common object
privileges are SELECT, UPDATE, DELETE, and INSERT for tables, EXECUTE for a PL/SQL stored
object, and INDEX for granting index-creation privileges on a table. In the following example,
the user RJB can perform any DML on the JOBS table owned by the HR schema:

I grant SELECT, UPDATE, INSERT, DELETE on HR.JOBS to RJB;

Auditing

To audit access to objects in the database by users, you can set up an audit trail on a specified
object or action by using the audit command. Both SQL statements and access to a particular
database object can be audited; the success or failure of the action (or both) can be recorded in
the audit trail table, SYS.AUDS, or in an O/S file if specified by the AUDIT_TRAIL initialization
parameter with a value of OS.

For each audited operation, Oracle creates an audit record with the username, the type of
operation that was performed, the object involved, and a timestamp. Various data dictionary
views, such as DBA_AUDIT_TRAIL and DBA_FGA_AUDIT_TRAIL, make interpreting the results
from the raw audit trail table SYS.AUD$ easier.

CAUTION
Excessive auditing on database objects can have an adverse effect

on performance. Start out with basic auditing on key privileges and
objects, and expand the auditing when the basic auditing has revealed
a potential problem.

Fine-grained Auditing

The fine-grained auditing capability that was introduced in Oracle9i and enhanced in both
Oracle 10g and Oracle 11g takes auditing one step further: Standard auditing can detect when a
select statement was executed on an EMPLOYEE table; fine-grained auditing will record an audit
record containing specific columns accessed in the EMPLOYEE table, such as the SALARY column.

Chapter 1: Getting Started with the Oracle Architecture 41

Fine-grained auditing is implemented using the DBMS_FGA package along with the data
dictionary view DBA_FGA_AUDIT_TRAIL. The data dictionary view DBA_COMMON_AUDIT_
TRAIL combines standard audit records in DBA_AUDIT_TRAIL with fine-grained audit records.

Virtual Private Database

The Virtual Private Database feature of Oracle, first introduced in Oracle8i, couples fine-grained
access control with a secure application context. The security policies are attached to the data,
and not to the application; this ensures that security rules are enforced regardless of how the data
is accessed.

For example, a medical application context may return a predicate based on the patient
identification number accessing the data; the returned predicate will be used in a WHERE clause
to ensure that the data retrieved from the table is only the data associated with the patient.

Label Security

Oracle Label Security provides a “VPD Out-of-the-Box” solution to restrict access to rows in any
table based on the label of the user requesting the access and the label on the row of the table
itself. Oracle Label Security administrators do not need any special programming skills to assign
security policy labels to users and rows in the table.

This highly granular approach to data security can, for example, allow a DBA at an Application
Service Provider (ASP) to create only one instance of an accounts receivable application and to
use Label Security to restrict rows in each table to an individual company’s accounts receivable
information.

Real Application Clusters

Oracle’s Real Application Clusters (RAC) feature, known in previous Oracle versions as the
Oracle Parallel Server option, allows more than one instance, on separate servers, to access
the same database files.

A RAC installation can provide extreme high availability for both planned and unplanned
outages. One instance can be restarted with new initialization parameters while the other instance
is still servicing requests against the database. If one of the hardware servers crashes due to a fault
of some type, the Oracle instance on the other server will continue to process transactions, even
from users who were connected to the crashed server, transparently and with minimal downtime.

RAC, however, is not a software-only solution: The hardware that implements RAC has special
requirements. The shared database should be on a RAID-enabled disk subsystem to ensure that
each component of the storage system is fault tolerant. In addition, RAC requires a high-speed
interconnect, or a private network, between the nodes in the cluster to support messaging and
transfer of blocks from one instance to another using the Cache Fusion mechanism.

The diagram in Figure 1-7 shows a two-node RAC installation. How to set up and configure
Real Application Clusters is discussed in depth in Chapter 10.

42

Oracle Database 11g DBA Handbook

Memory Memory
High-Speed
System Global Area ____I_rlt_e_r_c_o_rlrj_e_c_t"_ System Global Area
First Second
Server: Server:
Background Processes Background Processes

Database

Database: Shared Disk Drive)
files

FIGURE 1-7 A two-node Real Application Clusters (RAC) configuration

Oracle Streams

As a component of Oracle Enterprise Edition, Oracle Streams is the higher-level component of
the Oracle infrastructure that complements Real Application Clusters. Oracle Streams allows the
smooth flow and sharing of both data and events within the same database or from one database
to another. It is another key piece in Oracle’s long list of high-availability solutions, tying together
and enhancing Oracle’s message queuing, data replication, and event management functions.
More information on how to implement Oracle Streams can be found in Chapter 17.

Oracle Enterprise Manager

Oracle Enterprise Manager (OEM) is a valuable set of tools that facilitates the comprehensive
management of all components of an Oracle infrastructure, including Oracle database instances,
Oracle application servers, and web servers. If a management agent exists for a third-party
application, then OEM can manage the third-party application in the same framework as any
Oracle-supplied target.

OEM is fully web-enabled via Netscape or Internet Explorer, and as a result any operating
system platform that supports Netscape or IE can be used to launch the OEM console.

One of the key decisions to make when using OEM with Oracle Grid Control is the location
to store the management repository. The OEM management repository is stored in a database
separate from the nodes or services being managed or monitored. The metadata from the nodes
and services is centralized and facilitates the administration of these nodes. The management
repository database should be backed up often and separately from the databases being managed.

An installation of OEM provides a tremendous amount of value “out of the box.” When the
OEM installation is complete, e-mail notifications are already set up to send messages to the
SYSMAN or any other e-mail account for critical conditions, and the initial target discovery is
automatically completed.

Chapter 1: Getting Started with the Oracle Architecture 43

Oracle Initialization Parameters

An Oracle database uses initialization parameters to configure memory settings, disk locations,
and so forth. There are two ways to store initialization parameters: using an editable text file and
using a server-side binary file. Regardless of the method used to store the initialization parameters,
there is a defined set of basic initialization parameters (as of Oracle 10g) that every DBA should
be familiar with when creating a new database.

As of Oracle 10g, initialization parameters fall into two broad categories: basic initialization
parameters and advanced initialization parameters. As Oracle becomes more and more self-managing,
the number of parameters that a DBA must be familiar with and adjust on a daily basis is reduced.

Basic Initialization Parameters

The list of Oracle 10g basic initialization parameters appears in Table 1-3 along with a brief
description of each. In the sections that follow, we will give some further explanation and advice
regarding how some of these parameters should be set, depending on the hardware and software
environment, the types of applications, and the number of users in the database.

Initialization Parameter
CLUSTER_DATABASE
COMPATIBLE

Description
Enables this node to be a member of a cluster.

Allows a new database version to be installed while ensuring
compatibility with the release specified by this parameter.

CONTROL_FILES
DB_BLOCK_SIZE

Specifies the location of the control files for this instance.

Specifies the size of Oracle blocks. This block size is used for the
SYSTEM, SYSAUX, and temporary tablespaces at database creation.

DB_CREATE_FILE_DEST The default location for OMF datafiles. Also specifies the location of
control files and redo log files if DB_CREATE_ONLINE_LOG_DEST_

nis not set.

DB_CREATE_ONLINE_LOG_DEST_n
DB_DOMAIN

DB_NAME

DB_RECOVERY_FILE_DEST

DB_RECOVERY_FILE_DEST_SIZE

DB_UNIQUE_NAME

INSTANCE_NUMBER

The default location for OMF control files and online redo log files.

The logical domain name where the database resides in a distributed
database system (for example, us.oracle.com).

A database identifier of up to eight characters. Prepended to the
DB_DOMAIN value for a fully qualified name (for example, marketing.
us.oracle.com).

The default location for the recovery area. Must be set along with
DB_RECOVERY_FILE_DEST_SIZE.

The maximum size, in bytes, for the files used for recovery in the
recovery area location.

A globally unique name for the database. This distinguishes
databases that have the same DB_NAME within the same DB_
DOMAIN.

In a RAC installation, the instance number of this node in the cluster.

TABLE 1-3 Basic Initialization Parameters

44

Oracle Database 11g DBA Handbook

Initialization Parameter
JOB_QUEUE_PROCESSES

LDAP_DIRECTORY_SYSAUTH

LOG_ARCHIVE_DEST_n

LOG_ARCHIVE_DEST_STATE_n

NLS_LANGUAGE

NLS_TERRITORY

OPEN_CURSORS
PGA_AGGREGATE_TARGET
PROCESSES

REMOTE_LISTENER
REMOTE_LOGIN_PASSWORDFILE
ROLLBACK_SEGMENTS

SESSIONS

SGA_TARGET

SHARED_SERVERS

STAR_TRANSFORMATION_ENABLED

UNDO_MANAGEMENT

UNDO_TABLESPACE

Description

The maximum number of processes allowed for executing jobs,
ranging from 0 to 1000.

Enables or disables directory-based authorization for users with the
SYSDBA and SYSOPER roles.

For ARCHIVELOG mode, up to ten locations for sending archived
log files.

Sets the availability of the corresponding LOG_ARCHIVE_DEST_n
sites.

Specifies the default language of the database, including messages,
day and month names, and sorting rules (for example, AMERICAN').

The territory name used for day and week numbering (for example,
‘SWEDEN’, “TURKEY’, or ‘AMERICA).

The maximum number of open cursors per session.
The total memory to allocate for all server processes in this instance.

The maximum number of operating system processes that can
connect to Oracle simultaneously. SESSIONS and TRANSACTIONS
are derived from this value.

A network name resolving to an Oracle Net remote listener.
Specifies how Oracle uses password files. Required for RAC.

Names of private rollback segments to bring online, if undo
management is not used for transaction rollback.

The maximum number of sessions, and therefore simultaneous users,
in the instance. Defaults to 1.1*PROCESSES + 5.

Specifies the total size of all SGA components; this parameter
automatically determines DB_CACHE_SIZE, SHARED_POOL_SIZE,
LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_POOL_SIZE.

The number of shared server processes to allocate when an instance
is started.

Controls query optimization when start queries are executed.

Specifies whether undo management is automatic (AUTO) or
manual (MANUAL). If MANUAL is specified, rollback segments are
used for undo management.

The tablespace to use when UNDO_MANAGEMENT is set to AUTO.

TABLE 1-3 Basic Initialization Parameters (continued)

Some of these parameters will be revisited in the appendix, where we will set the initial
parameters for the SGA, file locations, and other limits.

COMPATIBLE

The COMPATIBLE parameter allows a newer version of Oracle to be installed while restricting the
feature set of the new version as if an older version of Oracle was installed. This is a good way to
move forward with a database upgrade while remaining compatible with an application that may
fail when it runs with the new version of the software. The COMPATIBLE parameter can then be

Chapter 1: Getting Started with the Oracle Architecture 45

bumped up as the applications are reworked or rewritten to work with the new version of the
database.

The downside of using this parameter is that none of the new applications for the database
can take advantage of new features until the COMPATIBLE parameter is set to the same value as
the current release.

DB_NAME

DB_NAME specifies the local portion of the database name. It can be up to eight characters and
must begin with an alphanumeric character. Once set, it can only be changed with the Oracle
DBNEWID utility (nid); the DB_NAME is recorded in each datafile, redo log file, and control file
in the database. At database startup, the value of this parameter must match the value of DB_
NAME recorded in the control file.

DB_DOMAIN

DB_DOMAIN specifies the name of the network domain where the database will reside. The
combination of DB_NAME and DB_DOMAIN must be unique within a distributed database
system.

DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE

When database recovery operations occur, either due to an instance failure or a media failure,

it is convenient to have a flash recovery area to store and manage files related to a recovery or
backup operation. Starting with Oracle 10g, the parameter DB_RECOVERY_FILE_DEST can be a
directory location on the local server, a network directory location, or an ASM (Automatic Storage
Management) disk area. The parameter DB_RECOVERY_FILE_DEST_SIZE places a limit on how
much space is allowed for the recovery or backup files.

These parameters are optional, but if they are specified, Recovery Manager (RMAN) can
automatically manage the files needed for backup and recovery operations. The size of this
recovery area should be large enough to hold two copies of all datafiles, incremental RMAN
backups, online redo logs, archived log files not yet backed up to tape, the SPFILE, and the
control file.

CONTROL_FILES

The CONTROL_FILES parameter is not required when you create a database. If it is not specified,
Oracle creates one control file in a default location, or if OMF is configured, in the location
specified by either DB_CREATE_FILE_DEST or DB_CREATE_ONLINE_LOG_DEST_n and a
secondary location specified by DB_RECOVERY_FILE DEST. Once the database is created, the
CONTROL_FILES parameter reflects the names of the control file locations if you are using an
SPFILE; if you are using a text initialization parameter file, you must add the location to this file
manually.

However, it is strongly recommended that multiple copies of the control file be created on
separate physical volumes. Control files are so critical to the database integrity and are so small
that at least three multiplexed copies of the control file should be created on separate physical
disks. In addition, the command alter database backup controlfile to trace should be executed
to create a text-format copy of the control file in the event of a major disaster.

The following example specifies three locations for copies of the control file:

CONTROL_FILES = (/u0l/oraclelOg/test/controlOl.ctl,
/u03/oraclelOg/test/control02.ctl,
/u07/oraclelOg/test/control03.ctl)

46 Oracle Database 11g DBA Handbook

DB_BLOCK_SIZE
The parameter DB_BLOCK_SIZE specifies the size of the default Oracle block in the database. At
database creation, the SYSTEM, TEMP, and SYSAUX tablespaces are created with this block size.
Ideally, this parameter is the same as or a multiple of the operating system block size for I/O
efficiency.

Before Oracle9i, you might specify a smaller block size (4KB or 8KB) for OLTP systems and
a larger block size (up to 32KB) for DSS (decision support system) databases. However, now that
tablespaces with up to five block sizes can coexist in the same database, a smaller value for DB_
BLOCK_SIZE is fine. However, 8KB is probably preferable as a minimum for any database, unless
it has been rigorously proven in the target environment that a 4KB block size will not cause
performance issues.

SGA_TARGET

Another way that Oracle 10g can facilitate a “set it and forget it” database is by the ability to
specify a total amount of memory for all SGA components. If SGA_TARGET is specified, the
parameters DB_CACHE_SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_
SIZE, and JAVA_POOL_SIZE are automatically sized by Automatic Shared Memory Management
(ASMM). If any of these four parameters are manually sized when SGA_TARGET is also set,
ASMM uses the manually sized parameters as minimums.

Once the instance starts, the automatically sized parameters can by dynamically increased or
decreased, as long as the parameter SGA_MAX_SIZE is not exceeded. The parameter SGA_MAX_
SIZE specifies a hard upper limit for the entire SGA, and it cannot be exceeded or changed until
the instance is restarted.

Regardless of how the SGA is sized, be sure that enough free physical memory is available in
the server to hold the components of the SGA and all background processes; otherwise, excessive
paging will occur and performance will suffer.

MEMORY_TARGET

Even though MEMORY_TARGET is not a “basic” parameter according to the Oracle documentation,
it can greatly simplify instance memory management. This parameter specifies the Oracle system-
wide usable memory; Oracle in turn reallocates memory between, for example, the SGA and PGA
to optimize performances.

DB_CACHE_SIZE and DB_nK_CACHE_SIZE
The parameter DB_CACHE_SIZE specifies the size of the area in the SGA to hold blocks of the
default size, including those from the SYSTEM, TEMP, and SYSAUX tablespaces. Up to four other
caches can be defined if there are tablespaces with block sizes other than the SYSTEM and
SYSAUX tablespaces. The value of n can be 2, 4, 8, 16, or 32; if the value of n is the same as the
default block size, the corresponding DB_nK_CACHE_SIZE parameter is illegal. Although this
parameter is not one of the basic initialization parameters, it becomes very basic when you
transport a tablespace from another database with a block size other than DB_BLOCK_SIZE!
There are distinct advantages to a database containing multiple block sizes. The tablespace
handling OLTP applications can have a smaller block size, and the tablespace with the data
warehouse table can have a larger block size. However, be careful when allocating memory for
each of these cache sizes so as not to allocate too much memory for one at the expense of
another. As of Oracle9i, Oracle’s Buffer Cache Advisory feature monitors the cache usage for each
cache size in the view V$DB_CACHE_ADVICE to assist the DBA in sizing these memory areas.
More information on how to use the Buffer Cache Advisory feature can be found in Chapter 8.

Chapter 1: Getting Started with the Oracle Architecture 47

SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE,

and JAVA_POOL_SIZE

The parameters SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_
POOL_SIZE, which size the shared pool, large pool, streams pool, and Java pool, respectively,
are automatically sized by Oracle if the SGA_TARGET initialization parameter is specified. More
information on manually tuning these areas can be found in Chapter 8.

PROCESSES

The value for the PROCESSES initialization parameter represents the total number of processes
that can simultaneously connect to the database. This includes both the background processes
and the user processes; a good starting point for the PROCESSES parameter would be 15 for the
background processes plus the number of expected maximum concurrent users; for a smaller
database, 50 is a good starting point, because there is little or no overhead associated with
making PROCESSES too big.

UNDO_MANAGEMENT and UNDO_TABLESPACE

Automatic Undo Management (AUM), introduced in Oracle9/, eliminates or at least greatly reduces
the headaches in trying to allocate the right number and size of rollback segments to handle the
undo information for transactions. Instead, a single undo tablespace is specified for all undo
operations (except for a SYSTEM rollback segment), and all undo management is handled
automatically when the UNDO_MANAGEMENT parameter is set to AUTO.

The remaining task for the DBA is sizing the undo tablespace. Data dictionary views such as
V$UNDOSTAT and the Undo Advisor can help the DBA adjust the size of the undo tablespace.
Multiple undo tablespaces may be created; for example, a smaller undo tablespace is online
during the day to handle relatively small transaction volumes, and a larger undo tablespace
is brought online overnight to handle batch jobs and long-running queries that load the data
warehouse and need transactional consistency. Only one undo tablespace may be active at
any given time.

As of Oracle 11g, AUM is enabled by default. In addition, new PL/SQL procedures are
available to supplement the information you get from the Undo Advisor and V$UNDOSTAT.

Advanced Initialization Parameters

The advanced initialization parameters include the balance of the initialization parameters not
listed here, for a total of 283 of them in Release 1 of Oracle Database 11g. Most of these can be
automatically set and tuned by the Oracle instance when the basic initialization parameters are
set. We will review some of these in the appendix (“Installation and Configuration”).

This page intentionally left blank

CHAPTER

Upgrading to Oracle
Database 11g

50 Oracle Database 11g DBA Handbook

" 1 fyou have previously installed an earlier version of the Oracle database server,
you can upgrade your database to Oracle Database 11g. Multiple upgrade paths
are supported; the right choice for you will depend on factors such as your current
Oracle software version and your database size. In this chapter, you will see
descriptions of these methods along with guidelines for their use.

M |
!
v
N

If you have not used a version of Oracle prior to Oracle Database 11g, you can skip this chapter
for now. However, you will likely need to refer to it when you upgrade from Oracle Database 11g to
a later version or when you migrate data from a different database into your database.

Prior to beginning the upgrade, you should read the Oracle Database 11g Installation Guide for
your operating system. A successful installation is dependent on a properly configured environment—
including operating system patch levels and system parameter settings. Plan to get the installation
and upgrade right the first time rather than attempting to restart a partially successful installation.
Configure the system to support both the installation of the Oracle software and the creation of a
usable starter database.

This chapter assumes that your installation of the Oracle Database 11g software (see Chapter
1 and the appendix titled “Installation and Configuration”) completed successfully and that you
have an Oracle database that uses an earlier version of the Oracle software on the same server.
Note that whether you are installing from scratch or upgrading a previous version of the Oracle
Database, there are distinct advantages to installing the Oracle Database 11g software and
creating the database in separate steps. When installing from scratch, you have greater control
over initialization parameters, database file locations, memory allocation, and so forth when
you create the database in a separate step; when upgrading from a previous release, installing
the software first provides you with the Oracle Pre-Upgrade Information Tool that you use against
the existing database to alert you to any potential compatibility problems when you upgrade to
Oracle Database 11g. To upgrade that database, you have four options:

B Use the Database Upgrade Assistant (DBUA) to guide and perform the upgrade in
place. The old database will become an Oracle 11g database during this process.
DBUA supports both Oracle Real Application Clusters (RAC) and Automatic Storage
Management (ASM); you can launch DBUA as part of the installation process or as a
standalone tool after installation. Oracle strongly recommend using DBUA for Oracle
Database major releases or patch release upgrades.

B Perform a manual upgrade of the database. The old database will become an Oracle
11g database during this process. While you have very precise control over every step
of the process, this method is more susceptible to error if you miss a step or forget a
prerequisite step.

B Use the Export and Import (or Oracle Data Pump) utilities to move data from an earlier
version of Oracle to the Oracle 11g database. Two separate databases will be used—the
old database as the source for the export and the new database as the target for the import.
If you are upgrading from Oracle Database 10g, you will use Oracle Data Pump to move
your data from the old database to the new database.

B Copy data from an earlier version of Oracle to an Oracle 11g database. Two separate
databases will be used—the old database as the source for the copy and the new database
as the target for the copy. This method is the most straightforward because your migration
consists primarily of create table as select SQL statements referencing the old and new

Chapter 2: Upgrading to Oracle Database 11g 51

databases; however, unless your database has very few tables and you aren’t concerned
with using existing SQL tuning sets, statistics, and so forth, Oracle does not recommend
this method for production databases.

Upgrading a database in place—via either the Database Upgrade Assistant or the manual
upgrade path—is called a direct upgrade. Because a direct upgrade does not involve creating a
second database for the one being upgraded, it may complete faster and require less disk space
than an indirect upgrade.

NOTE
“ Direct upgrade of the database to version 11 is only supported if your

present database is using one of these releases of Oracle: 9.2.0.4,
10.1.0.2, or 10.2.0.1. If you are using any other release, you will
first have to upgrade the database to one of those releases or you
will need to use a different upgrade option. Oracle 8.0.6 is only
supported for some versions (generally 64-bit), so be sure to check
the online certification matrixes at Oracle’s Metalink site or in the
Oracle Database Upgrade Guide.

NOTE
“ Plan your upgrades carefully; you may need to allow time for multiple

incremental upgrades (such as from 8.1.7 to 8.1.7.4 to 9.2.0.8) prior
to upgrading to Oracle Database 11g.

Choosing an Upgrade Method

As described in the previous section, two direct upgrade and two indirect upgrade paths are
available. In this section, you will see a more detailed description of the options, followed by
usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either to an Export dump file on
the file system, across a database link, or via a Data Pump export. For very large databases, the
time required to completely re-create the database via the indirect methods may exclude them
as viable options.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. These recommendations may include the sizing of files and the specifications
for the new SYSAUX tablespace if you are upgrading from a version previous to 10g. After you
accept the recommendations, DBUA performs the upgrade in the background while a progress
panel is displayed. DBUA is very similar in approach to the Database Configuration Assistant
(DBCA). As discussed in Chapter 1 and the appendix, DBCA is a graphical interface to the steps
and parameters required to make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds
to the level of risk in the upgrade because you must perform the steps in the proper order.

52 Oracle Database 11g DBA Handbook

You can use the original Export and Import (or Oracle Data Pump Export/Import starting with
Oracle Database 10g) as an indirect method for upgrading a database. In this method, you export
the data from the old version of the database and then import it into a database that uses the new
version of the Oracle software. This process may require disk space for multiple copies of the
data—in the source database, in the Export dump file, and in the target database. In exchange for
these costs, this method gives you great flexibility in choosing which data will be migrated. You
can select specific tablespaces, schemas, tables, and rows to be exported.

In the Export/Import and Data Pump methods, the original database is not upgraded; its data
is extracted and moved, and the database can then either be deleted or be run in parallel with the
new database until testing of the new database has been completed. In the process of performing
the export/import, you are selecting and reinserting each row of the database. If the database is
very large, the import process may take a long time, impacting your ability to provide the upgraded
database to your users in a timely fashion. See Chapter 12 for details on the Export/Import and
Data Pump utilities.

NOTE
“ Depending on the version of the source database, you will need to

use a specific version of the Export and Import utilities. See the section
“Export and Import Versions to Use” later in this chapter.

In the data-copying method, you issue a series of create table as select. . . or insert into . . .
select commands that cross database links (see Chapter 16) to retrieve the source data. The tables
are created in the Oracle 11g database based on queries of data from a separate source database.
This method allows you to bring over data incrementally and to limit the rows and columns
migrated. However, you will need to be careful that the copied data maintains all the necessary
relationships among tables as well as any indexes or constraints. As with the Export/Import method,
this method may require a significant amount of time for large databases.

NOTE
“ If you are changing the operating platform at the same time, you can

use transportable tablespaces to move the data from the old database
to the new database. For very large databases, this method may be
faster than the other data-copying methods. See Chapter 17 for the
details on transportable tablespaces.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
smaller databases may use an indirect method.

Before Upgrading

Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

Chapter 2: Upgrading to Oracle Database 11g 53

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance of
specific database operations or the overall performance of the database under a significant user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so any missing components (such as operating system patches) can
be identified and the time required for the upgrade can be measured.

Oracle Database 11g includes the Pre-Upgrade Information Tool called utlu111i.sql. This tool
is included in the installation files in the directory $ORACLE_HOME/rdbms/admin. Copy this script
to a location accessible by the old database, connect to the old database with SYSDBA privileges,
and run this tool from a SQL*Plus session similar to the following:

SQL> spool upgrade 1lg info.txt
SQL> @utlullli.sqgl
SQL> spool off

Review the file upgrade_11g_info.txt for adjustments you should make before performing the
actual upgrade; these adjustments include increasing the size of tablespaces, removing obsolete
initialization parameters, and revoking obsolete roles such as CONNECT. As of Oracle Database 11g,
the CONNECT role only contains the CREATE SESSION privilege. You need to grant permissions
to users with the CONNECT role before upgrading. Here is a query you can use to identify users
granted the CONNECT role:

SELECT grantee FROM dba role privs

WHERE granted role = 'CONNECT' and grantee NOT IN (
'sys', 'OUTLN', 'SYSTEM', 'CTXSYS', 'DBSNMP',
'LOGSTDBY ADMINISTRATOR', 'ORDSYS',
'ORDPLUGINS', 'OEM MONITOR', 'WKSYS', 'WKPROXY',
'"WK_TEST', 'WKUSER', 'MDSYS', 'LBACSYS', 'DMSYS',
'WMSYS', 'OLAPDBA', 'OLAPSVR', 'OLAP USER',
'OLAPSYS', 'EXFSYS', 'SYSMAN', 'MDDATA',
'SI INFORMTN SCHEMA', 'XDB', 'ODM');

Prior to performing a direct upgrade, you should analyze the data dictionary tables. During
the upgrade process to Oracle 11g, the data dictionary will be analyzed if it has not been
analyzed already, so performing this step in advance will aid the performance of the upgrade. For
an Oracle version 10g database, you can use this procedure invocation to gather dictionary stats:

EXEC DBMS_ STATS.GATHER DICTIONARY STATS;

Using the Database Upgrade Assistant

You can start the Database Upgrade Assistant (DBUA) via the
dbua

command (in Unix environments) or by selecting Database Upgrade Assistant from the Oracle
Configuration and Migration Tools menu option (in Windows environments). If you are using a
Unix environment, you will need to enable an X Window display prior to starting DBUA.

54 Oracle Database 11g DBA Handbook

When started, DBUA will display a Welcome screen. At the next screen, select the database
you want to upgrade from the list of available databases. You can upgrade only one database at
a time.

After you make your selection, the upgrade process begins. DBUA will perform pre-upgrade
checks (such as for obsolete initialization parameters or files that are too small). DBUA will then
create the SYSAUX tablespace, a standard tablespace in all Oracle 10g and 11g databases. You
can override Oracle’s defaults for the location and size parameters for the datafiles used by the
SYSAUX tablespace.

DBUA will then prompt you to recompile invalid PL/SQL objects following the upgrade. If
you do not recompile these objects after the upgrade, the first user of these objects will be forced
to wait while Oracle performs a run-time recompilation.

DBUA will then prompt you to back up the database as part of the upgrade process. If you
have already backed up the database prior to starting DBUA, you may elect to skip this step. If
you choose to have DBUA back up the database, it will shut down the database and perform an
offline backup of the datafiles to the directory location you specify. DBUA will also create a batch
file in that directory to automate the restoration of those files to their earlier locations.

The next step is to choose whether to enable Oracle Enterprise Manager (OEM) to manage the
database. If you enable the Oracle Management Agent, the upgraded database will automatically
be available via OEM.

You will then be asked to finalize the security configuration for the upgraded database. As
with the database-creation process, you can specify passwords for each privileged account or
you can set a single password to apply to all the OEM user accounts.

Finally, you will be prompted for details on the flash recovery area location (see Chapter 14),
the archive log setting, and the network configuration. A final summary screen displays your choices
for the upgrade, and the upgrade starts when you accept them. After the upgrade has completed,
DBUA will display the Checking Upgrade Results screen, showing the steps performed, the related
log files, and the status. The section of the screen titled Password Management allows you to
manage the passwords and the locked/unlocked status of accounts in the upgraded database.

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded
database, and reloads the file.

Performing a Manual Direct Upgrade

In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
As | mentioned earlier in this chapter, this tool is provided in a SQL script that is installed with the
Oracle Database 11g software; you will need to run it against the database to be upgraded. The
file, named utlu111i.sql, is located in the $ORACLE_HOME/rdbms/admin subdirectory under the
Oracle 11g software home directory. You should run that file in the database to be upgraded as a
SYSDBA-privileged user, spooling the results to a log file. The results will show potential problems
that should be addressed prior to the upgrade.

Chapter 2: Upgrading to Oracle Database 11g 55

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process. This ensures that if you
have any serious problems with the database upgrade, you can always get back to the state of
your old database as of when you started the upgrade process.

Once you have a backup you can restore if needed, you are ready to proceed with the upgrade
process. The process is detailed and script-based, so you should consult with the Oracle installation
and upgrade documentation for your environment and version. The steps are as follows:

1.

Copy configuration files (init.ora, spfile.ora, password file) from their old location to the
new Oracle software home directory. By default, the configuration files are found in the
/dbs subdirectory on Unix platforms and the \database directory on Windows platforms.

Remove obsolete and deprecated initialization parameter from the configuration files
identified in the Pre-Upgrade Information Tool. Update any initialization parameters to
at least the minimum values specified in the Pre-Upgrade Information Tool report. Use
full pathnames in the parameter files.

If you are upgrading a cluster database, set the CLUSTER_DATABASE initialization parameter
to FALSE. After the upgrade, you must set this initialization parameter back to TRUE.

Shut down the instance.

If you are using Windows, stop the service associated with the instance and delete the
Oracle service at the command prompt. For Oracle 8.0, use the command

NET STOP OracleServiceName
ORADIM -DELETE -SID instance name

Next, create the new Oracle Database 11g service using the ORADIM command, as
shown here. The variables for this command are shown in the following table.

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
-STARTMODE AUTO -PFILE ORACLE HOME\DATABASE\INITSID.ORA

Variable Description

SID The name of the SID (instance identifier) of the database you are
upgrading.

PASSWORD The password for the new release 11.1 database instance. This is

the password for the user connected with SYSDBA privileges. If
you do not specify INTPWD, operating system authentication is
used and no password is required.

USERS The maximum number of users who can be granted SYSDBA and
SYSOPER privileges.

ORACLE_HOME The release 11.1 Oracle home directory. Ensure that you specify
the full pathname with the -PFILE option, including the drive letter
of the Oracle home directory.

If your operating system is Unix or Linux, make sure the environment variables ORACLE_
HOME and PATH point to the new release 11.1 directories, ORACLE_SID is set to the
existing database’s SID, and the file /etc/oratab points to the new Oracle Database 11g
home directory. In addition, any server or client-side scripts that set ORACLE_HOME
must be changed to point to the new Oracle software home directory.

56 Oracle Database 11g DBA Handbook

10.
11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Log into the system as the owner of the Oracle Database 11g software.

Change your directory to the $ORACLE_HOME/rdbms/admin subdirectory under the
Oracle software home directory.

Connect to SQL*Plus as a user with SYSDBA privileges.

Issue the startup upgrade command.

Use the spool command to log the results of the following steps.

Create a SYSAUX tablespace via the create tablespace command if you are upgrading
from a release prior to 10.1. You should allocate SYSAUX between 500MB and 5GB

of disk space, depending on the number of user objects. SYSAUX must be created with
the following clauses: online, permanent, read write, extent management local, and
segment space management auto. All those clauses except segment space management
auto are the defaults. See the output from the Pre-Upgrade Information Tool for suggested
sizing of the SYSAUX tablespace. Here’s an example:

create tablespace SYSAUX

datafile '/u0Ol/oradata/dbl/sysaux01l.dbf'
size 500m reuse

extent management local

segment space management auto

online;

Run the script catupgrd.sql in the 11g environment. This script automatically determines
which upgrade scripts must be run, runs them, and then shuts down the database.

Stop spooling (via spool off) and review the spool file for errors. Resolve any problems
identified there. Restart the database at the SQL*Plus prompt using the startup command.

Run the utlu111s.sql file to upgrade Oracle components such as Oracle Text, Oracle Ultra
Search, Oracle Application Express, and the Oracle Server itself. You run it as follows:

@utlulOls.sqgl

Oracle will then display the upgrade status of each component. The upgrade elements
should all be listed with a status of “VALID.”

Run the catuppst.sql script, located in $ORACLE_HOME/rdbms/admin to perform
upgrade steps that do not require the database to be in UPGRADE mode:

@rdbms/admin/catuppst.sqgl

Run the utlrp.sql script to recompile invalid packages:

@utlrp.sqgl

You can then verify that all packages and classes are valid by using the following SQL:

select count(*) from dba invalid objects;
select distinct object name from dba invalid objects;

Exit SQL*Plus.

Shut down the database and perform an offline backup of the database; then restart the
database. The upgrade is complete.

Chapter 2: Upgrading to Oracle Database 11g 57

NOTE
“ After the upgrade, you should never start your Oracle 11g database

with the software from an earlier release.

Using Export and Import

Export and Import provide you with an indirect method for the upgrade. You can create an Oracle
11g database alongside your existing database and use Export and Import to move data from the
old database to the new database. When the movement of the data is complete, you will need to
point your applications to connect to the new database instead of the old database. You will also
need to update any configuration files, version-specific scripts, and the networking configuration
files (tnsnames.ora and listener.ora) to point to the new database.

The advantage to using an Export/Import method is that the existing database is unaffected
throughout the upgrade process; however, to ensure that relational integrity remains intact and
no new transactions are left behind in the old database, you can run the old database in restricted
mode for the duration of the export and upgrade.

Export and Import Versions to Use

When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. When you create a Data Pump Export dump file, you can only import it into
the same or later versions of Data Pump Export. Export dump files are not backward compatible,
so if you ever need to revert to an earlier version of Oracle, you will need to carefully select the
version of Export and Import used. The following table shows the versions of the Export/Import
and Data Pump Export/Import executables you should use when going between versions of Oracle:

Export From Import To Use Export Utility Use Import Utility
Release 10.2 Release 11.1 Data Pump Export 10.2 Data Pump Import 11.1
Release 10.1 Release 11.1 Data Pump Export 10.1 Data Pump Import 11.1

Release 9.2 Release 11.1 Original Export 9.2 Original Import 11.1
Release 8.1.7 Release 11.1 Original Export 8.1.7 Original Import 11.1
Release 8.0.6 Release 11.1 Original Export 8.0.6 Original Import 11.1
Release 7.3.4 Release 11.1 Original Export 7.3.4 Original Import 11.1

Note that when you are exporting in order to downgrade your database release, you should use
the older version of the Export utility to minimize compatibility problems. You may still encounter
compatibility problems if the newer version of the database uses new features (such as new
datatypes) that the old version will not support.

Performing the Upgrade

Export the data from the source database using the version of the Export utility specified in
the prior section. Perform a consistent export or perform the export when the database is not
available for updates during and after the export.

58 Oracle Database 11g DBA Handbook

NOTE
“ If you have little free space available, you may back up and delete the

existing database at this point and then install Oracle Database 11g
software and create a target database for the import. If at all possible,
maintain the source and target databases concurrently during the
upgrade. The only benefit of having only one database on the server
at a time is that they can share the same database name.

Install the Oracle Database 11g software and create the target database. In the target database,
pre-create the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from one
database with datafiles from the other. The Import utility will attempt to execute the create tablespace
commands found in the Export dump file, and those commands will include the datafile names from
the source database. By default, those commands will fail if the files already exist (although this can
be overridden via Import's DESTROY parameter). Pre-create the tablespaces with the proper datafile
names to avoid this problem.

NOTE
“ You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Import or Data Pump Import to load the data from
the Export dump file into the target database. Review the log file for information about objects
that did not import successfully. See Chapter 11 for detailed instructions on how to use Data
Pump Export and Import.

Using the Data-Copying Method

The data-copying method requires that the source database and target database coexist. This
method is most appropriate when the tables to be migrated are fairly small and few in number.
As with the Export/Import method, you must guard against transactions occurring in the source
database during and after the extraction of the data. In this method, the data is extracted via
queries across database links.

Create the target database using the Oracle Database 11g software and then pre-create the
tablespaces, users, and tables to be populated with data from the source database. Create database
links (see Chapter 16) in the target database that access accounts in the source database. Use the
insert as select command to move data from the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so that you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

To improve the performance of this method, you may consider the following options:

B Disable all indexes and constraints until all the data has been loaded.

B Run multiple data-copying jobs in parallel.

Chapter 2: Upgrading to Oracle Database 11g 59

B Use the parallel query option to enhance the performance of individual queries and inserts.
B Use the APPEND hint to enhance the performance of inserts.

As of Oracle 10g, you can use cross-platform transportable tablespaces. When transporting
tablespaces, you export and import only the metadata for the tablespace, while the datafiles are
physically moved to the new platform. For very large databases, the time required to move the
datafiles may be significantly shorter than the time required to reinsert the rows. See Chapter 17
for details on the use of transportable tablespaces; see Chapter 8 for additional advice on
performance tuning.

After Upgrading

Following the upgrade, you should double-check the configuration and parameter files related to
the database, particularly if the instance name changed in the migration process. These files include

M The tnsnames.ora file
B The listener.ora file

B Programs that may have hard-coded instance names in them

NOTE
“ You will need to manually reload the modified listener.ora file if you

are not using DBUA to perform the upgrade.

You should review your database initialization parameters to make sure deprecated and
obsolete parameters have been removed; these should have been identified during the migration
process when you ran the Pre-Upgrade Information Tool utlu111i.sql. Be sure to recompile any
programs you have written that rely on the database software libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release. If you performed a full backup
before starting the upgrade, you should be able to easily revert to the old release with minimal
downtime.

This page intentionally left blank

CHAPTER

Planning and Managing
Tablespaces

62 Oracle Database 11g DBA Handbook

ow a DBA configures the layout of the tablespaces in a database directly affects the
performance and manageability of the database. In this chapter, we’'ll review the
different types of tablespaces as well as how temporary tablespace usage can drive
the size and number of tablespaces in a database leveraging the temporary tablespace
group feature introduced in Oracle 10g.

We'll also show how Oracle’s Optimal Flexible Architecture (OFA), supported since Oracle 7,
helps to standardize the directory structure for both Oracle executables and the database files
themselves; Oracle Database 11g further enhances OFA to complement its original role of
improving performance to enhancing security and simplifying cloning and upgrade tasks.

A default installation of Oracle provides the DBA with a good starting point, not only creating
an OFA-compliant directory structure but also segregating segments into a number of tablespaces
based on their function. We'll review the space requirements for each of these tablespaces and
provide some tips on how to fine-tune the characteristics of these tablespaces.

At the end of the chapter, we'll provide some guidelines to help place segments into different
tablespaces based on their type, size, and frequency of access, as well as ways to identify hotspots
in one or more tablespaces.

Tablespace Architecture

A prerequisite to competently setting up the tablespaces in your database is understanding the
different types of tablespaces and how they are used in an Oracle database. In this section, we'll
review the different types of tablespaces and give some examples of how they are managed.

In addition, we’ll provide an overview of Oracle’s Optimal Flexible Architecture and how
it provides a framework for storing tablespace datafiles as well as Oracle executables and other
Oracle components, such as redo log files, control files, and so forth. We'll also review the types
of tablespaces by category—SYSTEM tablespaces, the SYSAUX tablespace, temporary tablespaces,
undo tablespaces, and bigfile tablespaces—and describe their function.

Tablespace Types

The primary types of tablespaces in an Oracle database are permanent, undo, and temporary.
Permanent tablespaces contain segments that persist beyond the duration of a session or a transaction.

Although the undo tablespace may have segments that are retained beyond the end of a session
or a transaction, it provides read consistency for select statements that access tables being modified
as well as provides undo data for a number of the flashback features of the database. Primarily,
however, undo segments store the previous values of columns being updated or deleted, or to
provide an indication that the row did not exist for an insert so that if a user’s session fails before the
user issues a commit or a rollback, the updates, inserts, and deletes will be removed. Undo segments
are never directly accessible by a user session, and undo tablespaces may only have undo segments.

As the name implies, temporary tablespaces contain transient data that exists only for the
duration of the session, such as space to complete a sort operation that will not fit in memory.

Bigfile tablespaces can be used for any of these three types of tablespaces, and they simplify
tablespace management by moving the maintenance point from the datafile to the tablespace.
Bigfile tablespaces consist of one and only one datafile. There are a couple of downsides to bigfile
tablespaces, however, and | will present these later in this chapter.

Permanent

The SYSTEM and SYSAUX tablespaces are two examples of permanent tablespaces. In addition,
any segments that need to be retained by a user or an application beyond the boundaries of a
session or transaction should be stored in a permanent tablespace.

Chapter 3: Planning and Managing Tablespaces 63

SYSTEM Tablespace User segments should never reside in the SYSTEM tablespace, period. As of
Oracle 10g, you can specify a default permanent tablespace in addition to the ability to specify a
default temporary tablespace in Oracle9i.

If you use the Oracle Universal Installer (OUI) to create a database for you, a separate
tablespace other than SYSTEM is created for both permanent and temporary segments. If you
create a database manually, be sure to specify both a default permanent tablespace and a default
temporary tablespace, as in the sample create database command that follows.

CREATE DATABASE rjbdb
USER SYS IDENTIFIED BY kshelt25
USER SYSTEM IDENTIFIED BY mgrab4b
LOGFILE GROUP 1 ('/u0O2/oraclellg/oradata/rjbdb/redo0l.log') SIZE 100M,
GROUP 2 ('/u0O4/oraclellg/oradata/rjbdb/redo02.log') SIZE 100M,
GROUP 3 ('/u06/oraclellg/oradata/rjbdb/redo03.log') SIZE 100M
MAXLOGFILES 5
MAXLOGMEMBERS 5
MAXLOGHISTORY 1
MAXDATAFILES 100
MAXINSTANCES 1
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET AL16UTFlo
DATAFILE '/uOl/oraclellg/oradata/rjbdb/systemOl.dbf' SIZE 325M REUSE
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE '/uOl/oraclellg/oradata/rjbdb/sysaux01l.dbf"
SIZE 325M REUSE
DEFAULT TABLESPACE USERS
DATAFILE '/u03/oraclellg/oradata/rjbdb/users0l.dbf’
SIZE 50M REUSE
DEFAULT TEMPORARY TABLESPACE temptsl
TEMPFILE '/u0l/oraclellg/oradata/rjbdb/temp0l.dbf’
SIZE 20M REUSE
UNDO TABLESPACE undotbs
DATAFILE '/u02/oraclellg/oradata/rjbdb/undotbs0l.dbf’
SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

As of Oracle 10g, the SYSTEM tablespace is locally managed by default; in other words,
all space usage is managed by a bitmap segment in the first part of the first datafile for the
tablespace. In a database where the SYSTEM tablespace is locally managed, the other tablespaces
in the database must also be locally managed or they must be read-only. Using locally managed
tablespaces takes some of the contention off the SYSTEM tablespace because space allocation and
deallocation operations for a tablespace do not need to use data dictionary tables. More details
on locally managed tablespaces can be found in Chapter 6.

SYSAUX Tablespace Like the SYSTEM tablespace, the SYSAUX tablespace should not have any
user segments. The contents of the SYSAUX tablespace, broken down by application, can be
reviewed using EM Database Control. You can edit the SYSAUX tablespace by clicking the
Tablespaces link under the Server tab and clicking the SYSAUX link. Figure 3-1 shows a graphical
representation of the space usage within SYSAUX.

64

Oracle Database 11g DBA Handbook

Space Usage

Total Space Used (MB) 546,69
Free Space (ME) 29.25
Space Used (%) 94.92

M Erterprise Manager Repository(26,6)
¥DE(13.1)

W Unknicen{ 12,50

M Server Manageability - Automatic WWorkload Repository(10.4)
Cracle Spatial(s. 1)

W Othersiz9.4)

FIGURE 3-1 EM Database Control SYSAUX tablespace contents

If the space usage for a particular application that resides in the SYSAUX tablespace becomes
too high or creates an I/O bottleneck through high contention with other applications that use the
SYSAUX tablespace, you can move one or more of these applications to a different tablespace.
Below the pie chart in Figure 3-1, we can click the Change Tablespace link of a SYSAUX occupant
and move it to another tablespace, as shown in Figure 3-2. An example of moving a SYSAUX
occupant to a different tablespace using the command line interface can be found in Chapter 6.

Occupants of SYSAUX

Mame |5|:hema | Space Used {MB) | Space Used (%) |l:hange Tablespace
Enterprise Manager Repository SYSMAN 153,25 26,61 |Change Tablespace
%DE ¥DB 75.25 13.07 |Change Tablespace
Unknown 72.06 12.51

Server Manageability - Automatic Workload Repositary SYS 59,55 10,40

Oracle Spatial MD3Y3 46,31 .04

Free Space 29.25 5.05

Analytical Warkspace Object Table NS 25,56 4,44 |Change Tablespace
OLAP APT Hiskory Tables S 25,56 4,44 |Change Tablespace
Server Manageability - Optimizer Statistics History Y3 15,94 2,77

OLAP Catalog CLAPSYS 15.56 2,70

Oracle interMedia ORDSYS Components QORDSYS 10,63 1.54

Server Manageability - Advisor Framewark. SYS 10,13 1.76

LogMinat SYSTEM 7.56 1.31 (Change Tablespace
‘Workspace Manager WSS 713 1.24 Change Tablespace
Cracle Text CTHSYS 5.44 0.94 |Change Tablespace
Server Manageabilicy - Other Components S 5,33 0.93

Expression Filker System ExF3%S 3,88 0.67

S0L Management Base Schema Y5 1.81 0.31

Enterprise Manager Monitoring User DESMMP 1.44 0.25

Logical Standby SYSTEM 0,94 0.16 |(Change Tablespace
Transaction Layver - SCM ko TIME mapping Y5 0.94 0.16

Unified Job Scheduler S5 0.63 0.11

Cracle Streams SYS 0.50 0.09

PL/5CL Identifier Collection S 0,33 0.07

Aukomated Maintenance Tasks S35 0,31 0.0%

Oracle Transparent Session Migration User TSMSN'S 0.25 0.04

FIGURE 3-2 Using EM Database Control to move a SYSAUX occupant

Chapter 3: Planning and Managing Tablespaces 65

The SYSAUX tablespace can be monitored just like any other tablespace; later in this chapter,
we’ll show how EM Database Control can help us to identify hotspots in a tablespace.

Undo
Multiple undo tablespaces can exist in a database, but only one undo tablespace can be active
at any given time. Undo tablespaces are used for rolling back transactions, for providing read
consistency for select statements that run concurrently with DML statements on the same table or
set of tables, and for supporting a number of Oracle Flashback features, such as Flashback Query.
The undo tablespace needs to be sized correctly to prevent “Snapshot too old” errors and to
provide enough space to support initialization parameters such as UNDO_RETENTION. More
information on how to monitor, size, and create undo tablespaces can be found in Chapter 7.

Temporary

More than one temporary tablespace can be online and active in the database, but until Oracle
10g, multiple sessions by the same user would use the same temporary tablespace because only
one default temporary tablespace could be assigned to a user. To solve this potential performance
bottleneck, Oracle supports temporary tablespace groups. A temporary tablespace group is a
synonym for a list of temporary tablespaces.

A temporary tablespace group must consist of at least one temporary tablespace; it cannot be
empty. Once a temporary tablespace group has no members, it no longer exists.

One of the big advantages of using temporary tablespace groups is to provide a single user
with multiple sessions with the ability to use a different actual temporary tablespace for each
session. In the diagram shown in Figure 3-3, the user OE has two active sessions that need
temporary space for performing sort operations.

Instead of a single temporary tablespace being assigned to a user, the temporary tablespace
group is assigned; in this example, the temporary tablespace group TEMPGRP has been assigned
to OE. However, because there are three actual temporary tablespaces within the TEMPGRP
temporary tablespace group, the first OE session may use temporary tablespace TEMP1, and the
select statement executed by the second OE session may use the other two temporary tablespaces,
TEMP2 and TEMP3, in parallel. Before Oracle 10g, both sessions would use the same temporary
tablespace, potentially causing a performance issue.

OE Session #1 Concurrent OF Session #2
Sessions

Serial Parallel

Tablespace TEMP 1 | | Tablespace TEMP 2 | | Tablespace TEMP 3

Temporary Tablespace Group TEMPGRP

FIGURE 3-3 Temporary tablespace group TEMPGRP

66 Oracle Database 11g DBA Handbook

Creating a temporary tablespace group is very straightforward. After creating the individual
tablespaces TEMP1, TEMP2, and TEMP3, we can create a temporary tablespace group named
TEMPGRP as follows:

I s0L> alter tablespace templ tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp2 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp3 tablespace group tempgrp;
Tablespace altered.

Changing the database’s default temporary tablespace to TEMPGRP uses the same command
as assigning an actual temporary tablespace as the default; temporary tablespace groups are
treated logically the same as a temporary tablespace:

I sS0L> alter database default temporary tablespace tempgrp;
Database altered.

To drop a tablespace group, we must first drop all its members. Dropping a member of a
tablespace group is accomplished by assigning the temporary tablespace to a group with an
empty string (in other words, removing the tablespace from the group):

I soL> alter tablespace temp3 tablespace group '';
Tablespace altered.

As you might expect, assigning a temporary tablespace group to a user is identical to
assigning a temporary tablespace to a user; this assignment can happen either when the user is
created or at some point in the future. In the following example, the new user JENWEB is assigned
the temporary tablespace TEMPGRP:

I SOL> create user jenweb identified by pi4001
2 default tablespace users
3 temporary tablespace tempgrp;

User created.

Note that if we did not assign the tablespace during user creation, the user JENWEB would
still be assigned TEMPGRP as the temporary tablespace because it is the database default from
our previous create database example.

A couple of changes have been made to the data dictionary views in Oracle Database 10g
and Oracle Database 11g to support temporary tablespace groups. The data dictionary view
DBA_USERS still has the column TEMPORARY_TABLESPACE, as in previous versions of Oracle,
but this column may now contain either the name of the temporary tablespace assigned to the
user, or the name of a temporary tablespace group.

BT SQoL> select username, default tablespace, temporary tablespace

2 from dba_users where username = 'JENWEB';
USERNAME DEFAULT TABLESPACE TEMPORARY TABLESPACE
JENWEB USERS TEMPGRP

1 row selected.

Chapter 3: Planning and Managing Tablespaces 67

The new data dictionary view DBA_TABLESPACE_GROUPS shows the members of each
temporary tablespace group:

SQL> select group_name, tablespace name from dba_ tablespace groups;
GROUP_NAME TABLESPACE NAME

TEMPGRP TEMP1

TEMPGRP TEMP2

TEMPGRP TEMP3

3 rows selected.

As with most every other feature of Oracle that can be accomplished with the command
line, assigning members to temporary tablespace groups or removing members from temporary
tablespace groups can be performed using EM Database Control. In Figure 3-4, we can add or
remove members from a temporary tablespace group.

Bigfile

A bigfile tablespace eases database administration because it consists of only one datafile. The single
datafile can be up to 128TB (terabytes) in size if the tablespace block size is 32KB. Many of the
commands previously available only for maintaining datafiles can now be used at the tablespace
level if the tablespace is a bigfile tablespace. Chapter 6 reviews how bigfile tablespaces are created
and maintained.

ORACLE Enterprise Manager 11g Help Logout
Datahase Control
Database Instance: dw.rjbdba.com = Temporary Tablespace Groups = Logged in As RIE

Edit Temporary Tablespace Group: TEMPGRP

Actions | Create Like | Go) [Show SQL | | Rewert | | Apphy
Mame TEMPGRP
Set as default kemporary group Yes
Temporary Tablespaces
| Add/Remove |

[Name [Size (MB) |
TEMP1 100
TEMP3 100
TEMP2 100

&ctions | Create Like v |({Co) | Show SQL:] | Rewert J (Appl‘yj

Database | Help | Logout

Copyright & 1996, 2007, Cracle, Al rights reserved,
Oracle, 10 Edwards, PeopleSoft, and Retek are registerad trademarks of Oracle Corparation andfor itz affiliates. Cther names may be trademarks of their respective owners,

&bout Cracle Enterprise Manager

FIGURE 3-4 Using EM Database Control to edit temporary tablespace groups

68 Oracle Database 11g DBA Handbook

The maintenance convenience of bigfile tablepsaces can be offset by some potential
disadvantages. Because a bigfile tablespace is a single datafile, a full backup of a single large
datafile will take significantly longer than a full backup of several smaller datafiles (with the same
total size as the single bigfile tablespace) because Oracle only uses one slave process per datafile
and therefore cannot back up different parts of a bigfile tablespace using parallel processes. If
your bigfile tablespaces are read-only or only changed blocks are backed up on a regular basis,
the backup issue may not be critical in your environment.

Optimal Flexible Architecture

Oracle’s Optimal Flexible Architecture (OFA) provides guidelines to ease the maintenance of the
Oracle software and database files as well as improve the performance of the database by placing
the database files such that I/O bottlenecks are minimized.

Although using OFA is not strictly enforced when you’re installing or maintaining an Oracle
environment, using OFA makes it easy for someone to understand how your database is organized
on disk, preventing that phone call in the middle of the night during the week you’re on vacation!

OFA is slightly different depending on the type of storage options you use—either an Automatic
Storage Management (ASM) environment or a standard operating system file system that may or
may not be using a third-party logical volume manager or RAID-enabled disk subsystem.

Non-ASM Environment
In a non-ASM environment on a Unix server, at least three file systems on separate physical
devices are required to implement OFA recommendations. Starting at the top, the recommended
format for a mount point is /<string const><numeric key>, where <string const> can be one or
several letters and <numeric key> is either two or three digits. For example, on one system we
may have mount points /u01, /u02, /u03, and /u04, with room to expand to an additional 96
mount points without changing the file-naming convention. Figure 3-5 shows a typical Unix file
system layout with an OFA-compliant Oracle directory structure.

There are two instances on this server: an ASM instance to manage disk groups and a standard
RDBMS instance (dw).

Software Executables The software executables for each distinct product name reside in the
directory /<string const><numeric key>/<directory type>/<product owner>, where <string const>
and <numeric key> are defined previously, <directory type> implies the type of files installed in
this directory, and <product owner> is the name of the user that owns and installs
the files in this directory. For example, /u01/app/oracle would contain application-related files
(executables) installed by the user oracle on the server. The directory /u01/app/apache would
contain the executables for the middleware web server installed from a previous version of Oracle.
As of Oracle 10g, the OFA standard makes it easy for the DBA to install multiple versions of
the database and client software within the same high-level directory. The OFA-compliant Oracle
home path, corresponding to the environment variable ORACLE_HOME, contains a suffix that
corresponds to the type and incarnation of the installation. For example, one installation of
Oracle 11g, two different installations of Oracle 10g, and one installation of Oracle9i may reside
in the following three directories:

I /u0l/app/oracle/product/9.2.0.1

/ul0l/app/oracle/product/10.1.0/db 1
/u0l/app/oracle/product/10.1.0/db 2
/ul0l/app/oracle/product/11.1.0/db 1

Chapter 3: Planning and Managing Tablespaces 69

7 File Browser: dw
File Edit View Go Bookmarks Help
4 [, B , A o & @ 154
Back Forward Up Stop Reload Home Computer
Location: | /ull/app/oracle/admin/dw € 100% &
Treew x
> B = = =
= Duﬂl adump dpdump pfile
v Dapp
v'=.:"oracls.‘ E]
~ [admin .
< B3 eASM scripts
I [pfile
T
b [cigtoollogs
[» Ddlag
[» Dora\nvemorv
=~ Dpruducl
= 01110
b db1
b [lost+found
= (a2
[Doradata
b w03
b 04
4 items, Free space: 4.5 GB

FIGURE 3-5 OFA-compliant Unix directory structure

At the same time, the Oracle client executables and configuration may be stored in the same
parent directory as the database executables:

/u0l/app/oracle/product/10.1.0/client 1

Some installation directories will never have more than one instance for a given product; for
example, Oracle Cluster Ready Services (CRS) will be installed in the following directory given
the previous installations:

/u0l/app/oracle/product/11.1.0/crs

Because CRS can only be installed once on a system, it does not have an incrementing
numeric suffix.

Database Files Any non-ASM Oracle datafiles reside in /<mount point>/oradata/<database
name>, where <mount point> is one of the mount points we discussed earlier, and <database
name> is the value of the initialization parameter DB_NAME. For example, /u02/oradata/racO and
/u03/oradata/racO would contain the non-ASM control files, redo log files, and datafiles for the
instance racO, whereas /u05/oradata/dev1 would contain the same files for the dev1 instance on

the same server. The naming convention for the different file types under the oradata directory are
detailed in Table 3-1.

70

Oracle Database 11g DBA Handbook

File Type Filename Format Variables

Control files control.ctl None.

Redo log files redo<n>.log n is a two-digit number.

Datafiles <tn>.dbf tis an Oracle tablespace name, and n'is a

two-digit number.

TABLE 3-1 OFA-Compliant Control File, Redo Log File, and Datafile Naming Conventions

Although Oracle tablespace names can be as long as 30 characters, it is advisable to keep
the tablespace names eight characters or less in a Unix environment. Because portable Unix
filenames are restricted to 14 characters, and the suffix of an OFA datafile name is <n>.dbf, where
n is two digits, a total of six characters are needed for the suffix in the file system. This leaves
eight characters for the tablespace name itself.

Only control files, redo log files, and datafiles associated with the database <database name>
should be stored in the directory /<mount point>/oradata/<database name>. For the database ord
managed without ASM, the datafile names are as follows:

SQL> select file#, name from vSdatafile;

/u05/oradata/ord/system0l.dbf
/u05/oradata/ord/undotbs01.dbf
/u05/oradata/ord/sysaux01.dbf
/u05/oradata/ord/users01.dbf
/u09/oradata/ord/example0l.dbf
/u09/oradata/ord/oe trans0l.dbf
/u05/oradata/ord/users02.dbf
/u06/oradata/ord/logmnr rep0l.dbf
/u09/oradata/ord/big users.dbf

10 /u08/oradata/ord/idx01.dbf

11 /u08/oradata/ord/idx02.dbf

12 /u08/oradata/ord/idx03.dbf

13 /u08/oradata/ord/idx04.dbf

14 /u08/oradata/ord/idx05.dbf

15 /u08/oradata/ord/idx06.dbf

16 /u08/oradata/ord/idx07.dbf

17 /u08/oradata/ord/idx08.dbf
17 rows selected.

0 ~J oy U W N

e}

Other than file numbers 8 and 9, all the datafiles in the ord database are OFA compliant and
are spread out over four different mount points. The tablespace name in file number 8 is too long,
and file number 9 does not have a numeric two-digit counter to represent new datafiles for the
same tablespace.

Chapter 3: Planning and Managing Tablespaces 71

ASM Environment
In an ASM environment, the executables are stored in the directory structure presented previously;
however, if you browsed the directory /u02/oradata in Figure 3-5, you would see no files. All the
control files, redo log files, and datafiles for the instance dw are managed by the ASM instance
+ASM on this server.

The actual datafile names are not needed for most administrative functions because ASM files are
all Oracle Managed Files (OMF). This eases the overall administrative effort required for the database.
Within the ASM storage structure, an OFA-like syntax is used to subdivide the file types even further:

SQL> select file#, name from vS$datafile;

1 +DATA/dw/datafile/system.256.622426913

2 +DATA/dw/datafile/sysaux.257.622426915

3 +DATA/dw/datafile/undotbsl.258.622426919

4 +DATA/dw/datafile/users.259.622426921

5 +DATA/dw/datafile/example.265.622427181
5 rows selected.

SQL> select name from vS$controlfile;

+DATA/dw/controlfile/current.260.622427059
+RECOV/dw/controlfile/current.256.622427123
2 rows selected.

SQL> select member from v$logfile;

MEMBER

+DATA/dw/onlinelog/group 3.263.622427143

+RECOV/dw/onlinelog/group 3.259.622427145
+DATA/dw/onlinelog/group 2.262.622427135

+RECOV/dw/onlinelog/group 2.258.622427137
+DATA/dw/onlinelog/group 1.261.622427127

+RECOV/dw/onlinelog/group 1.257.622427131
6 rows selected.

Within the disk groups +DATA and +RECOV, we see that each of the database file types, such
as datafiles, control files, and online log files, has its own directory. Fully qualified ASM filenames
have the format

+<group>/<dbname>/<file type>/<tag>.<file>.<incarnation>

where <group> is the disk group name, <dbname> is the database to which the file belongs,
<file type> is the Oracle file type, <tag> is information specific to the file type, and the pair
<file>.<incarnation> ensures uniqueness within the disk group.

Automatic Storage Management is covered in Chapter 6.

72 Oracle Database 11g DBA Handbook

Oracle Installation Tablespaces

Table 3-2 lists the tablespaces created with a standard Oracle installation using the Oracle
Universal Installer (OUI); the EXAMPLE tablespace is optional; it is installed if you specify that
you want the sample schemas created during the installation dialogue.

SYSTEM

As mentioned previously in this chapter, no user segments should ever be stored in the SYSTEM
tablespace. The new clause default tablespace in the create database command helps to prevent
this occurrence by automatically assigning a permanent tablespace for all users that have not
explicitly been assigned a permanent tablespace. An Oracle installation performed using the
Oracle Universal Installer will automatically assign the USERS tablespace as the default
permanent tablespace.

The SYSTEM tablespace will grow more quickly the more you use procedural objects such as
functions, procedures, triggers, and so forth, because these objects must reside in the data dictionary.
This also applies to abstract datatypes and Oracle’s other object-oriented features.

SYSAUX

As with the SYSTEM tablespace, user segments should never be stored in the SYSAUX tablespace.
If one particular occupant of the SYSAUX tablespace takes up too much of the available space or
significantly affects the performance of other applications that use the SYSAUX tablespace, you
should consider moving the occupant to another tablespace.

TEMP

Instead of one very large temporary tablespace, consider using several smaller temporary
tablespaces and creating a temporary tablespace group to hold them. As you found out earlier
in this chapter, this can improve the response time for applications that create many sessions
with the same username.

Tablespace Type Segment Space Management Approx. Initial Allocated
Size (MB)

SYSTEM Permanent Manual 680

SYSAUX Permanent Auto 585

TEMP Temporary Manual 20

UNDOTBST Permanent Manual 115

USERS Permanent Auto 16

EXAMPLE Permanent Auto 100

TABLE 3-2 Standard Oracle Installation Tablespaces

Chapter 3: Planning and Managing Tablespaces 73

UNDOTBS1

Even though a database may have more than one undo tablespace, only one undo tablespace can

be active at any given time. If more space is needed for an undo tablespace, and AUTOEXTEND is
not enabled, another datafile can be added. One undo tablespace must be available for each node
in a Real Application Clusters (RAC) environment because each instance manages its own undo.

USERS

The USERS tablespace is intended for miscellaneous segments created by each database user, and
it's not appropriate for any production applications. A separate tablespace should be created for
each application and segment type; later in this chapter we’ll present some additional criteria you
can use to decide when to segregate segments into their own tablespace.

EXAMPLE

In a production environment, the EXAMPLE tablespace should be dropped; it takes up T00MB of
disk space and has examples of all types of Oracle segments and data structures. A separate database
should be created for training purposes with these sample schemas; for an existing training database,
the sample schemas can be installed into the tablespace of your choice by using the scripts in
$ORACLE_HOME/demo/schema.

Segment Segregation

As a general rule of thumb, you want to divide segments into different tablespaces based on their
type, size, and frequency of access. Furthermore, each of these tablespaces would benefit from
being on its own disk group or disk device; in practice, however, most shops will not have the
luxury of storing each tablespace on its own device. The following bulleted points identify some of
the conditions you might use to determine how segments should be segregated among tablespaces.
They are not prioritized here because the priority depends on your particular environment. Using
Automatic Storage Management (ASM) eliminates many of the contention issues listed with no
additional effort by the DBA. ASM is discussed in detail in Chapter 4.

B Big segments and small segments should be in separate tablespaces.

B Table segments and their corresponding index segments should be in separate
tablespaces.

B A separate tablespace should be used for each application.

B Segments with low usage and segments with high usage should be in different
tablespaces.

W Static segments should be separated from high DML segments.
B Read-only tables should be in their own tablespace.

B Staging tables for a data warehouse should be in their own tablespace.

74 Oracle Database 11g DBA Handbook

B Tablespaces should be created with the appropriate block size, depending on whether
segments are accessed row by row or in full table scans.

B Materialized views should be in a separate tablespace from the base table.
B For partitioned tables and indexes, each partition should be in its own tablespace.

Using EM Database Control, you can identify overall contention on any tablespace by
identifying hotspots, either at the file level or at the object level. We'll cover performance
tuning, including resolving I/O contention issues, in Chapter 8.

CHAPTER

Physical Database Layouts
and Storage Management

76 Oracle Database 11g DBA Handbook

' 1 n Chapter 3, we talked about the logical components of the database, tablespaces,
| and how to not only create the right number and types of tablespaces but also to
 place table and index segments in the appropriate tablespace, based on their usage
|| patterns and function. In this chapter, I'll focus more on the physical aspects of a
¥ database, the datafiles, and where to store them to maximize I/O throughput and

overall database performance.

The assumption throughout this chapter is that you are using locally managed tablespaces
with automatic segment space management. In addition to reducing the load on the SYSTEM
tablespace by using bitmaps stored in the tablespace itself instead of freelists stored in the table
or index header blocks, automatic segment space management (autoallocated or uniform) makes
more efficient use of the space in the tablespace. As of Oracle 10g, the SYSTEM tablespace is
created as locally managed. As a result, this requires all read-write tablespaces to also be locally
managed.

In the first part of this chapter, I'll review some of the common problems and solutions when
using traditional disk space management using a file system on a database server. In the second
half of the chapter, I'll present an overview of Automatic Storage Management (ASM), a built-in
logical volume manager that eases administration, enhances performance, and improves availability.

Traditional Disk Space Storage

In lieu of using a third-party logical volume or Oracle’s Automatic Storage Management
(discussed later in this chapter), you must be able to manage the physical datafiles in your
database to ensure a high level of performance, availability, and recoverability. In general, this
means spreading out your datafiles to different physical disks. In addition to ensuring availability
by keeping mirrored copies of redo log files and control files on different disks, I/O performance
is improved when users access tables that reside in tablespaces on multiple physical disks instead
of one physical disk. Identifying an I/O bottleneck or a storage deficiency on a particular disk
volume is only half the battle; once the bottleneck is identified, you need to have the tools and
knowledge to move datafiles to different disks. If a datafile has too much space or not enough
space, resizing an existing datafile is a common task.

In this section, I'll discuss a number of different ways to resize tablespaces, whether they are
smallfile or bigfile tablespaces. In addition, I'll cover the most common ways to move datafiles,
online redo log files, and control files to different disks.

Resizing Tablespaces and Datafiles

In an ideal database, all tablespaces and the objects within them are created at their optimal
sizes. Resizing a tablespace proactively or setting up a tablespace to automatically extend can
potentially avoid a performance hit when the tablespace expands or an application failure occurs
if the datafile(s) within the tablespace cannot extend. More details on how to monitor space usage
can be found in Chapter 6.

The procedures and methods available for resizing a tablespace are slightly different, depending
on whether the tablespace is a smallfile or a bigfile tablespace. A smallfile tablespace, the only
type of tablespace available before Oracle 10g, can consist of multiple datafiles. A bigfile tablespace,
in contrast, can only consist of one datafile, but the datafile can be much larger than a datafile in

Chapter 4: Physical Database Layouts and Storage Management 77

a smallfile tablespace: A bigfile tablespace with 64K blocks can have a datafile as large as 128TB.
In addition, bigfile tablespaces must be locally managed.

Resizing a Smallfile Tablespace Using ALTER DATABASE

In the following examples, we attempt to resize the USERS tablespace, which contains one
datafile, starting out at 5MB. First, we make it 15MB, then realize it’s too big, and shrink it down
to TOMB. Then, we attempt to shrink it too much. Finally, we try to increase its size too much.

SQL> alter database
2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf' resize 15m;
Database altered.
SQL> alter database
2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf' resize 10m;
Database altered.
SQL> alter database
2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf' resize 1m;
alter database
*
ERROR at line 1:
ORA-03297: file contains used data beyond requested RESIZE value
SQL> alter database
2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf' resize 100t;
alter database
*
ERROR at line 1:
ORA-00740: datafile size of (13421772800) blocks exceeds maximum file size
SQL> alter database
2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf' resize 50g;
alter database
*
ERROR at line 1:
ORA-01144: File size (6553600 blocks) exceeds maximum of 4194303 blocks

If the resize request cannot be supported by the free space available, or there is data beyond
the requested decreased size, or an Oracle file size limit is exceeded, Oracle returns an error.

To avoid manual resizing of tablespaces reactively, we can instead be proactive and use the
autoextend, next, and maxsize clauses when modifying or creating a datafile. Table 4-1 lists the
space-related clauses for modifying or creating datafiles in the alter datafile and alter tablespace
commands.

In the following example, we set autoextend to ON for the datafile /u01/app/oracle/oradata/
rmanrep/users01.dbf, specify that each extension of the datafile is 20MB, and specify that the total
size of the datafile cannot exceed 1GB:

SQL> alter database

2 datafile '/u0l/app/oracle/oradata/rmanrep/users0l.dbf’
3 autoextend on

4 next 20m

5 maxsize 1lg;

Database altered.

78

Oracle Database 11g DBA Handbook

Clause Description

autoextend When this clause is set to ON, the datafile will be allowed to expand.
When it’s set to OFF, no expansion is allowed, and the other clauses are
set to zero.

next <size> The size, in bytes, of the next amount of disk space to allocate for the

datafile when expansion is required; the <size> value can be qualified
with K, M, G, or T to specify the size in kilobytes, megabytes, gigabytes,
or terabytes, respectively.

maxsize <size> When this clause is set to unlimited, the size of the datafile is unlimited
within Oracle, up to 128TB for a bigfile tablespace, and 128GB for a
smallfile tablespace with 32K blocks (otherwise limited by the file system
containing the datafile). Otherwise, maxsize is set to the maximum
number of bytes in the datafile, using the same qualifiers used in the next
clause: K, M, G, or T.

TABLE 4-1 Datafile Extension Clauses

If the disk volume containing the datafile does not have the disk space available for the
expansion of the datafile, we must either move the datafile to another disk volume or create a
second datafile for the tablespace on another disk volume. In this example, we’re going to add a
second datafile to the USERS tablespace on a different disk volume with an initial size of 50MB,
allowing for the automatic extension of the datafile, with each extension T0MB and a maximum
datafile size of 200MB:

SQL> alter tablespace users

2 add datafile '/u03/oradata/users02.dbf’
3 size 50m

4 autoextend on

5 next 10m

6 maxsize 200m;

Tablespace altered.

Notice that when we modify an existing datafile in a tablespace, we use the alter database
command, whereas when we add a datafile to a tablespace, we use the alter tablespace command.
As you will see shortly, using a bigfile tablespace simplifies these types of operations.

Resizing a Smallfile Tablespace Using EM Database Control
Using EM Database Control, we can use either of the methods described in the preceding section:
increase the size and turn on autoextend for the tablespace’s single datafile, or add a second datafile.

Resizing a Datafile in a Smallfile Tablespace To resize a datafile in EM Database Control, click
the Server tab from the database instance home page, then click Tablespaces under the Storage

Chapter 4: Physical Database Layouts and Storage Management 79

ORACLE Enterprise Manager 11g

Datahase Control

Help Logout

Database Instance: dw.world =

Tablespaces

Search

Enter an object name ko filter the data that is displayed in your results set.

Object Type| Tablespace

Logged in As RIB

|

)
2:0?:55;:&;\;@ search retums all uppercase matches beginning with the string ywou entered. To run an exact of case-sensiive ratch, double quote the search string. Wou can uze the wildeard syrnbol (36) in 2 double
Selection Mode | Create |
((Edit) view) Delete) Actions | Add Datsfis vl (Go)
| Allocated Space Allocated Free Extent |Segment
select [Name Size{MB) Used{MB) Allocated Space Used(%o) Space(MB) Status Datafiles Type | |
EXAMPLE 100.0 74 _ 226 1 PERMAMENT LOCAL ALUTO
774
@] SWSALE 625.4 595.8 _ 296 1 PERMAMENT LOCAL ALTD
95.3
o] SYSTEM F00.0 690.4 _ 98 1 PERMAMENT LOCAL IANLAL
95.8
o] TEMP 20,0 0.0 _ o 1 TEMPORARY LOCAL MANLAL
0.0
O npotes: 85.0 17.2 _ 67.8 1 UNDD LOCAL MANLIAL
20.3
@] LSERS 5.0 3.1 _ 19 o 1 PERMAMENT LOCAL ALTD
61.2
O] APORT 150.0 1z8.1 _ 219 o 1 PERMAMENT LOCAL AUTD
85.4
Total Allocated Size (MB) 1,685.4 + Orline ¥ Offline (3 Read Only

Total Used (MB) 1,512.0

Total Allocated Free Space (ME) 173.4

FIGURE 4-1

Using EM Database Control to edit tablespace characteristics

heading. In Figure 4-1, you have selected the XPORT tablespace; it is over 85 percent full, so you
decide to expand its size using a second datafile. This tablespace was originally created using this

command:

create tablespace xport datafile

'/u02/oradata/xport.dbf’

size 150m;

Rather than let the tablespace’s datafile autoextend, we will change the current size of the
datafile to 200MB from 150MB.
By clicking the Edit button, you can see the characteristics of the XPORT tablespace, as

shown in Figure 4-2. It is locally managed, permanent, and not a bigfile tablespace (i.e., it is a
smallfile tablespace). At the bottom of the page is the single datafile for the XPORT tablespace, /

u02/oradata/xport.dbf.

80 Oracle Database 11g DBA Handbook

Database Instance: dw.world > Tablespaces = Logged in As RIB
Edit Tablespace: XPORT

Actions | Add Datafile v (Co) | Show SOL) | Revert | [Apply |
General Storage Thresholds
Name 'XPORT
Eigfile tablespace Mo
Extent Management Type Status
@) Read write
[set as defaut permanent tablespace ORead Only
O offine
Offline Mode | Normal e
Datafiles
[EED
Edit)
Select Name Directory Size (MB) Used (MB)
@® wport.dbf fu0z/oradatal 150.00 _ 178.06
General Skorage Thresholds

FIGURE 4-2 Tablespace characteristics

With the only datafile in the XPORT tablespace selected, click the Edit button or click the
datafile name itself, and you will see the Edit Tablespace: Edit Datafile page, shown in Figure 4-3,
where you can change the size of the datafile. On this page, change the file size from 150MB to
200MB and click Continue.

In Figure 4-4, you are back to the Edit Tablespace page. At this point, you can make the changes
to the datafile by clicking Apply, cancel the changes by clicking Revert, or show the SQL to be
executed by clicking Show SQL.

Before committing the changes, it is often beneficial to review the SQL commands about to
be executed by clicking the Show SQL button—it is a good way to brush up on your SQL command
syntax! Here is the command that will be executed when you click Apply:

I ALTER DATABASE DATAFILE '/uO2/oradata/xport.dbf' RESIZE 200M

When you click Apply, Oracle changes the size of the datafile. The Edit Tablespace: XPORT
page reflects the successful operation and the new size of the datafile, as you can see in Figure 4-5.

Chapter 4

Physical Database Layouts and Storage Management

81

ORACLE Enterprise Manager 11¢g
Datahase Control

Logged in As RIE

Database Instance: dw.world > Tablespaces =
Edit Tablespace: XPORT: Edit Datafile

Filz Mame xport.dbf
File Direckory fub2/oradata,
Tablespace XPORT
Status () online O offline

File Size ME

Storage

[automatically extend datafile when Full (AUTOEXTEND)

Increment _

Mazximum File Size () nlimited

@vaeo ke v

& TIP Changes made on this page will NOT take effect unkil you dick "apply" button on the Tablespace page.

Database | Help | Logout

oy
| Cancel) | Continue)

| Cancel | | Continue |

Copyright @ 1936, 2007, Cracle. All rights razerved.
Oracle, 10 Edwards, PeoplaSoft, and Retek: are registered tradermars of Oracle Corporation andfor itz aFiliatas. Other names may be tradernatks of their respective owners,

about Cracle Enkerprise Manager

FIGURE 4-3 Lditing a tablespace’s datafile

Database Instance: dw.world > Tablespaces =

Edit Tablespace: XPORT

Logged in As RIE

| Show 50L) | Revert | [Apphy)

(D) Information

Madification ta the datafile will nat take effect until you dick "apply" buttan,

Thresholds

General l Shorage

MName 'XPORT

Bigfile tablespace No

Extent Management
Locally Managed

Dictionary Managed

Datafiles

| Edit Ji Femove |

Select Name Directory
® «cport. dbf fu0z/oradatal

Type
Permanent

[set as defaut permanent tablespace

Encryption (_ENCryotian Options)

Temparary

Set as defaulk temporary tablespace

Undo

Size (MB) Used (MB)

Status
) Rread write
CiRead Only
O offine

FIGURE 4-4 Confirming datafile changes

82

Oracle Database 11g DBA Handbook

Database Instance: dw.world > Tablespaces = Logged in As RIB
Edit Tablespace: XPORT
| Show SOL) | Revert) apply |

(1) Update Message
Tablespace ZPORT has been modified successfully
General Storage Thresholds
Name 'XPORT

Eigfile tablespace Mo

Extent Management Type Status
@) Read write
[set as defaut permanent tablespace ORead Only
O offine
Offline Mode | Normal e
Datafiles
[EED
Edit)
Select Name Directory Size (MB) Used (MB)
@® wport.dbf fu0z/oradatal 200.00 _ 178.06

FIGURE 4-5 Datafile resizing results

Adding a Datafile to a Smallfile Tablespace Adding a datafile to a smallfile tablespace is just as
easy as resizing a datafile using EM Database Control. In our preceding example, we expanded
the datafile for the XPORT tablespace to 200MB. Because the file system (/u02) containing the
datafile for the XPORT tablespace is now at capacity, you will have to turn off AUTOEXTEND on
the existing datafile and then create a new datafile on a different file system. In Figure 4-6, you
turn off AUTOEXTEND for the existing datafile by unchecking the check box in the Storage
section. Here is the SQL command that is executed for this operation when you click Continue
and then Apply:

ALTER DATABASE
DATAFILE '/u02/oradata/xport.dbf’
AUTOEXTEND OFF;

On the Tablespaces page in earlier Figure 4-1, select the radio button next to the XPORT
tablespace, and click on the Edit button. You will see the page in Figure 4-7.
Click the Add button in Figure 4-7 and you will see the page in Figure 4-8.

Chapter 4: Physical Database Layouts and Storage Management 83

ORACLE Enterprise Manager 11¢g
Datahase Control

Help Logout

Database Instance: dw.world > Tablespaces >
Edit Tablespace: XPORT: Edit Datafile

File Mame xport.dbf
File Directory fu05/oradata/
Tablespace XPORT

Shatus nline) Offline
Fie Size

Storage
] Automatically extend datafile when Full {AUTOERTENL)

Increment _

Mazimum File 528) imited

Guad [w v

(@ TIP Changes made on this page will NOT take effect until you cick "apply" button on the Tablespace page,

Database | Helo | Logout

Copyright @ 1936, 2007, Oracle, Al rights reserved.

Logged in As RIE

| Cancel) | Continue |

| Cancel | Cantinue

Oracle, JD Edwards, PeopleSoft, and Retek are registered tradernatks of Oracle Corporation andfor its sffiliates, Other names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 4-6 Editing a tablespace’s datafile characteristics

ORACLE Enterprise Manager 11¢g
Datahase Control

Help Logout

Database Instance: dw.world > Tablespaces >
Edit Tablespace: XPORT

Logged in As RIB

Actions | Add Datafile

v (Go (‘Show SQL) [Revert) (Apply)

General l Storage Threshaolds

Mame [PORT
Eigfile tablespace No

Extent Management Type
Lacally Managed Permanent
Dictionary Managed [5et as default permanent tablespace
Encrvption (_ENCRyRTon Dptions)
Ternporary
Set as default temporary tablespace
Undo
Datafiles
(Edit){ Rernowe)
Select Name Directory Size {MB) Used (MB)

Status
®) pead write
O read Only
O offine

® =port.dbf Judzjoradata) 200‘00_ 128,06

General [Storage Threshaolds

FIGURE 4-7 Editing the XPORT tablespace

84

Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11g Help Logout
Database
Database Instance: dw.world > Tablespaces > Logged in As RJB
Add Datafile
(Cancel) | Continue)
Storage Tvpe | File Swstem W

= Fle Mame |xportz.dbf
= File Directory |[U0Haradataf 7

Tablespace ¥PORT

File Size |100 ME

Creuse Existing File

Storage
O Aukamatically extend datafile when full (AUTOEXTEND)

Increment LG

Macximum File Size &) | limited
O value ME

& TIP Changes made on this page will MOT kake effect until vou click "&pply" button on the Tablespace pags.

(Cancel) | Continue)

Database | Helo | Loooot

FIGURE 4-8 Adding a datafile to the XPORT tablespace

On the page in Figure 4-8, specify the filename and directory location for the new datafile.
Because you know that the /u04 file system has at least 100MB free, you specify /u04/oradata as
the directory and xport2.dbf as the filename, although the filename itself need not contain the
tablespace name. In addition, you set the file size to T00MB and do not click the check box for

AUTOEXTEND.
After clicking Continue and then Apply, you see the Update Message and the new size of the
XPORT tablespace’s datafiles, as shown in Figure 4-9.

Dropping a Datafile from a Tablespace

In previous versions of Oracle, dropping a datafile from a tablespace was problematic; there was
not a single command you could issue to drop a datafile unless you dropped the entire tablespace.
You only had three alternatives:

B Live with it.
B Shrink it and turn off AUTOEXTEND.

B Create a new tablespace, move all the objects to the new tablespace, and drop the
original tablespace.

Chapter 4: Physical Database Layouts and Storage Management 85

Help Logout

ORACLE Enterprise Manager 11g
Database Control

Lagged in As RIE

Database Instance: dw.world > Tablespaces >
Edit Tablespace: XPORT

Actions | Add Datafile v (Go | show 0L) | Revert) [Appaly |
(1) Update Message
Tablespace ¥PORT has been maodified successfully
General l Storage Thresholds
Mame [<PORT
Eigfile tablespace No
Extent Management Type Status
Locally Manage Permanent Read ‘Write
I d © Read
Dictionary Managed [set as default permanent tablespace Oread nly
O offline
jon |_ENCryption Options |
Encryption 852 &) Offline Mode
Ternporary

Set as default terporary tablespace

Undo
Datafiles
| Add)
| Edit)i Remowve
Seleck Name Directory Size (MB) Used {MB)
[O] wpork, dbf Judzforadata) 200.00 _ 125.06
(@] =zport2. dbf Jul4joradata) 100.00_ 0,06

General [Storage Threshaolds

FIGURE 4-9 Viewing XPORT tablespace after adding a datafile

Although creating a new tablespace was the most ideal from a maintenance and metadata
point of view, performing the steps involved was error-prone and involved some amount of
downtime for the tablespace, impacting availability.

Using EM Database Control, you can drop a datafile and minimize downtime, and let EM
Database Control generate the scripts for you. Following our previous example when we
expanded the XPORT tablespace by adding a datafile, I'll step through an example of how you
can remove the datafile by reorganizing the tablespace. On the Tablespace page, select the
tablespace to be reorganized (XPORT in this case), choose Reorganize in the Actions drop-down
box, and then click Go, as shown in Figure 4-10.

In Figure 4-11, on the Reorganize Objects page, you confirm that you are reorganizing the
XPORT tablespace and then click Next.

86 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11¢g
Datahase Control

Database Instance: dw.world > Tablespaces >
View Tablespace: XPORT

Mame XPORT
Eigfile tablespace Mo
Status ReadWrite
Type Permanent
Extent Management local
Encryption NO

Storage
Allacation Type Automatic
Segrment Space Management Automatic
Enable logging Yes
Compress No
Elack Size (B) 8192

Datafiles

MName Directory
wport.dbf Juozjoradata)
wportZ . dbf JuD4foradata)

Tablespace Full Metric Thresholds
Space Used (%)

This tablespace is using the database default space used thresholds,

Warning (%) 85
Critical (%) 97

Actions

Size (MB) Used (MB)

Logged in As RIB

—

(G? | Edit | | Eeturn

N L2506
L

Free Space (MEB)
This tablespace is using the database default free space threshalds,

Not Defined
Not Defined

‘Warning (ME)
Critical {MB)

FIGURE 4-10 Tablespace: Reorganize

ORACLE Enterprise Manager 11g
Databhase Control

Help Logout
atabase

Reorganize Objects: Objects
Database Instance dw.world
Logged InAs RIB
Select the tablespace to be reorganized.

Search

Search By

D)

By default, the search retums all uppercase matches beginning with the sting wou entered, To run an eract of case-sensitive match, double quate the search sting, You can use the wildeard symbol (361 in &

double quated string.

Tablespaces
| 5et Antributes |

select |Name 4 |Type

Extent Management

Segment Management |

@ |xporT FERMAMEMT LOCAL

Copytight & 1996, 2007, Crace, All rohts reserved,

Database | Help | Logout

AUTO

| Cancel | | Bac5|5t3p20F6 ey

Oracle, 1D Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corparation andfor its affilistes, Cther names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 4-11

Reorganize Objects: Objects

Chapter 4: Physical Database Layouts and Storage Management 87

ORACLE Enterprise Manager 11g Help Logout

Options ImpactReport Schedule Review
(1) Information

Clicking Mexk will begin script generation, which can kake some time depending on the objects and options that have been selected. You will be able to cancel script generation
if needed. When script generation completes, the wizard will proceed ta the Impact Repart step,

Reorganize Objects: Options

Database Instance dw.world Tablespace XPORT (Cancel) | Bacbﬁl Step 3 of 6 [Next)
Logged In 4s RIB

Method

Some object bypes can be reorganized online, With an online reorganization the objects have higher availability but the reorganization is slower, Da you want the rearganization
ta favor speed or availability?

® Speed {offlne) - object availability is not a concern
@] Availability (online) - ohject availability is important
[[Juse ROWID methad - adds a hidden calumn to tables

Scratch Tablespace

Reorganizations are performed inside the database and require sufficient free space. The scrakch tablespace is used for intermediate storage of objects during reorganization.
@ s tablespace rename feature
O use scratch tablespace ,5?

bShow Advanced Options

(Cancel) (Back|step3of & [Mext)
Database | Help | Looouk

Copytight @ 1F36, 2007, Oracle, All rights reserved,
Oracle, 1D Edwards, PeopleSoft, and Ratek are registered trademarks of Oracle Corparation andfor itz affilistes. Other names may be trademarks of their respective awnars,

About Qraclke Enterprise Manager

FIGURE 4-12 Reorganize Objects: Options

The next page, as you can see in Figure 4-12, is where you set some of the parameters for the
reorganization, such as whether speed of the reorganization or the availability of the tablespace
is more important for this reorganization. In addition, you can leverage the tablespace rename
feature instead of using a scratch tablespace for a working area, potentially saving disk space
or the amount of time it will take for the reorganization. Other parameters on this page include
specifying parallel execution, index rebuilds without logging, and what level of statistics gathering
is required after the reorganization is complete.

Figure 4-13 shows the status of the script creation. The time it takes to generate the script is
roughly proportional to the number of objects in the tablespace.

A summary screen is presented with any warnings or errors encountered during script
generation, as you can see in Figure 4-14 on the Impact Report.

88

Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11g Help Logout
Datahase Control Database
Processing: Generating Reorganization Script
Database Instance dw.world Tablespace XPORT (Cancel)
Logged In&s RIB
The reorganization script is being generated. This process may take up o 15 minutes to complete.
Process is in progress.,
Cancel

Database | Help | Logout

Copryright © 1396, 2007, Sradle, Al rights reserved,

Cracle, 1D Edwards, PeopleSoft, and Retek: are reqistered trademarks of Oracle Corporation andfor its affilistes, Other names may be trademarks of their respective owners,

About Qracle Enterprise Manager

FIGURE 4-13 Processing: Generating Reorganization Script

After clicking Next, you see the Schedule page, as shown in Figure 4-15. In this scenario, go
ahead and specify host credentials for the server, but we will not submit the job at the end of the

wizard because we need to make one edit to the script.

Clicking Next, we arrive at the Review page in Figure 4-16. An excerpt of the generated script
is presented in the text box. Instead of submitting the job, you will click Save Full Script to make

one minor change to the script before you run it.

In Figure 4-17, you specify the location where you want to save the script.

ORACLE Enterprise Manager 11g
Datahase Control

Help Logout

Impact Report Schedule

Reorganize Objects: Impact Report
Database Instance dw.world Tablespace XPORT
Logged In As RIB

Script Generation Summary
Most Serious Message Severity INFORMATION
Generation Started Jul 5, 2007 5:25:32 PM
Generation Completed Jul 5, 2007 5:25:38 PM

Script Generation Information

Feview

The fallowing table provides information about the objects and resources examined during script generation and lists details of any warnings or errors detected,

Object iObject Message Message

Name Type Severity Type Message

HPORT TABLESPACE INFORMATION Flan Sufficient free space in Tablespace XPORT, Starting Freespace: 176000KE, Ending Freespace: 307072KE.
Lowest Freespace: 307200KE,

HPORT TABLESPACE INFORMATION Plan Sufficient free space in Tablespace XPORT, Starking Freespace: 3070S6KE. Ending Freespace: 150030KE.
Lowest Freespace: 120080KE.

S USER. INFORMATION Flan Sufficient tablespace quata for User S¥S,

(_Printable Page)

Database | Help | Logout

Copryright © 1995, 2007, Oracle. Al rights reserved.

(Cancel) (Back|stepsofe Next)

racle, 1D Edwards, PeopleSoft, and Retel are registered trademarks of Cracle Corporation and/or its affilistes, Cther names may be trademarks of their respective owners,

About Qracle Enterprise Manager

FIGURE 4-14 Reorganize Objects: Impact Report

Chapter 4:

Physical Database Layouts and Storage Management

89

ORACLE Enterprise Manager 11g
Datahase Control

Help Logout

Schedule

Reorganize Objects: Schedule
Database Instance dw.world
Logged In As RIB

Reiew

= Joh Mame |REORGANIZE_DW.WORLD_1

Description |

Host Credentials

= |sername |0racle |

xPassiord R |

Save as Preferred Credential

Start

® Immnediately

O Later

Date 1418, 2007

(example: Jul 8, 2007)

Cam @pm

Time

Database | Helo | Logout
Copytight € 1996, 2007, Cracle, All Hghts reserved,

| Cancel | | Baclglstepsﬁr: Mext)

Oracle, 10 Edwards, PeopleSoft, and Retek: are registerad trademarks of Cracle Corparation andfor its affiliates, Other names may be trademarks of their respective awners,

About Oracle Enkerprise Manager

FIGURE 4-15 Reorganize Objects: Schedule

ORACLE Enterprise Manager 11g
Database Control

Help Logout

Database Instance dw.world

Tablespace XPORT

Logged In s RIB

Job Name REORGANIZE_DW.WORLD_1
Job Schedule Run Immediately

Script

The script summary is a list of the database commands that will be used to recrganize the selected objects. The Full script is a PL/SQL script that
includes Functions, procedures, and other commands needed during the recrganization. The Full script will be created when you submit the job and

will be executed by the job ko perform the reorganization.

view @ Script Summary CIFul Script

(_Cancel) | Back|Stepsofe | Sulbmit Job)

.

| Sawe Full Script

-- Target database: dw.world
-~ Scripk generated at: 08-JUL-2007 2338

AUTO

ALTER TABLE "SY5"."OBJ_FILL" MOVE TAELI
mamt$reora_dro;

ALTER. TABLESPACE "XPORT_REORGO" RENAME TO "XPORT"

RT_REORGD"

CREATE SMALLFILE TABLESPACE "¥PORT REORGO" DATAFILE julzjoradata/xpart_reorgd.dbf' SIZE 200M REUSE |,
'ju4foradatafxport?_reorg0.dbf' SIZE 100M REUSE LOGGING EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT

Database | Help | Logout

| Cancel) | Back |stepeofe | Submit Job

FIGURE 4-16 Reorganize Objects: Review

90 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11g Help Logout

Review

Review! Save Full Script

Database Instance dw.world Tablespace XPORT | Cancel) | Sawe Full Scriptj
Logged In A= RIB

) save Ful scripk an QRS host
Seripk Location |[fhome/oraclefreorgl,sql

O save Ful scripk on barget host
Script Location [Jullfappforacefproduct/11.1.0fdb_1/dbs/reorgl.sql

(_Cancel | (Sawe Full Script |

Database | Helo | Logout

Copytight € 1996, 2007, Cracle, All Hghts reserved,
Otacle, J0 Edwards, PeopleSoft, and Retek are reqgistered trademarks of Cracle Corporation andfor its affiliates, Other names may be trademarks of their respective awners,
About Oracle Enterprise Mananer

FIGURE 4-17 Review: Save Full Script

When you edit the full script, locate the execute immediate command where the tablespace
is created:

EXECUTE IMMEDIATE 'CREATE SMALLFILE TABLESPACE "XPORT REORGO"
DATAFILE '/u02/oradata/xport reorg0.dbf' SIZE 200M REUSE,
''/ul04/oradata/xport2_reorg0.dbf'' SIZE 100M REUSE
LOGGING EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO';

Because we want to drop a datafile, we want to remove the highlighted datafile clause in the
script and then either change the location of the second datafile or re-create the first datafile with
a larger size. In this example, you modify the create tablespace command to not only create the
new tablespace with a larger size, but also place the new tablespace on a different disk volume:

EXECUTE IMMEDIATE 'CREATE SMALLFILE TABLESPACE "XPORTiREORGO"
DATAFILE ''/u04/oradata/xport.dbf''
SIZE 300M REUSE
LOGGING EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO';

Once the script has been edited, run the script in SQL*Plus using an account with DBA
privileges. The output of the script looks like this:

SQL> @reorgl.sql

-= Target database: dw.world

-= Script generated at: 08-JUL-2007 23:38

Starting reorganization

Executing as user: RJB

CREATE SMALLFILE TABLESPACE "XPORT REORGO" DATAFILE

'/u04/oradata/xport reorg0.dbf' SIZE 300M REUSE LOGGING EXTENT MANAGEMENT
LOCAL SEGMENT SPACE MANAGEMENT AUTO

Chapter 4: Physical Database Layouts and Storage Management 91

ALTER TABLE "SYS"."OBJ FILL" MOVE TABLESPACE "XPORT REORGO"

DROP TABLESPACE "XPORT" INCLUDING CONTENTS AND DATAFILES CASCADE CONSTRAINTS
ALTER TABLESPACE "XPORT_REORGO" RENAME TO "XPORT"

Completed Reorganization. Starting cleanup phase.

Starting cleanup of recovery tables

Completed cleanup of recovery tables

Starting cleanup of generated procedures

Completed cleanup of generated procedures

Script execution complete

SQL>

You can avoid using reorganization scripts in many cases if you use bigfile tablespaces
because they consist of only one datafile. We will discuss bigfile tablespace reorganization
in the next section.

Resizing a Bigfile Tablespace Using ALTER TABLESPACE

A bigfile tablespace consists of one and only one datafile. Although you will learn more about
bigfile tablespaces in Chapter 6, we will present a few details about how a bigfile tablespace can
be resized. Most of the parameters available for changing the characteristics of a tablespace’s
datafile—such as the maximum size, whether it can extend at all, and the size of the extents—are
now modifiable at the tablespace level. Let’s start with a bigfile tablespace created as follows:

create bigfile tablespace dmarts
datafile '/uO5/oradata/dmarts.dbf' size 750m
autoextend on next 100m maxsize unlimited
extent management local
segment space management auto;

Operations that are valid only at the datafile level with smallfile tablespaces can be used with
bigfile tablespaces at the tablespace level:

SQL> alter tablespace dmarts resize 1lg;
Tablespace altered.

Although using alter database with the datafile specification for the DMARTS tablespace will
work, the advantage of the alter tablespace syntax is obvious: You don’t have to or need to know
where the datafile is stored. As you might suspect, trying to change datafile parameters at the
tablespace level with smallfile tablespaces is not allowed:

SQL> alter tablespace users resize 500m;

alter tablespace users resize 500m
*

ERROR at line 1:
ORA-32773: operation not supported for smallfile tablespace USERS

If a bigfile tablespace runs out of space because its single datafile cannot extend on the disk,
you need to relocate the datafile to another volume, as we will discuss in the next section,
“Moving Datafiles.” Using Automatic Storage Management (ASM), presented later in this chapter,
can potentially eliminate the need to manually move datafiles at all: Instead of moving the
datafile, you can add another disk volume to the ASM storage group.

92 Oracle Database 11g DBA Handbook

Moving Datafiles

To better manage the size of a datafile or improve the overall I/O performance of the database, it
may be necessary to move one or more datafiles in a tablespace to a different location. There are
three methods for relocating the datafiles: using alter database, using alter tablespace, and via
EM Database Control, although EM Database Control does not provide all the commands
necessary to relocate the datafile.

The alter tablespace method works for datafiles in all tablespaces except for SYSTEM, SYSAUX,
the online undo tablespace, and the temporary tablespace. The alter database method works for
datafiles in all tablespaces because the instance is shut down when the move operation occurs.

Moving Datafiles with ALTER DATABASE

The steps for moving one or more datafiles with alter database are as follows:
Connect to the database as SYSDBA and shut down the instance.

Use operating system commands to move the datafile(s).

Open the database in MOUNT mode.

Use alter database to change the references to the datafile in the database.
Open the database in OPEN mode.

Perform an incremental or full backup of the database that includes the control file.

S kW=

In the following example, we will show you how to move the datafile of the XPORT
tablespace from the file system /u04 to the file system /u06. First, you connect to the database
with SYSDBA privileges using the following command:

B sglplus / as sysdba

Next, you use a query against the dynamic performance views V$DATAFILE and
V$TABLESPACE to confirm the names of the datafiles in the XPORT tablespace:

I sSQL> select d.name from

2 vSdatafile d join v$tablespace t using(ts#)
3 where t.name = 'XPORT';
NAME

/u04/oradata/xport.dbf
1 row selected.
SQL>

To complete step 1, shut down the database:

I sSQL> shutdown immediate;

Database closed.

Database dismounted.
ORACLE instance shut down.
SQL>

Chapter 4: Physical Database Layouts and Storage Management 93

For step 2, you stay in SQL*Plus and use the “!” escape character to execute the operating
system command to move the datafile:

SQL> ! mv /u04/oradata/xport.dbf /u06/oradata

In step 3, you start up the database in MOUNT mode so that the control file is available
without opening the datafiles:

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes

Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes

Database mounted.

For step 4, you change the pathname reference in the control file to point to the new location
of the datafile:

SQL> alter database rename file
2 '/u04/oradata/xport.dbf' to
3 '/u06/oradata/xport.dbf';
Database altered.

In step 5, you open the database to make it available to users:

SQL> alter database open;
Database altered.

Finally, in step 6, you can make a backup copy of the updated control file:

SQL> alter database backup controlfile to trace;
Database altered.
SQL>

Alternatively, you can use RMAN to perform an incremental backup that includes a backup of
the control file.

Moving Datafiles with ALTER TABLESPACE
If the datafile you want to move is part of a tablespace other than SYSTEM, SYSAUX, the active
undo tablespace, or the temporary tablespace, then it is preferable to use the alter tablespace
method to move a tablespace for one primary reason: The database, except for the tablespace
whose datafile will be moved, remains available to all users during the entire operation.

The steps for moving one or more datafiles with alter tablespace are as follows:

Using an account with the ALTER TABLESPACE privilege, take the tablespace offline.
Use operating system commands to move the datafile(s).

Use alter tablespace to change the references to the datafile in the database.

0w =

Bring the tablespace back online.

94 Oracle Database 11g DBA Handbook

In the alter database example, assume that you moved the datafile for the XPORT tablespace
to the wrong file system. In this example, you’ll move it from /u06/oradata to /u05/oradata:

I SQL> alter tablespace xport offline;
Tablespace altered.

SQL> ! mv /u06/oradata/xport.dbf /u05/oradata/xport.dbf

SQL> alter tablespace xport rename datafile
2 '/u06/oradata/xport.dbf' to '/u05/oradata/xport.dbf';
Tablespace altered.

SQL> alter tablespace xport online;
Tablespace altered.

Note how this method is much more straightforward and much less disruptive than the alter
database method. The only downtime for the XPORT tablespace is the amount of time it takes to
move the datafile from one disk volume to another.

Moving Datafiles with EM Database Control

In release 1 of Oracle Database 11g, EM Database Control does not have an explicit function for
moving a datafile, short of performing a tablespace reorganization, as demonstrated earlier in the
chapter. For moving a datafile to another volume, this is overkill.

Moving Online Redo Log Files

Although it is possible to indirectly move online redo log files by dropping entire redo log groups
and re-adding the groups in a different location, this solution will not work if there are only two
redo log file groups because a database will not open with only one redo log file group. Temporarily
adding a third group and dropping the first or second group is an option if the database must be
kept open; alternatively, the method shown here will move the redo log file(s) while the database
is shut down.

In the following example, we have three redo log file groups with two members each. One
member of each group is on the same volume as the Oracle software and should be moved to
a different volume to eliminate any contention between log file filling and accessing Oracle
software components. The method you will use here is very similar to the method used to move
datafiles with the alter database method.

I SQL> select group#, member from v$logfile
2 order by group#, member;

GROUP# MEMBER
1 /u0l/app/oracle/oradata/redo0l.log
1 /u05/oradata/redo0l.log
2 /ul0l/app/oracle/oradata/redo02.log
2 /u05/oradata/redo02.log
3 /u0l/app/oracle/oradata/redo03.log
3 /u05/oradata/redo03.1log
6 rows selected.

Chapter 4: Physical Database Layouts and Storage Management 95

SQL> shutdown immediate;

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> ! mv /u0l/app/oracle/oradata/redo0[1-3].log /u04/oradata

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes

Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes

Database mounted.

SQL> alter database rename file '/u0Ol/app/oracle/oradata/redo0l.log'
2 to '/u04/oradata/redo0l.log';
Database altered.

SQL> alter database rename file '/uOl/app/oracle/oradata/redo02.log'
2 to '/u04/oradata/redo02.log';
Database altered.

SQL> alter database rename file '/uOl/app/oracle/oradata/redo03.log'
2 to '/u04/oradata/redo03.log';
Database altered.

SQL> alter database open;
Database altered.

SQL> select group#, member from v$logfile
2 order by group#, member;

GROUP# MEMBER
1 /u04/oradata/redo0l.log
1 /u05/oradata/redo0l.log
2 /u04/oradata/redo02.log
2 /u05/oradata/redo02.log
3 /u04/oradata/redo03.log
3 /u05/oradata/redo03.1log

6 rows selected.

SQL>

The I/O for the redo log files no longer contends with the Oracle software; in addition, the
redo log files are multiplexed between two different mount points, /u04 and /u05.

96 Oracle Database 11g DBA Handbook

Moving Control Files

Moving a control file when you use an initialization parameter file follows a procedure similar
to the one you used for datafiles and redo log files: Shut down the instance, move the file with
operating system commands, and restart the instance.

When you use a server parameter file (SPFILE), however, the procedure is a bit different. The
initialization file parameter CONTROL_FILES is changed using alter system ... scope=spfile when
either the instance is running or it's shut down and opened in NOMOUNT mode. Because the
CONTROL_FILES parameter is not dynamic, the instance must be shut down and restarted in
either case.

In this example, you discover that you have three copies of the control file in your database,
but they are not multiplexed on different disks. You will edit the SPFILE with the new locations,
shut down the instance so that you can move the control files to different disks, and then restart
the instance.

I SQL> select name, value from v$spparameter
2 where name = 'control files';

control files /u0l/app/oracle/oradata/control0l.ctl
control files /u0l/app/oracle/oradata/control02.ctl
control files /ul0l/app/oracle/oradata/control03.ctl

SQL> show parameter control files

control files string /u0l/app/oracle/oradata/contro
101.ctl, /u0l/app/orac le/orad
ata/control02.ctl, /u0l/app/or
acle/oradata/control03.ctl

SQL> alter system set control_files =

2 '/u02/oradata/controlOl.ctl’',
3 '/u03/oradata/control02.ctl’,
4 ' /u04/oradata/control03.ctl"’
5 scope = spfile;

System altered.

SQL> shutdown immediate

Database closed.

Database dismounted.

ORACLE instance shut down.

SQL> ! mv /u0l/app/oracle/oradata/controlOl.ctl /u02/oradata
SQL> ! mv /u0l/app/oracle/oradata/control02.ctl /u03/oradata
SQL> ! mv /u0l/app/oracle/oradata/control03.ctl /u04/oradata

SQL> startup
ORACLE instance started.

Chapter 4: Physical Database Layouts and Storage Management 97

Total System Global Area 422670336 bytes

Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes

Database mounted.

Database opened.

SQL> select name, value from v$spparameter
2 where name = 'control files';

control files /ul02/oradata/control0l.ctl
control files /ul03/oradata/control02.ctl
control files /ul04/oradata/control03.ctl

SQL> show parameter control files

control files string /u02/oradata/controlOl.ctl, /u
03/oradata/control02.ctl, /u04
/oradata/control03.ctl

SQL>

The three control files have been moved to separate file systems, no longer on the volume
with the Oracle software and in a higher availability configuration (if the volume containing one
of the control files fails, two other volumes contain up-to-date control files).

NOTE
“ In a default installation of Oracle Database 11g using ASM disks for

tablespace storage and the flash recovery area, one copy of the control
file is created in the default tablespace ASM disk and another in the
flash recovery area.

Making one or more copies of the control file to an ASM volume is just as easy: using the
RMAN utility (described in detail in Chapter 12), restore a control file backup to an ASM disk
location, as in this example:

I RMAN> restore controlfile to
'+DATA/dw/controlfile/control_bak.ctl';

The next step is identical to adding file system—based control files as | presented earlier in
this section: change the CONTROL_FILES parameter to add the location +DATA/dw/controlfile/
control_bak.ctl in addition to the existing control file locations, and then shut down and restart
the database.

T sQL> show parameter control files

control files string /u02/oradata/controlOl.ctl, /u
03/oradata/control02.ctl, /u04

98 Oracle Database 11g DBA Handbook

/oradata/control03.ctl, +DATA/
dw/controlfile/control bak.ctl
SQL>

Similarly, you can use the Linux utility asmemd to make copies of the control file from one
disk group to another, and change the CONTROL_FILES parameter to reflect the new control file
location. | present an overview of the asmemd command later in this chapter.

Automatic Storage Management

In Chapter 3, we presented some of the file naming conventions used for ASM objects. In this
section, I'll delve more deeply into how we can create tablespaces—and ultimately datafiles
behind the scenes—in an ASM environment with one or more disk groups.

When creating a new tablespace or other database structure, such as a control file or redo
log file, you can specify a disk group as the storage area for the database structure instead of an
operating system file. ASM takes the ease of use of Oracle-Managed Files (OMF) and combines
it with mirroring and striping features to provide a robust file system and logical volume manager
that can even support multiple nodes in an Oracle Real Application Cluster (RAC). ASM eliminates
the need to purchase a third-party logical volume manager.

ASM not only enhances performance by automatically spreading out database objects over
multiple devices, but also increases availability by allowing new disk devices to be added to the
database without shutting down the database; ASM automatically rebalances the distribution of
files with minimal intervention.

We'll also review the ASM architecture. In addition, I'll show how you create a special type of
Oracle instance to support ASM as well as how to start up and shut down an ASM instance. We'll
review the new initialization parameters related to ASM and the existing initialization parameters
that have new values to support an ASM instance. Also, I'll introduce the asmemd command-line
utility, new to Oracle 10g Release 2, that gives you an alternate way to browse and maintain objects
in your ASM disk groups. Finally, Ill use some raw disk devices on a Linux server to demonstrate
how disk groups are created and maintained.

ASM Architecture

ASM divides the datafiles and other database structures into extents, and it divides the extents among
all the disks in the disk group to enhance both performance and reliability. Instead of mirroring
entire disk volumes, ASM mirrors the database objects to provide the flexibility to mirror or stripe
the database objects differently depending on their type. Optionally, the objects may not be striped
at all if the underlying disk hardware is already RAID enabled, part of a storage area network (SAN),
or part of a network-attached storage (NAS) device.

Automatic rebalancing is another key feature of ASM. When an increase in disk space is
needed, additional disk devices can be added to a disk group, and ASM moves a proportional
number of files from one or more existing disks to the new disks to maintain the overall I/O
balance across all disks. This happens in the background while the database objects contained
in the disk files are still online and available to users. If the impact to the /O subsystem is high
during a rebalance operation, the speed at which the rebalance occurs can be reduced using an
initialization parameter.

Chapter 4: Physical Database Layouts and Storage Management 99

ASM requires a special type of Oracle instance to provide the interface between a traditional
Oracle instance and the file system; the ASM software components are shipped with the Oracle
database software and are always available as a selection when you're selecting the storage type
for the SYSTEM, SYSAUX, and other tablespaces when the database is created.

Using ASM does not, however, prevent you from mixing ASM disk groups with manual Oracle
datafile management techniques such as those | presented in Chapter 3 and earlier in this chapter.
However, the ease of use and performance of ASM makes a strong case for eventually using ASM
disk groups for all your storage needs.

Two Oracle background processes introduced in Oracle Database 10g support ASM instances:
RBAL and ORBn. RBAL coordinates the disk activity for disk groups, whereas ORBn, where n can
be a number from 0 to 9, performs the actual extent movement between disks in the disk groups.

For databases that use ASM disks, there are also two new background processes as of Oracle
Database 10g: OSMB and RBAL. OSMB performs the communication between the database and
the ASM instance, whereas RBAL performs the opening and closing of the disks in the disk group
on behalf of the database.

Creating an ASM Instance

ASM requires a dedicated Oracle instance to manage the disk groups. An ASM instance generally
has a smaller memory footprint, in the range of 60MB to 120MB, and is automatically configured
when ASM is specified as the database’s file storage option when the Oracle software is installed
and an existing ASM instance does not already exist, as you can see in the Oracle Universal
Installer screen in Figure 4-18.

onfig

Select the storage mechanism wou woauld like to use for the database.

" File System
Use the File System for Database starage.

W A tomatic Storage Management (AS)
Automatic Storage Management simplifies database starage
administration and optimizes database layout for [fO performance. To
use this option wou must either specify a set of disks to create an A5k
disk group or specify an existing AsM disk group.

T Raw Devices
Faw partitions or wvalumes can provide the reguired shared storage for
Eeal Application Clusters (RAC) databases if wou do not use Automatic
Storage Management and a Cluster File Sistem is not awailable. You
need to have created one raw dewice for each datafile, control file, and
log file you are planning to create in the database.

[Specify Raw Devices Mapping File Browse. ..

Cancel)l Help)l <. Back | Mext 9]

FIGURE 4-18 Specifying ASM as the database file storage method

100 Oracle Database 11g DBA Handbook

Device Name Capacity
/dev/raw/raw1 12GB
/dev/raw/raw?2 12GB
/dev/raw/raw3 12GB
/dev/raw/raw4 12GB
/dev/raw/raw5 4GB
/dev/raw/raw6 4GB
/dev/raw/raw?7 4GB
/dev/raw/raw8 4GB

TABLE 4-2 Raw Disks for ASM Disk Groups

As an example of disk devices used to create ASM disk groups, suppose our Linux server has
a number of raw disk devices with the capacities listed in Table 4-2.
You configure the first disk group within the Oracle Universal Installer, as shown in Figure 4-19.

Create Disk Group

Disk Croup Mame: |DATA
Eedundancy
" High ® Mormal T External

Select Member Disks
" Show Candidates @ Show Al

[T |Disk Path Header Status | ASM Mame Failure Group |Size (ME) Force
I | pdefrawfrawl Member DATA_OOOD DLAT A_D000 12284 [
Fdevirawfraws Member DATA DOO1 |DATA_DDOL 12284 [
[jdevfrawiraw? Member EECOY 0000 | EECOY_0000 | 12284 [
[| jdevirawirawd Member FECOW Q001 |RECOW_0001 (12284 [

Mote: If wou don't see disks which vou believe should be available, vou may need to check disk
permissions or change the disk discowery path.

Change Disk Discovery Path...jl

QK| Cancel| Help
e

FIGURE 4-19 Configuring the initial ASM disk group with OUI

Chapter 4: Physical Database Layouts and Storage Management 101

The name of the first disk group is DATA, and you will be using /dev/raw/raw1 and /dev/raw/
raw2 to create the normal redundancy disk group. If an insufficient number of raw disks are
selected for the desired redundancy level, OUI generates an error message. After the database
is created, both the regular instance and the ASM instance are started.

An ASM instance has a few other unique characteristics. Although it does have an initialization
parameter file and a password file, it has no data dictionary, and therefore all connections to an
ASM instance are via SYS and SYSTEM using operating system authentication only; you can only
connect to an ASM instance with the connect / as sysdba command; any username/password in
the connect command is ignored. Disk group commands such as create diskgroup, alter diskgroup,
and drop diskgroup are only valid in an ASM instance. Finally, an ASM instance is either in a
NOMOUNT or MOUNT state; it is never in an OPEN state.

ASM Instance Components

ASM instances cannot be accessed using the variety of methods available with a traditional
database. In this section, Ill talk about the privileges available to you that connect with SYSDBA
and SYSOPER privileges. We'll also distinguish an ASM instance by the new and expanded
initialization parameters (introduced in Oracle Database 10g and enhanced in Oracle Database
11g) available only for an ASM instance. At the end of this section, I'll present the procedures for
starting and stopping an ASM instance along with the dependencies between ASM instances and
the database instances they serve.

Accessing an ASM Instance
As mentioned earlier in the chapter, an ASM instance does not have a data dictionary, so access
to the instance is restricted to users who can authenticate with the operating system—in other
words, connecting as SYSDBA or SYSOPER by an operating system user in the dba group.

Users who connect to an ASM instance as SYSDBA can perform all ASM operations, such as
creating and deleting disk groups as well as adding and removing disks from disk groups.

The SYSOPER users have a much more limited set of commands available in an ASM instance.
In general, the commands available to SYSOPER users give only enough privileges to perform
routine operations for an already configured and stable ASM instance. The following list contains
the operations available as SYSOPER:

B Starting up and shutting down an ASM instance

Mounting or dismounting a disk group

Altering a disk group’s disk status from ONLINE to OFFLINE, or vice versa
Rebalancing a disk group

Performing an integrity check of a disk group

B Accessing the VSASM_* dynamic performance views

ASM Initialization Parameters
A number of initialization parameters are either specific to ASM instances or have new values
within an ASM instance. An SPFILE is highly recommended instead of an initialization parameter
file for an ASM instance. For example, parameters such as ASM_DISKGROUPS will automatically
be maintained when a disk group is added or dropped, potentially freeing you from ever having
to manually change this value.

We will present the ASM-related initialization parameters in the following sections.

102 Oracle Database 11g DBA Handbook

INSTANCE_TYPE For an ASM instance, the INSTANCE_TYPE parameter has a value of ASM. The
default, for a traditional Oracle instance, is RDBMS.

DB_UNIQUE_NAME The default value for the DB_UNIQUE_NAME parameter is +ASM and is the
unique name for a group of ASM instances within a cluster or on a single node.

ASM_POWER_LIMIT To ensure that rebalancing operations do not interfere with ongoing user I/
O, the ASM_POWER_LIMIT parameter controls how fast rebalance operations occur. The values
range from 1 to 11, with 11 being the highest possible value; the default value is 1 (low I/O
overhead). Because this is a dynamic parameter, you may set this to a low value during the day
and set it higher overnight whenever a disk-rebalancing operation must occur.

ASM_DISKSTRING The ASM_DISKSTRING parameter specifies one or more strings, operating
system dependent, to limit the disk devices that can be used to create disk groups. If this value is
NULL, all disks visible to the ASM instance are potential candidates for creating disk groups. For
the examples in this chapter for our test server, the value of the ASM_DISKSTRING parameter is /
dev/raw/*:

I SQL> select name, type, value from v$parameter

2 where name = 'asm diskstring';
NAME TYPE VALUE
asm_diskstring 2 /dev/raw/*

ASM_DISKGROUPS The ASM_DISKGROUPS parameter specifies a list containing the names
of the disk groups to be automatically mounted by the ASM instance at startup or by the alter
diskgroup all mount command. Even if this list is empty at instance startup, any existing disk
group can be manually mounted.

LARGE_POOL_SIZE The LARGE_POOL_SIZE parameter is useful for both regular and ASM
instances; however, this pool is used differently for an ASM instance. All internal ASM packages
are executed from this pool, so this parameter should be set to at least 12MB for a single instance
and 16MB for a RAC instance.

ASM_PREFERRED_READ_FAILURE_GROUPS The ASM_PREFERRED_READ_FAILURE_GROUPS
parameter, new to Oracle Database 11g, contains a list of the preferred failure groups for a given
database instance when using clustered ASM instances. This parameter is instance specific: each
instance can specify a failure group that is closest to the instance’s node (for example, a failure
group on the server’s local disk) to improve performance.

ASM Instance Startup and Shutdown

An ASM instance is started much like a database instance, except that the startup command

defaults to startup mount. Because there is no control file, database, or data dictionary to mount,

the ASM disk groups are mounted instead of a database. The command startup nomount starts

up the instance but does not mount any ASM disks. In addition, you can specify startup restrict to

temporarily prevent database instances from connecting to the ASM instance to mount disk groups.
Performing a shutdown command on an ASM instance performs the same shutdown command

on any database instances using the ASM instance; before the ASM instance finishes a shutdown,

it waits for all dependent databases to shut down. The only exception to this is if you use the

Chapter 4: Physical Database Layouts and Storage Management 103

shutdown abort command on the ASM instance, which eventually forces all dependent databases
to perform a shutdown abort.

For multiple ASM instances sharing disk groups, such as in a Real Application Clusters (RAC)
environment, the failure of an ASM instance does not cause the database instances to fail. Instead,
another ASM instance performs a recovery operation for the failed instance.

ASM Dynamic Performance Views

A few new dynamic performance views are associated with ASM instances. Table 4-3 contains
the common ASM-related dynamic performance views. We'll provide further explanation, where
appropriate, later in this chapter for some of these views.

ASM Filename Formats

All ASM files are Oracle-Managed Files (OMF), so the details of the actual filename within the
disk group is not needed for most administrative functions. When an object in an ASM disk group
is dropped, the file is automatically deleted. Certain commands will expose the actual filenames,
such as alter database backup controlfile to trace, as well as some data dictionary and dynamic

View Name Used in Standard Description
Database?
V$ASM_DISK Yes One row for each disk discovered by an ASM

instance, used by a disk group or not. For
a database instance, one row for each disk
group in use by the instance.

V$ASM_DISKGROUP Yes For an ASM instance, one row for each disk
group containing general characteristics of the
disk group.

For a database instance, one row for each disk
group in use whether mounted or not.

V$ASM_FILE No One row for each file in every mounted disk
group.

V$ASM_OPERATION No One row for each executing long-running
operation in the ASM instance.

V$ASM_TEMPLATE Yes One row for each template in each mounted

disk group in the ASM instance. For a database
instance, one row for each template for each
mounted disk group.

V$ASM_CLIENT Yes One row for each database using disk groups
managed by the ASM instance. For a database
instance, one row for the ASM instance if any
ASM files are open.

V$ASM_ALIAS No One row for every alias in every mounted disk
group.

TABLE 4-3 ASM-Related Dynamic Performance Views

104 Oracle Database 11g DBA Handbook

performance views. For example, the dynamic performance view V$DATAFILE shows the actual
filenames within each disk group. Here is an example:

I SQL> select file#, name, blocks from v$datafile;

FILE# NAME BLOCKS
1 +DATA/dw/datafile/system.256.627432971 89600
2 +DATA/dw/datafile/sysaux.257.627432973 77640
3 +DATA/dw/datafile/undotbsl.258.627432975 12800
4 +DATA/dw/datafile/users.259.627432977 640
5 +DATA/dw/datafile/example.265.627433157 12800
6 /u05/oradata/dmarts.dbf 32000
8 /u05/oradata/xport.dbf 38400

7 rows selected.

ASM filenames can be one of six different formats. In the sections that follow, I'll give an
overview of the different formats and the context where they can be used—either as a reference
to an existing file, during a single-file creation operation, or during a multiple-file creation
operation.

Fully Qualified Names
Fully qualified ASM filenames are used only when referencing an existing file. A fully qualified
ASM filename has the format

I +group/dbname/file type/tag.file.incarnation

where group is the disk group name, dbname is the database to which the file belongs, file type is
the Oracle file type, tag is information specific to the file type, and the file.incarnation pair ensures
uniqueness. Here is an example of an ASM file for the USERS tablespace:

B DATA/dw/datafile/users.259.627432977

The disk group name is +DATA, the database name is dw, it's a datafile for the USERS
tablespace, and the file number/incarnation pair 259.627432977 ensures uniqueness if you
decide to create another ASM datafile for the USERS tablespace.

Numeric Names

Numeric names are used only when referencing an existing ASM file. This allows you to refer
to an existing ASM file by only the disk group name and the file number/incarnation pair. The
numeric name for the ASM file in the preceding section is

B +DATA . 259. 627432977

Alias Names

An alias can be used when either referencing an existing object or creating a single ASM file.
Using the alter diskgroup add alias command, a more readable name can be created for an
existing or a new ASM file, and it’s distinguishable from a regular ASM filename because it
does not end in a dotted pair of numbers (the file number/incarnation pair), as shown here:

Chapter 4: Physical Database Layouts and Storage Management 105

SQL> alter diskgroup data
2 add directory '+data/purch’;
Diskgroup altered.

SQL> alter diskgroup data

2 add alias '+data/purch/users.dbf’

3 for '+data/dw/datafile/users.259.627432977"';
Diskgroup altered.

SQL>

Alias with Template Names

An alias with a template can only be used when creating a new ASM file. Templates provide a
shorthand for specifying a file type and a tag when creating a new ASM file. Here’s an example
of an alias using a template for a new tablespace in the +DATA disk group:

SQL> create tablespace users2 datafile '+data(datafile)';
Tablespace created.

The template datafile specifies COARSE striping, MIRROR for a normal-redundancy group,
and HIGH for a high-redundancy group; it is the default for a datafile. Because we did not fully
qualify the name, the ASM name for this diskgroup is as follows:

+DATA/dw/datafile/users2.267.627782171

I'll talk more about ASM templates in the section “ASM File Types and Templates” later in this
chapter.

Incomplete Names

An incomplete filename format can be used either for single-file or multiple-file creation operations.
Only the disk group name is specified, and a default template is used depending on the type of
file, as shown here:

SQL> create tablespace users5 datafile '+datal';
Tablespace created.

Incomplete Names with Template
As with incomplete ASM filenames, an incomplete filename with a template can be used either
for single-file or multiple-file creation operations. Regardless of the actual file type, the template
name determines the characteristics of the file.

Even though we are creating a tablespace in the following example, the striping and mirroring
characteristics of an online log file (fine striping) are used for the new tablespace instead as the
attributes for the datafile (coarse striping):

SQL> create tablespace users6 datafile '+datal (onlinelog)';
Tablespace created.

ASM File Types and Templates

ASM supports all types of files used by the database except for operating system executables.
Table 4-4 contains the complete list of ASM file types; the ASM File Type and Tag columns are
those presented previously for ASM filenaming conventions.

106 Oracle Database 11g DBA Handbook

Oracle File Type ASM File Tag Default Template
Type
Control files controlfile cf (control file) ~ CONTROLFILE
or bef (backup
control file)
Data files datafile tablespace DATAFILE
name.file#
Online logs online_log log_thread# ONLINELOG
Archive logs archive_log parameter ARCHIVELOG
Temp files temp tablespace TEMPFILE
name.file#
RMAN datafile backupset Client specified ~ BACKUPSET
backup piece
RMAN incremental backupset Client specified ~ BACKUPSET
backup piece
RMAN archive log backupset Client specified ~ BACKUPSET
backup piece
RMAN datafile copy datafile tablespace DATAFILE
name.file#
Initialization init spfile PARAMETERFILE
parameters
Broker config drc drc DATAGUARDCONFIG
Flashback logs rlog thread#_log# FLASHBACK
Change tracking ctb bitmap CHANGETRACKING
bitmap
Auto backup autobackup Client specified ~ AUTOBACKUP
Data Pump dumpset dumpset dump DUMPSET
Cross-platform data XTRANSPORT

files

TABLE 4-4 ASM File Types

The default ASM file templates referenced in the last column of Table 4-4 are presented in
Table 4-5.

When a new disk group is created, a set of ASM file templates copied from the default
templates in Table 4-5 is saved with the disk group; as a result, individual template characteristics
can be changed and apply only to the disk group where they reside. In other words, the DATAFILE
system template in disk group +DATAT may have the default coarse striping, but the DATAFILE
template in disk group +DATA2 may have fine striping. You can create your own templates in
each disk group as needed.

When an ASM datafile is created with the DATAFILE template, by default the datafile is
100MB and autoextensible, and the maximum size is 32767MB (32GB).

Chapter 4: Physical Database Layouts and Storage Management 107
System Template External Normal Redundancy High Redundancy Striping
Redundancy

CONTROLFILE Unprotected Two-way mirroring Three-way mirroring Fine
DATAFILE Unprotected Two-way mirroring Three-way mirroring Coarse
ONLINELOG Unprotected Two-way mirroring Three-way mirroring Fine
ARCHIVELOG Unprotected Two-way mirroring Three-way mirroring Coarse
TEMPFILE Unprotected Two-way mirroring Three-way mirroring Coarse
BACKUPSET Unprotected Two-way mirroring Three-way mirroring Coarse
XTRANSPORT Unprotected Two-way mirroring Three-way mirroring Coarse
PARAMETERFILE Unprotected Two-way mirroring Three-way mirroring Coarse
DATAGUARDCONFIG Unprotected Two-way mirroring Three-way mirroring Coarse
FLASHBACK Unprotected Two-way mirroring Three-way mirroring Fine
CHANGETRACKING Unprotected Two-way mirroring Three-way mirroring Coarse
AUTOBACKUP Unprotected Two-way mirroring Three-way mirroring Coarse
DUMPSET Unprotected Two-way mirroring Three-way mirroring Coarse

TABLE 4-5 ASM File Template Defaults

Administering ASM Disk Groups

Using ASM disk groups benefits you in a number of ways: I/O performance is improved, availability
is increased, and the ease with which you can add a disk to a disk group or add an entirely new
disk group enables you to manage many more databases in the same amount of time. Understanding
the components of a disk group as well as correctly configuring a disk group are important goals
for a successful DBA.

In this section, I'll delve more deeply into the details of the structure of a disk group. Also, I'll
review the different types of administrative tasks related to disk groups and show how disks are
assigned to failure groups, how disk groups are mirrored, and how disk groups are created,
dropped, and altered. I'll also briefly review the EM Database Control interface to ASM; at the
command line, I'll also give you an introduction to the asmemd command-line utility that you
can use to browse, copy, and manage ASM objects.

Disk Group Architecture

As defined earlier in this chapter, a disk group is a collection of physical disks managed as a unit.
Every ASM disk, as part of a disk group, has an ASM disk name that is either assigned by the DBA
or automatically assigned when it is assigned to the disk group.

Files in a disk group are striped on the disks using either coarse striping or fine striping. Coarse
striping spreads files in units of TMB each across all disks. Coarse striping is appropriate for a
system with a high degree of concurrent small I/O requests, such as an OLTP environment.
Alternatively, fine striping spreads files in units of 128KB, is appropriate for traditional data
warehouse environments or OLTP systems with low concurrency, and maximizes response
time for individual I/O requests.

108 Oracle Database 11g DBA Handbook

Disk Group Mirroring and Failure Groups

Before defining the type of mirroring within a disk group, you must group disks into failure groups.
A failure group is one or more disks within a disk group that share a common resource, such as a
disk controller, whose failure would cause the entire set of disks to be unavailable to the group. In
most cases, an ASM instance does not know the hardware and software dependencies for a given
disk. Therefore, unless you specifically assign a disk to a failure group, each disk in a disk group
is assigned to its own failure group.

Once the failure groups have been defined, you can define the mirroring for the disk group;
the number of failure groups available within a disk group can restrict the type of mirroring
available for the disk group. There are three types of mirroring available: external redundancy,
normal redundancy, and high redundancy.

External Redundancy External redundancy requires only one disk location and assumes that the
disk is not critical to the ongoing operation of the database or that the disk is managed externally
with high-availability hardware such as a RAID controller.

Normal Redundancy Normal redundancy provides two-way mirroring and requires at least two
failure groups within a disk group. Failure of one of the disks in a failure group does not cause
any downtime for the disk group or any data loss other than a slight performance hit for queries
against objects in the disk group; when all disks in the failure group are online, read performance
is typically improved because the requested data is available on more than one disk.

High Redundancy High redundancy provides three-way mirroring and requires at least three
failure groups within a disk group. The failure of disks in two out of the three failure groups is for
the most part transparent to the database users, as in normal redundancy mirroring.

Mirroring is managed at a very low level. Extents, not disks, are mirrored. In addition, each
disk will have a mixture of both primary and mirrored (secondary and tertiary) extents on each
disk. Although a slight amount of overhead is incurred for managing mirroring at the extent level,
it provides the advantage of spreading out the load from the failed disk to all other disks instead
of a single disk.

Disk Group Dynamic Rebalancing
Whenever you change the configuration of a disk group—whether you are adding or removing
a failure group or a disk within a failure group—dynamic rebalancing occurs automatically to
proportionally reallocate data from other members of the disk group to the new member of the
disk group. This rebalance occurs while the database is online and available to users; any impact
to ongoing database 1/0O can be controlled by adjusting the value of the initialization parameter
ASM_POWER_LIMIT to a lower value.

Not only does dynamic rebalancing free you from the tedious and often error-prone task
of identifying hot spots in a disk group, it also provides an automatic way to migrate an entire
database from a set of slower disks to a set of faster disks while the entire database remains
online. Faster disks are added as a new failure group in the existing disk group with the slower
disks and the automatic rebalance occurs. After the rebalance operations complete, the failure
groups containing the slower disks are dropped, leaving a disk group with only fast disks. To
make this operation even faster, both the add and drop operations can be initiated within the
same alter diskgroup command.

As an example, suppose you want to create a new disk group with high redundancy to hold
tablespaces for a new credit card authorization. Using the view V$ASM_DISK, you can view all

Chapter 4: Physical Database Layouts and Storage Management 109

disks discovered using the initialization parameter ASM_DISKSTRING, along with the status of
the disk (in other words, whether it is assigned to an existing disk group or is unassigned). Here
is the command:

SQL> select group number, disk number, name,

2 failgroup, create_date, path from v$asm disk;
GROUP_NUMBER DISK NUMBER NAME FATILGROUP CREATE DA PATH
0 0 /dev/raw/raw8
0 1 /dev/raw/raw’
0 2 /dev/raw/rawb6
0 3 /dev/raw/rawb
2 1 RECOV_0001 RECOV_ 0001 08-JUL-07 /dev/raw/rawd
2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
1 1 DATA 0001 DATA 0001 08-JUL-07 /dev/raw/raw2
1 0 DATA 0000 DATA 0000 08-JUL-07 /dev/raw/rawl

8 rows selected.
SQL>

Out of the eight disks available for ASM, only four of them are assigned to two disk groups,
DATA and RECOQV, each in its own failure group. The disk group name can be obtained from the
view V$ASM_DISKGROUP:

SQL> select group number, name, type, total mb, free mb

2 from v$asm_diskgroup;
GROUP_ NUMBER NAME TYPE TOTAL MB FREE MB
 loamm NORMAL 24568 20798
2 RECOV NORMAL 24568 24090
SQL>

Note that if you had a number of ASM disks and disk groups, you could have joined the two
views on the GROUP_NUMBER column and filtered the query result by GROUP_NUMBER. Also,
you see from V$ASM_DISKGROUP that both of the disk groups are NORMAL REDUNDANCY
groups consisting of two disks each.

Your first step is to create the disk group:

SQL> create diskgroup data2 high redundancy

2 failgroup fgl disk '/dev/raw/raw5' name d2a
3 failgroup f£fg2 disk '/dev/raw/raw6' name d2b
4 failgroup fg3 disk '/dev/raw/raw7' name d2c
5 failgroup fg4 disk '/dev/raw/raw8' name d2d;

Diskgroup created.

SQL>

110 Oracle Database 11g DBA Handbook

Looking at the dynamic performance views, you see the new disk group available in V$ASM_
DISKGROUP and the failure groups in V$ASM_DISK:

T SQL> select group number, name, type, total mb, free mb

2 from v$asm_diskgroup;
GROUP_ NUMBER NAME TYPE TOTAL MB FREE MB
1 DATA NORMAL 24568 20798
2 RECOV NORMAL 24568 24090
3 DATA2 HIGH 16376 16221

SQL> select group number, disk number, name,

2 failgroup, create_date, path from v$asm disk;
GROUP_NUMBER DISK NUMBER NAME FATLGROUP CREATE DA PATH
3 3 D2D FG4 13-JUL-07 /dev/raw/raw8
3 2 D2C FG3 13-JUL-07 /dev/raw/raw7
3 1 D2B FG2 13-JUL-07 /dev/raw/rawbt
3 0 D2A FG1 13-JUL-07 /dev/raw/raw5
2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
1 1 DATA 0001 DATA 0001 08-JUL-07 /dev/raw/raw2
1 0 DATA 0000 DATA 0000 08-JUL-07 /dev/raw/rawl

8 rows selected.
SQL>

However, if disk space is tight, you don’t need four members; for a high-redundancy disk
group, only three failure groups are necessary, so you drop the disk group and re-create it with
only three members:

I SQL> drop diskgroup data2;

Diskgroup dropped.

If the disk group has any database objects other than disk group metadata, you have to specify
the including contents clause in the drop diskgroup command. This is an extra safeguard to make
sure that disk groups with database objects are not accidentally dropped. Here is the command:

BT soL> create diskgroup data2 high redundancy

2 failgroup fgl disk '/dev/raw/raw5' name d2a
3 failgroup fg2 disk '/dev/raw/rawé6' name d2b
4 failgroup £g3 disk '/dev/raw/raw7' name d2c;

Diskgroup created.

SQL> select group number, disk number, name,
2 failgroup, create_date, path from v$asm disk;

Chapter 4: Physical Database Layouts and Storage Management 111

GROUP_ NUMBER DISK NUMBER NAME FAILGROUP CREATE DA PATH
0 3 13-JUL-07 /dev/raw/raw8
3 2 D2C FG3 13-JUL-07 /dev/raw/raw’7
3 1 D2B FG2 13-JUL-07 /dev/raw/rawb6
3 0 D2A FG1 13-JUL-07 /dev/raw/rawb
2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
1 1 DATA 0001 DATA 0001 08-JUL-07 /dev/raw/raw2
1 0 DATA 0000 DATA 0000 08-JUL-07 /dev/raw/rawl

8 rows selected.
SQL>

Now that the configuration of the new disk group has been completed, you can create a
tablespace in the new disk group from the database instance:

SQL> create tablespace users3 datafile '+DATA2';
Tablespace created.

Because ASM files are Oracle-Managed Files (OMF), you don’t need to specify any other
characteristics when you create the tablespace.

Disk Group Fast Mirror Resync

Mirroring the files in your disk groups improves performance and availability; when a failed disk
in a disk group is repaired and brought back online, however, the re-mirroring of the entire new
disk can be time consuming. There are occasions when a disk in a disk group needs be brought
offline because of a disk controller failure; the entire disk does not need remirroring, and only
the data changed during the failed disk’s downtime needs to be resynced. As a result, you can
use the ASM fast mirror resync feature introduced in Oracle Database 11g.

To implement fast mirror resync, you set the time window within which ASM will not
automatically drop the disk in the disk group when a transient planned or unplanned failure
occurs. During the transient failure, ASM keeps track of all changed data blocks so that when
the unavailable disk is brought back online, only the changed blocks need to be remirrored
instead of the entire disk.

To set a time window for the DATA disk group, you must first set the compatibility level of the
disk group to 11.1 or higher for both the RDBMS instance and the ASM instance (this only needs
to be done once for the disk group):

SQL> alter diskgroup data set attribute
2 'compatible.asm' = '11.1.0.0.0';

Diskgroup altered.

SQL> alter diskgroup data set attribute
2 'compatible.rdbms' = '11.1.0.0.0';

Diskgroup altered.

SQL>

112 Oracle Database 11g DBA Handbook

The only side effect to using a higher compatibility level for the RDBMS and ASM instance is
that only other instances with a version number 11.1.0.0.0 or higher can access this disk group.
Next, set the disk group attribute disk_repair_time as in this example:

B soL> alter diskgroup data set attribute
2 'disk repair time' = '2.5h';

Diskgroup altered.
SQL>

The default disk repair time is 3.6 hours, which should be more than adequate for most
planned and unplanned (transient) outages. Once the disk is back online, run this command
to notify the ASM instance that the disk DATA_0001 is back online:

B soL> alter diskgroup data online disk data_0001;
Diskgroup altered.
SQL>

This command starts the background procedure to copy all changed extents on the remaining
disks in the disk group to the disk DATA_0001 that is now back online.

Altering Disk Groups

Disks can be added and dropped from a disk group; also, most characteristics of a disk group can
be altered without re-creating the disk group or impacting user transactions on objects in the disk
group.

When a disk is added to a disk group, a rebalance operation is performed in the background
after the new disk is formatted for use in the disk group. As mentioned earlier in this chapter, the
speed of the rebalance is controlled by the initialization parameter ASM_POWER_LIMIT.

Continuing with our example in the preceding section, suppose you decide to improve the
I/O characteristics of the disk group DATA by adding the last available raw disk to the disk group,
as follows:

I SQL> alter diskgroup data

2 add failgroup dlfg3 disk '/dev/raw/raw8' name dlc;

Diskgroup altered.

The command returns immediately and the formatting and rebalancing continue in the
background. You then check the status of the rebalance operation by checking the view V$ASM_
OPERATION:

B soL> select group_number, operation, state, power, actual,
2 sofar, est work, est_rate, est minutes from v$asm operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST WORK EST RATE EST MINUTES

1 REBAL RUN 1 1 3 964 60 16

Chapter 4: Physical Database Layouts and Storage Management 113

Because the estimate for completing the rebalance operation is 16 minutes, you decide to
allocate more resources to the rebalance operation and change the power limit for this particular
rebalance operation:

SQL> alter diskgroup data rebalance power 8;
Diskgroup altered.

Checking the status of the rebalance operation confirms that the estimated time to completion
has been reduced to four minutes instead of 16:

SQL> select group number, operation, state, power, actual,
2 sofar, est work, est rate, est minutes from v$asm operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST WORK EST RATE EST MINUTES

1 REBAL RUN 8 8 16 605 118 4
About four minutes later, you check the status once more:

sSQL> /
no rows selected

Finally, you can confirm the new disk configuration from the V$ASM_DISK and V$ASM_
DISKGROUP views:

SQL> select group number, disk number, name,
2 failgroup, create_date, path from v$asm disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
1 2 DIC D1FG3 13-JUL-07 /dev/raw/raw8
3 2 D2C FG3 13-JUL-07 /dev/raw/raw7
3 1 D2B FG2 13-JUL-07 /dev/raw/rawb6
3 0 D2A FG1 13-JUL-07 /dev/raw/rawb
2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/rawd
2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
1 1 DATA 0001 DATA 0001 08-JUL-07 /dev/raw/raw2
1 0 DATA 0000 DATA 0000 08-JUL-07 /dev/raw/rawl

8 rows selected.

SQL> select group number, name, type, total mb, free mb

2 from v$asm _diskgroup;
GROUP_NUMBER NAME TYPE TOTAL_MB FREE MB
1 DATA NORMAL 28662 24814
2 RECOV NORMAL 24568 24090
3 DATAZ2 HIGH 12282 11820

SQL>

114 Oracle Database 11g DBA Handbook

ALTER DISKGROUP Command Description

alter diskgroup ... drop disk Removes a disk from a failure group within a disk group
and performs an automatic rebalance

alter diskgroup ... drop ... add Drops a disk from a failure group and adds another disk,
all in the same command

alter diskgroup ... mount Makes a disk group available to all instances

alter diskgroup ... dismount Makes a disk group unavailable to all instances

alter diskgroup ... check all Verifies the internal consistency of the disk group

TABLE 4-6 Disk Group ALTER Commands

Note that the disk group DATA is still normal redundancy, even though it has three failure
groups. However, the I/0 performance of select statements against objects in the DATA disk group
is improved due to additional copies of extents available in the disk group.

Other disk group alter commands are listed in Table 4-6.

EM Database Control and ASM Disk Groups
The EM Database Control can also be used to administer disk groups. For a database that uses
ASM disk groups, the link Disk Groups under the Administration tab brings you to a login page for
the ASM instance shown in Figure 4-20. Remember that authentication for an ASM instance uses
operating system authentication only. Figure 4-21 shows the home page for the ASM instance.
After authentication with the ASM instance, you can perform the same operations that you
performed earlier in this chapter at the command line—mounting and dismounting disk groups,
adding disk groups, adding or deleting disk group members, and so forth. Figure 4-22 shows the ASM
administration page, whereas Figure 4-23 shows the statistics and options for the disk group DATA.

ORACLE Enterprise Manager 11g Help Loqout

Database

Automatic Storage Management Login

= |Jzername |sys
= Password **********l
= Connect String dw: 1521:+A3M
=Conneck As | SYSDEA v

[[]save as Preferred Credential

Cancel) [Login |
Database | Help | Logout

Copyright € 1936, 2007, Orache, &l rghts rezerved,
About Crracle Entetprise Manager

FIGURE 4-20 EM Database Control ASM instance login page

Chapter 4: Physical Database Layouts and Storage Management 115

ORACLE Enterprise Manager 11¢g Help Logout

Database Control Database |

Logged in As 55 [SYSDEA

Automatic Storage Management: +ASM_dw
Home l Fetformance Disk Groups Configuration Lsers

Diata Retrieved July 13, 2007 1:32:24 AM 0T | Refresh

General Disk Group Usage (GB)
Current Skatus - Up
UpSince Jul 13, 2007 12:55:25 AM CDT DAT A -
Availability (%) 95,61
(Last 24 haurs)
Instance Mame +ASM DATAZ
Version 11.1.0.5.0
Host duw
Oracle Home fudlisppforaceioroducti1l.1.0fdb 1 RECOY I

AlertLlog Il 12, 2007 11:41:51 P

0.00 500 1000 1500 2000 2500 32000

Size (GE)
M Free O Internal @ dweworld
Serviced Databases
|Name |Di5k Groups Space Used (GB)| Availability | Alerts‘
iy world DATA, RECOY, DATAZ 4,29 &) 10
Alerts
Severity . [Category MName Message |A|ert Triggered
Failure Group Imbalance Partner Space Percent Disk Group DATA has Failure groups of different sizes due to a partner space Jul 13, 2007 1:20:51
Status Imbalance imbalance, change configuration. A
FIGURE 4-21 EM Database Control ASM instance home page
ORACLE Enterprise Manager 11g Help Logout

Database Control Datahase |

Logged in As 5%5 [SYSDEA

Automatic Storage Management: +ASM_dw

Home: Performance J Disk Groups l Configuration Users

(Create) [Mount &l) [Disrmournt Al

(Mount) [Dismourt] (Rebalance) [Check) [Delete)

Select Al | Select Mone
Select |Name 4 |State |Redundancy | Size (GB)| Used {GB) |Used (%) | Usable Free (GB)| Member Disks|

O [E10ATE mounTED MORMAL 27.99 376 54 6.12 3
O [E10aTe2 mounTED HIGH 11.99 045 I 388 3
O] [E1RECOY mounTED MORMAL 23.99 047 11,76 z

(& TIP The usable free space specifies the amount of space that can be safely used for data, A value sbove zero means that redundancy can be propetly

restored after & disk failure,
@ TIP Mounk &ll and Dismount All operation will anly mount and dismaunt the disk groups specified in the Auto Mounk Disk Groups parameter,

Homne Performance] Disk Groups [Configuration Users

Database | Help | Logout

Capyright @ 1998, 2007, Oracle. Al rights reserved.
Oracle, 0 Edwards, PeopleSaft, and Retek are registered rrademarks of Oracle Corporation andfor its affiliates, Other names may be rradermarks of their respective owners,

About Oracle Frkerprise Mananer

FIGURE 4-22 EM Database Control ASM disk group administration page

116 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11¢g Help Logout

Database Control Database

Logged in &s 55 [SYSDEA

Automatic Storage Management: +ASM_dw >
Disk Group: DATA

General l Performance Templates Files

General Current Disk Group Usage {GB) Disk Group Daily Space Usage History {Last 7
MName DATA Days)
State MOUNTED
Redundancy NORMAL 1%, 3.28
Tatal Size {GB) 27.99 3.36
Fending Operations 0 W Free(24.23) ’
O Irternal(0. 15) w334
Advanced Attributes O Dwi(z.61) 3.32 | Dw
=Ty
| _Edlit) 320
Database Compatibilty 10.1.0.0.0 3.2% Iy g 10 11

A5M Compatibilicy 10.1.0.0.0
2007

Member Disks

e (10— 9] (G0) (aaa)

(_Resize | [Online | (Offline | (Recover Bad Blocks | | Remowve J

Select Al | Select Mone

Select |Disk 4 |Fai|ure Group ‘Path | Read /Write Errors |5I:ate |Mnde | Size (GB)‘ Used {GB) |Used (%) ‘
O Dic D1FE3 Jdev/rawiraws 0 MORMAL ONLIME 4.00 0.54 _13.58
O |pata ooon DATA_DDOD Ideviramiraml 0 NORMAL ONLINE 12,00 1.61 _13.41
O LaTA 0001 DATA_D0O1 Jdev/ramirawz 0 MORMAL ONLIMNE 12,00 1.61 _13.41

General [Petformance Templates Eiles

FIGURE 4-23 EM Database Control ASM disk group statistics

On the page in Figure 4-23 you can see that the new disk in the disk group is significantly
smaller than the other disks in the group; this may affect the performance and waste disk space
within the disk group. To remove a failure group using EM Database Control, select the member
disk’s check box and click the Remove button.

Other EM Database Control ASM-related pages show 1/O response time for the disk group,
the templates defined for the disk group, the initialization parameters in effect for this ASM
instance, and more.

Using the asmcmd Command
The asmemd utility, new to Oracle 10g Release 2, is a command-line utility that provides you an
easy way to browse and maintain objects within ASM disk groups by using a command set similar
to Linux shell commands such as Is and mkdir. The hierarchical nature of objects maintained by
the ASM instance lends itself to a command set similar to what you would use to browse and
maintain files in a Linux file system.

Before you can use asmemd, you must ensure that the environment variables ORACLE_BASE,
ORACLE_HOME, and ORACLE_SID are set to point to the ASM instance; for the ASM instance
used in this chapter, these variables are set as follows:

I ORACLE BASE=/ull/app/oracle
ORACLE HOME=/u0l/app/oracle/product/11.1.0/db 1
ORACLE_SID=+ASM

Chapter 4: Physical Database Layouts and Storage Management 117

In addition, you must be logged into the operating system as a user in the dba group, since
the asmemd utility connects to the database with SYSDBA privileges. The operating system user
is usually oracle but can be any other user in the dba group.

You can use asmemd one command at a time by using the format asmemd command, or
you can start asmemd interactively by typing just asmemd at the Linux shell prompt. To get a
list of available commands, use help from the ASMCMD> prompt, and help command at
the ASMCMD> prompt for more details. Table 4-7 lists the asmcmd commands and a brief
description of their purpose; the asmemd commands available only in Oracle Database 11g
are noted in the last column.

When you start asmemd, you start out at the root node of the ASM instance’s file system;
unlike in a Linux file system, the root node is designated by a plus sign (+) instead of a leading
forward slash (/), although subsequent directory levels use a forward slash. In this example, you

asmcmd Command 11gOnly Description

cd Change the directory to the specified directory.

cp Y Copy files between ASM disk groups, both in the same
instance and in remote instances.

du Recursively displays total disk space usage for the current
directory and all subdirectories.

exit Terminate asmemd and return to the operating system
shell prompt.

find Find all occurrences of the name (using wildcards as
well), starting with the specified directory.

help List the asmemd commands.

Is List the contents of the current directory.

[sct Lists information about current ASM client databases.

[sdg Lists all disk groups and their attributes.

[sdsk Y Lists all disks visible to this ASM instance.

md_backup Y Create metadata backup script for specified disk groups.

md_restore Y Restore disk groups from a backup.

mkalias Creates an alias for system-generated ASM filenames.

mkdir Create an ASM directory.

pwd Display the current ASM directory.

remap Y Repair a range of corrupted or damaged physical blocks
on a disk.

rm Remove ASM files or directories.

rmalias Remove an ASM alias, but not the target of the alias.

TABLE 4-7 asmcmd Command Summary

118 Oracle Database 11g DBA Handbook

start asmemd and query the existing disk groups, along with the total disk space used within all
disk groups:

I [oracle@dw ~]$ asmcmd

ASMCMD> 1s -1

State Type Rebal Unbal Name
MOUNTED NORMAL N N DATA/
MOUNTED HIGH N N DATAZ2/
MOUNTED NORMAL N N RECOV/
ASMCMD> du
Used MB Mirror used MB

2143 4399
ASMCMD> pwd
+
ASMCMD>

As with the Linux shell Is command, you can append -I to get a more detailed listing of the
objects retrieved by the command. The Is command shows the three disk groups in the ASM
instance used throughout this chapter, +DATA, +DATA2, and +RECOV.

Note also that the du command only shows the used disk space and total disk space used
across mirrored disk groups; to get the amount of free space in each disk group, use the Isdg
command instead.

In this example, you want to find all files that have the string user in the filename:

B AsMcMD> pwd
+
ASMCMD> find . user*
+DATA/DW/DATAFILE/USERS.259.627432977
+DATA/DW/DATAFILE/USERS2.267.627782171
+DATA/purch/users.dbf
+DATA2/DW/DATAFILE/USERS3.256.627786775
ASMCMD> 1ls -1 +DATA/purch/users.dbf
Type Redund Striped Time Sys Name

N users.dbf =>

+DATA/DW/DATAFILE/USERS.259.627432977

ASMCMD>

Note the line with +DATA/purch/users.dbf: the find command finds all ASM objects; in this
case, it finds an alias as well as datafiles that match the pattern.

Finally, you can perform file backups to external file systems or even other ASM instances. In
this example, you use the cp command to back up the database’s SPFILE to the /tmp directory on
the host’s file system:

I AsMCMD> pwd

+data/DW
ASMCMD> 1s
CONTROLFILE/
DATAFILE/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/

Chapter 4: Physical Database Layouts and Storage Management 119

spfiledw.ora

ASMCMD> cp spfiledw.ora /tmp/BACKUPspfiledw.ora

source +data/DW/spfiledw.ora

target /tmp/BACKUPspfiledw.ora

copying file(s)...

file, /tmp/BACKUPspfiledw.ora, copy committed.

ASMCMD> exit

[oracle@dw ~]$ 1ls -1 /tmp/BACKUP*

—rW-r—---- 1 oracle oinstall 2560 Jul 13 09:47 /tmp/BACKUPspfiledw.ora
[oracle@dw ~]$

This example also shows how all database files for the database dw are stored within the ASM
file system. It looks like they are stored on a traditional host file system, but instead managed by
ASM, providing built-in performance and redundancy features (optimized for use with Oracle
Database 11g) making the DBA’s life a bit easier when it comes to datafile management.

This page intentionally left blank

PART

Database Management

This page intentionally left blank

CHAPTER

Developing and
Implementing
Applications

124 Oracle Database 11g DBA Handbook

anaging application development can be a difficult process. From a DBA’s
perspective, the best way to manage the development process is to become an
integral part of teams involved in the process. In this chapter, you will learn the
£ guidelines for migrating applications into databases and the technical details
needed for implementation, including the sizing of database objects.

This chapter focuses on the design and creation of applications that use the database. These
activities should be integrated with the database-planning activities described in Chapter 3 and
Chapter 4. The following chapters in this part of the book address the monitoring and tuning
activities that follow the database creation.

Implementing an application in a database by merely running a series of create table commands
fails to integrate the creation process with the other major areas (planning, monitoring, and
tuning). The DBA must be involved in the application development process in order to correctly
design the database that will support the end product. The methods described in this chapter will
also provide important information for structuring the database monitoring and tuning efforts.

The first section of this chapter addresses overall design and implementation considerations
that directly address performance. The following sections focus on implementation details such as
resource management, using stored outlines, sizing tables and indexes, quiescing the database for
maintenance activities, and managing packaged applications.

Tuning by Design: Best Practices

At least 50 percent of the time—conservatively—performance problems are designed into an
application. During the design of the application and the related database structures, the application
architects may not know all the ways in which the business will use the application data over
time. As a result, there may be some components whose performance is poor during the initial
release, whereas other problems will appear later as the business usage of the application changes
and increases.

In some cases, the fix will be relatively straightforward—changing an initialization parameter,
adding an index, or rescheduling large operations. In other cases, the problem cannot be fixed
without altering the application’s architecture. For example, an application may be designed to
heavily reuse functions for all data access—so that functions call other functions, which call
additional functions, even to perform the simplest database actions. As a result, a single database
call may result in tens of thousands of function calls and database accesses. Such an application
will usually not scale well; as more users are added to the system, the CPU burden of the number
of executions per user will slow the performance for the individual users. Tuning the individual
SQL statements executed as part of that application may yield little performance benefit; the
statements themselves may be well-tuned already. Rather, it is the sheer number of executions
that leads to the performance problem.

The following best practices may seem overly simplistic, but they are violated over and over
in database applications, and those violations directly result in performance problems. There are
always exceptions to the rules—the next change to your software or environment may allow you
to violate the rules without affecting your performance. In general, though, following these rules
will allow you to meet performance requirements as the application usage increases.

Do As Little As Possible

End users do not care, in general, if the underlying database structures are fully normalized to
Third Normal Form or if they are laid out in compliance with object-oriented standards. Users
want to perform a business process, and the database application should be a tool that helps that

Chapter 5: Developing and Implementing Applications 125

business process complete as quickly as possible. The focus of your design should not be the
achievement of theoretical design perfection; it should always be on the end user’s ability to do
his or her job. Therefore, you should simplify the processes involved at every step in the application.

This can be a difficult point to negotiate with application development teams. If application
development teams or enterprise architects insist on perfectly normalized data models, DBAs
should point out the number of database steps involved in even the simplest transaction. For
example, inserts for a complex transaction (such as a line item for an invoice) may involve many
code table lookups as well as multiple inserts. For a single user this may not present a problem,
but with many concurrent users this design may lead to performance issues or locking issues.
From a performance-planning perspective, inserts should involve as few tables as possible, and
queries should retrieve data that is already stored in a format that is as close as possible to the
final format requested by the users. Fully normalized databases and object-oriented designs tend
to require a high number of joins during complex queries. Although you should strive to maintain
a manageable data model, the first emphasis should be on the functionality of the application and
its ability to meet the business’s performance needs.

In Your Application Design, Strive to Eliminate Logical Reads
In the past, there was a heavy focus on eliminating physical reads—and although this is still a
good idea, no physical reads occur unless logical reads require them.

Let’s take a simple example. Select the current time from DUAL. If you select down to the
second level, the value will change 86,400 times per day. Yet there are application designers who
repeatedly perform this query, executing it millions of times per day. Such a query likely performs
few physical reads throughout the day. Therefore, if you are focused solely on tuning the physical
I/O, you would likely disregard it. However, it can significantly impact the performance of the
application. How? By using the CPU resources available. Each execution of the query will force
Oracle to perform work, using processing power to find and return the correct data. As more and
more users execute the command repeatedly, you may find that the number of logical reads used
by the query exceeds all other queries. In some cases, multiple processors on the server are
dedicated to servicing repeated small queries of this sort. If multiple users need to read the
same data, you should store it in a table or in a package variable.

NOTE
“ As of Oracle Database 10g, the DUAL table is an internal table, not a

physical table, and therefore does not generate consistent gets as long
as you don’t use * as the column list in a query referencing DUAL.

Consider the following real-world example. A programmer wanted to implement a pause
in a program, forcing it to wait 30 seconds between two steps. Because the performance of
the environment would not be consistent over time, the programmer coded the routine in the
following format (shown in pseudocode):

I perform Step 1
select SysDate from DUAL into a StartTime variable

begin loop
select SysDate from DUAL in a CurrentTime variable;
Compare CurrentTime with the StartTime variable value.
If 30 seconds have passed, exit the loop;
Otherwise repeat the loop, calculating SysDate again.
end loop
Perform Step 2.

126 Oracle Database 11g DBA Handbook

Is this a reasonable approach? Absolutely not! It will do what the developer wanted, but at a
significant cost to the application. What's more, there is nothing a database administrator can do
to improve its performance. In this case, the cost will not be due to I/O activity—the DUAL table
will stay in the instance’s memory area—but rather due to CPU activity. Every time this program
is run, by every user, the database will spend 30 seconds consuming as many CPU resources as
the system can support. In this particular case the select SysDate from DUAL query accounts
for over 40 percent of all the CPU time used by the application. All of that CPU time is wasted.
Tuning the database initialization parameters will not solve the problem. Tuning the individual
SQL statement will not help; the application design must be revised to eliminate the needless
execution of commands. For instance, in this case the developer could have used a sleep command
at the operating system level or within a PL/SQL program using the DBMS_LOCK.SLEEP() procedure
to enforce the same behavior without the database accesses.

For those who favor tuning based on the buffer cache hit ratio, this database has a hit ratio of
almost 100 percent due to the high number of completely unnecessary logical reads without related
physical reads. The buffer cache hit ratio compares the number of logical reads to the number of
physical reads; if 10 percent of the logical reads require physical reads, the buffer cache hit ratio
is 90 percent. Low hit ratios identify databases that perform a high number of physical reads;
extremely high hit ratios such as found in this example may identify databases that perform
an excessive number of logical reads. You must look beyond the buffer cache hit ratio to the
commands that are generating the logical reads and the physical reads.

In Your Application Design, Strive to Avoid Trips to the Database

Remember that you are tuning an application, not a query. When tuning database operations, you
may need to combine multiple queries into a single procedure so that the database can be visited
once rather than multiple times for each screen. This bundled-query approach is particularly
relevant for “thin-client” applications that rely on multiple application tiers. Look for queries that
are interrelated based on the values they return, and see if there are opportunities to transform them
into single blocks of code. The goal is not to make a monolithic query that will never complete;
the goal is to avoid doing work that does not need to be done. In this case, the constant back-
and-forth communication between the database server, the application server, and the end user’s
computer is targeted for tuning.

This problem is commonly seen on complex data-entry forms in which each field displayed
on the screen is populated via a separate query. Each of those queries is a separate trip to the
database. As with the example in the previous section, the database is forced to execute large
numbers of related queries. Even if each of those queries is tuned, the burden from the number
of commands—multiplied by the number of users—will consume the CPU resources available
on the server. Such a design may also impact the network usage, but the network is seldom the
problem—the issue is the number of times the database is accessed.

Within your packages and procedures, you should strive to eliminate unnecessary database
accesses. Store commonly needed values in local variables instead of repeatedly querying the
database. If you don’t need to make a trip to the database for information, don’t make it. That sounds
simple, but you would be amazed at how often application developers fail to consider this advice.

There is no initialization parameter that can make this change take effect. It is a design issue
and requires the active involvement of developers, designers, DBAs, and application users in the
application performance planning and tuning process.

Chapter 5: Developing and Implementing Applications 127

For Reporting Systems, Store the Data the Way the Users Will Query It

If you know the queries that will be executed—such as via parameterized reports—you should
strive to store the data so that Oracle will do as little work as possible to transform the format of
the data in your tables into the format presented to the user. This may require the creation and
maintenance of materialized views or reporting tables. That maintenance is, of course, extra work
for the database and DBA to perform—but it is performed in batch mode and does not directly
affect the end user. The end user, on the other hand, benefits from the ability to perform the query
faster. The database as a whole will perform fewer logical and physical reads because the accesses
to the base tables to populate and refresh the materialized views are performed infrequently when
compared to the end-user queries against the views.

Avoid Repeated Connections to the Database

Opening a database connection may take more time than the commands you execute within
that connection. If you need to connect to the database, keep the connection open and reuse
the connection. See Chapter 15 for more information on Oracle Net and optimizing database
connections.

One application designer took normalization to the extreme, moving all code tables into their
own database. As a result, most operations in the order-processing system repeatedly opened
database links to access the code tables, thus severely hampering the performance of the application.
Again, tuning the database initialization parameters is not going to lead to the greatest performance
benefit; the application is slow by design.

Use the Right Indexes

In an effort to eliminate physical reads, some application developers create numerous indexes
on every table. Aside from their impact on data load times, many of the indexes may never be
needed to support queries. In OLTP applications, you should not use bitmap indexes; if a column
has few distinct values, you should consider leaving it unindexed. The optimizer supports “skip-
scan” index accesses, so it may choose an index on a set of columns even if the leading column
of the index is not a limiting condition for the query.

Do It As Simply As Possible

Once you have eliminated the performance costs of unnecessary logical reads, unneeded database
trips, unmanaged connections, and inappropriate indexes, take a look at the commands that remain.

Go Atomic

You can use SQL to combine many steps into one large query. In some cases, this may benefit
your application—you can create stored procedures and reuse the code and thus reduce the
number of database trips performed. However, you can take this too far, creating large queries
that fail to complete quickly enough. These queries commonly include multiple sets of grouping
operations, inline views, and complex multirow calculations against millions of rows.

If you are performing batch operations, you may be able to break such a query into its atomic
components, creating temporary tables to store the data from each step. If you have an operation
that takes hours to complete, you almost always can find a way to break it into smaller
component parts. Divide and conquer the performance problem.

128 Oracle Database 11g DBA Handbook

For example, a batch operation may combine data from multiple tables, perform joins and
sorts, and then insert the result into a table. On a small scale, this may perform satisfactorily. On
a large scale, you may have to divide this operation into multiple steps:

1. Create a work table. Insert rows into it from one of the source tables for the query,
selecting only those rows and columns that you care about later in the process.

Create a second work table for the columns and rows from the second table.

Create any needed indexes on the work tables. Note that all the steps to this point can be
parallelized—the inserts, the queries of the source tables, and the creation of the indexes.

4. Perform the join, again parallelized. The join output may go into another work table.
5. Perform any sorts needed. Sort as little data as possible.

6. Insert the data into the target table.

Why go through all these steps? Because you can tune them individually, you may be able
to tune them to complete much faster individually than Oracle can complete them as a single
command. For batch operations, you should consider making the steps as simple as possible.
You will need to manage the space allocated for the work tables, but this approach can generate
significant benefits to your batch-processing performance.

Eliminate Unnecessary Sorts

As part of the example in the preceding section, the sort operation was performed last. In general,
sort operations are inappropriate for OLTP applications. Sort operations do not return any rows

to the user until the entire set of rows is sorted. Row operations, on the other hand, return rows to
the user as soon as those rows are available.

Consider the following simple test: Perform a full table scan of a large table. As soon as the
query starts to execute, the first rows are displayed. Now, perform the same full table scan but add
an order by clause on an unindexed column. No rows will be displayed until all the rows have
been sorted. Why does this happen? Because for the second query Oracle performs a SORT
ORDER BY operation on the results of the full table scan. Because it is a set operation, the set
must be completed before the next operation is performed.

Now, imagine an application in which there are many queries executed within a procedure.
Each of the queries has an order by clause. This turns into a series of nested sorts—no operation
can start until the one before it completes.

Note that union operations perform sorts. If it is appropriate for the business logic, use a union
all operation in place of a union, because a union all does not perform a sort.

NOTE

“ A union all operation does not eliminate duplicate rows from the
result set, so it may generate more rows—and therefore different
results—than a union.

Eliminate the Need to Query Undo Segments

When performing a query, Oracle will need to maintain a read-consistent image of the rows
queried. If a row is modified by another user, the database will need to query the undo segment
to see the row as it existed at the time your query began. Application designs that call for queries
to frequently access data that others may be changing at the same time force the database to do
more work—it has to look in multiple locations for one piece of data. Again, this is a design

Chapter 5: Developing and Implementing Applications 129

issue. DBAs may be able to configure the undo segment areas to reduce the possibility of queries
encountering “Snapshot too old” errors, but correcting the fundamental problem requires a
change to the application design.

Tell the Database What It Needs to Know

Oracle’s optimizer relies on statistics when it evaluates the thousands of possible paths to take
during the execution of a query. How you manage those statistics can significantly impact the
performance of your queries.

Keep Your Statistics Updated

How often should you gather statistics? With each major change to the data in your tables, you
should reanalyze the tables. If you have partitioned the tables, you can analyze them on a
partition-by-partition basis. As of Oracle Database 10g, you can use the Automatic Statistics
Gathering feature to automate the collection of statistics. By default, that process gathers statistics
during a maintenance window from 10 p.m to 6 A.m. each night and all day on weekends. Of
course, manual statistics gathering is still available when you have volatile tables that are being
dropped or deleted during the day, or when bulk-loaded tables increase in size by more than
10 percent.

Because the analysis job is usually a batch operation performed after hours, you can tune it
by improving sort and full table scan performance at the session level. If you are performing the
analysis manually, increase the settings for the DB_FILE_MULTIBLOCK_READ_COUNT parameter
at the session level or the PGA_AGGRECGATE_TARGET parameter at the system level to gathering
the statistics. If you are not using PGA_AGGREGATE_TARGET or do not want to modify a system-
wide setting, increase SORT_AREA_SIZE (which is modifiable at the session level) instead. The
result will be enhanced performance for the sorts and full table scans the analysis performs.

CAUTION
Increasing the DB_FILE_MULTIBLOCK_READ_COUNT in a RAC

database environment can cause performance problems when too
many blocks are shipped across the interconnect.

Hint Where Needed

In most cases, the cost-based optimizer (CBO) selects the most efficient execution path for queries.
However, you may have information about a better path. You may give Oracle a hint to influence
the join operations, the overall query goal, the specific indexes used, or the parallelism of the query.

Maximize the Throughput in the Environment

In an ideal environment, there is never a need to query information outside the buffer cache; all
of the data stays in memory all of the time. Unless you are working with a very small database,

however, this is not a realistic approach. In this section, you will see guidelines for maximizing

the throughput of the environment.

Use Disk Caching

If Oracle cannot find the data it needs in the buffer cache or PGA, it performs a physical read. But
how many of the physical reads actually reach the disk? If you use disk caching, you may be able
to prevent 90 percent or more of the access requests for the most-needed blocks. If the database
buffer cache hit ratio is 90 percent, you are accessing the disks 10 percent of the time—and if the

130 Oracle Database 11g DBA Handbook

disk cache prevents 90 percent of those requests from reaching the disk, your effective hit ratio is
99 percent. Oracle’s internal statistics do not reflect this improvement; you will need to work with
your disk administrators to configure and monitor the disk cache.

Use a Larger Database Block Size

There is only one reason not to use the largest block size available in your environment for a new
database: if you cannot support a greater number of users performing updates and inserts against
a single block. Other than that, increasing the database block size should improve the performance
of almost everything in your application. Larger database block sizes help keep indexes from
splitting levels and help keep more data in memory longer. If you are experiencing buffer busy
waits during inserts, increase the settings for the freelists parameter setting at the object level (if
you are using Automatic Segment Space Management, the freelists parameter does not apply).

Design to Throughput, Not Disk Space

Take an application that is running on eight 9GB disks and move it to a single 72GB disk. Will the
application run faster or slower? In general, it will run slower because the throughput of the single
disk is unlikely to be equal to the combined throughput of the eight separate disks. Rather than
designing your disk layout based on the space available (a common method), design it based on
the throughput of the disks available. You may decide to use only part of each disk. The remaining
space on the disk will not be used by the production application unless the throughput available
for that disk improves.

Avoid the Use of the Temporary Segments

Whenever possible, perform all sorts in memory. Any operation that writes to the temporary
segments is potentially wasting resources. Oracle uses temporary segments when the SORT_
AREA_SIZE parameter (or PGA_AGGREGATE_TARGET, if it is used) does not allocate enough
memory to support the sorting requirements of operations. Sorting operations include index
creations, order by clauses, statistics gathering, group by operations, and some joins. As noted
earlier in this chapter, you should strive to sort as few rows as possible. When performing the
sorts that remain, perform them in memory.

Favor Fewer, Faster Processors

Given the choice, use a small number of fast processors in place of a larger number of slower
processors. The operating system will have fewer processing queues to manage and will generally
perform better.

Divide and Conquer Your Data

If you cannot avoid performing expensive operations on your database, you can attempt to split
the work into more manageable chunks. Often you can severely limit the number of rows acted
on by your operations, substantially improving performance.

Use Partitions

Partitions can benefit end users, DBAs, and application support personnel. For end users, there
are two potential benefits: improved query performance and improved availability for the database.
Query performance may improve because of partition elimination. The optimizer knows what
partitions may contain the data requested by a query. As a result, the partitions that will not
participate are eliminated from the query process. Because fewer logical and physical reads

are needed, the query should complete faster.

Chapter 5: Developing and Implementing Applications 131

NOTE
“ The Partitioning Option is an extra-cost option for the Enterprise
Edition of the database software.

The availability improves because of the benefits partitions generate for DBAs and application
support personnel. Many administrative functions can be performed on single partitions, allowing
the rest of the table to be unaffected. For example, you can truncate a single partition of a table.
You can split a partition, move it to a different tablespace, or switch it with an existing table (so
that the previously independent table is then considered a partition). You can gather statistics on
one partition at a time. All these capabilities narrow the scope of administrative functions, reducing
their impact on the availability of the database as a whole.

Use Materialized Views

You can use materialized views to divide the types of operations users perform against your tables.
When you create a materialized view, you can direct users to query the materialized view directly
or you can rely on Oracle’s query rewrite capability to redirect queries to the materialized view.
As a result, you will have two copies of the data—one that services the input of new transactional
data, and a second (the materialized view) that services queries. As a result, you can take one of
them offline for maintenance without affecting the availability of the other. Also, the materialized
view can pre-join tables and pre-generate aggregations so that user queries perform as little work
as possible.

Use Parallelism

Almost every major operation can be parallelized—including queries, inserts, object creations,
and data loads. The parallel options allow you to involve multiple processors in the execution of
a single command, effectively dividing the command into multiple smaller coordinated commands.
As a result, the command may perform better. You can specify a degree of parallelism at the object
level and can override it via hints in your queries.

Test Correctly

In most development methodologies, application testing has multiple phases, including module
testing, full system testing, and performance stress testing. Many times, the full system test and
performance stress test are not performed adequately due to time constraints as the application
nears its delivery deadline. The result is that applications are released into production without any
way to guarantee that the functionality and performance of the application as a whole will meet
the needs of the users. This is a serious and significant flaw and should not be tolerated by any
user of the application. Users do not need just one component of the application to function
properly; they need the entire application to work properly in support of a business process.
If they cannot do a day’s worth of business in a day, the application fails.

This is a key tenet regarding identifying the need for tuning: If the application slows the speed
of the business process, it should be tuned. The tests you perform must be able to determine if the
application will hinder the speed of the business process under the expected production load.

Test with Large Volumes of Data

As described earlier in this chapter, objects within the database function differently after they have
been used for some time. For example, a table’s pctfree and pctused settings may make it likely that
blocks will be only half-used or rows will be chained. Each of these scenarios causes performance
problems that will only be seen after the application has been used for some time.

132 Oracle Database 11g DBA Handbook

A further problem with data volume concerns indexes. As a B-tree index grows in size, it may
split internally—the level of entries within the index increases. As a result, you can picture the
new level as being an index within the index. The additional level in the index increases the
negative effect of the index on data load rates. You will not see this impact until after the index is
split. Applications that work acceptably for the first week or two in production only to suddenly
falter after the data volume reaches critical levels do not support the business needs. In testing,
there is no substitute for production data loaded at production rates while the tables already
contain a substantial amount of data.

Test with Many Concurrent Users
Testing with a single user does not reflect the expected production usage of most database
applications. You must be able to determine if concurrent users will encounter deadlocks, data
consistency issues, or performance problems. For example, suppose an application module uses
a work table during its processing. Rows are inserted into the table, manipulated, and then queried.
A separate application module does similar processing—and uses the same table. When executed
at the same time, the two processes attempt to use each other’s data. Unless you are testing with
multiple users executing multiple application functions simultaneously, you may not discover this
problem and the business data errors it will generate.

Testing with many concurrent users will also help to identify areas in the application where
users frequently use undo segments to complete their queries, thus impacting performance.

Test the Impact of Indexes on Your Load Times

Every insert, update, or delete of an indexed column may be slower than the same transaction
against an unindexed table. There are some exceptions—sorted data has much less of an impact,
for example—but the rule is generally true. The impact is dependent on your operating
environment, the data structures involved, and the degree to which the data is sorted.

How many rows per second can you insert in your environment? Perform a series of simple
tests. Create a table with no indexes and insert a large number of rows into it. Repeat the tests to
reduce the impact of physical reads on the timing results. Calculate the number of rows inserted
per second. In most environments you can insert tens of thousands of rows per second into the
database. Perform the same test in your other database environments so you can identify any that
are significantly different from the others.

Now consider your application. Are you able to insert rows into your tables via your application
at anywhere near the rate you just calculated? Many applications run at less than 5 percent of the
rate the environment will support. They are bogged down by unneeded indexes or the type of
code design issues described earlier in this chapter. If your application’s load rate decreases—say,
from 40 rows per second to 20 rows per second—your tuning focus should not be solely on how
that decrease occurred but also on how the application managed to get only 40 rows per second
inserted in an environment that supports thousands of rows inserted per second.

Make All Tests Repeatable

Most regulated industries have standards for tests. Their standards are so reasonable that all testing
efforts should follow them. Among the standards is that all tests must be repeatable. To be compliant
with the standards, you must be able to re-create the data set used, the exact action performed,
the exact result expected, and the exact result seen and recorded. Pre-production tests for validation
of the application must be performed on the production hardware. Moving the application to
different hardware requires retesting the application. The tester and the business users must sign
off on all tests.

Chapter 5: Developing and Implementing Applications 133

Most people, on hearing those restrictions, would agree that they are good steps to take in
any testing process. Indeed, your business users may be expecting that the people developing the
application are following such standards, even if they are not required by the industry. But are
they followed? And if not, then why not? The two commonly cited reasons for not following such
standards are time and cost. Such tests require planning, personnel resources, business user
involvement, and time for execution and documentation. Testing on production-caliber hardware
may require the purchase of additional servers. Those are the most evident costs—but what is the
business cost of failing to perform such tests? The testing requirements for validated systems in
some health industries were implemented because those systems directly impact the integrity of
critical products such as the safety of the blood supply. If your business has critical components
served by your application (and if it does not, then why are you building the application?), you
must consider the costs of insufficient, rushed testing and communicate those potential costs to
the business users. The evaluation of the risks of incorrect data or unacceptably slow performance
must involve the business users. In turn, that may lead to an extended deadline to support proper
testing.

In many cases, the rushed testing cycle occurs because a testing standard was not in place at
the start of the project. If there is a consistent, thorough, and well-documented testing standard in
place at the enterprise level when the project starts, the testing cycle will be shorter when it is
finally executed. Testers will have known long in advance that repeatable data sets will be needed.
Templates for tests will be available. If there is an issue with any test result, or if the application
needs to be retested following a change, the test can be repeated. Also, the application users
will know that the testing is robust enough to simulate the production usage of the application.

In addition, the testing environment must support automation of tasks that will be automated

in production, especially if the developers used many manual processes in the development
environment. If the system fails the tests for performance reasons, the problem may be a design
issue (as described in the previous sections) or a problem with an individual query.

Standard Deliverables

How do you know if an application is ready to be migrated to a production environment? The
application development methodology must clearly define, both in format and in level of detail,
the required deliverables for each stage of the life cycle. These should include specifications for
each of the following items:

Entity relationship diagram

Physical database diagram

Space requirements

Tuning goals for queries and transaction processing
Security requirements

Data requirements

Query execution plans
B Acceptance test procedures

In the following sections, you will see descriptions of each of these items.

134 Oracle Database 11g DBA Handbook

Entity Relationship Diagram

The entity relationship (E-R) diagram illustrates the relationships that have been identified among
the entities that make up the application. E-R diagrams are critical for providing an understanding
of the goals of the system. They also help to identify interface points with other applications and
to ensure consistency in definitions across the enterprise.

Physical Database Diagram

A physical database diagram shows the physical tables generated from the entities and the columns
generated from the defined attributes in the logical model; most, if not all, data modeling tools
support the automatic translation of a logical database diagram to the physical database design. A
physical database diagramming tool is usually capable of generating the DDL necessary to create
the application’s objects.

You can use the physical database diagram to identify tables that are most likely to be
involved in transactions. You should also be able to identify which tables are commonly used
together during a data entry or query operation. You can use this information to effectively plan
the distribution of these tables (and their indexes) across the available physical devices to reduce
the amount of I/O contention encountered.

In data warehousing applications, the physical database diagram should show the aggregations
and materialized views accessed by user queries. Although they contain derived data, they are
critical components of the data access path and must be documented.

Space Requirements

The space requirements deliverable should show the initial space requirements for each database
table and index. The recommendations for the proper size of tables, clusters, and indexes are shown
in the “Sizing Database Objects” section later in this chapter.

Tuning Goals for Queries and Transaction Processing

Changes to the application design may have significant impact on the application’s performance.
Application design choices may also directly affect your ability to tune the application. Because
application design has such a great effect on the DBA’s ability to tune its performance, the DBA
must be involved in the design process.

You must identify the performance goals of a system before it goes into production. The role
of expectation in perception cannot be overemphasized. If the users have an expectation that
the system will be at least as fast as an existing system, anything less will be unacceptable. The
estimated response time for each of the most-used components of the application must be defined
and approved.

It is important during this process to establish two sets of goals: reasonable goals and “stretch”
goals. Stretch goals represent the results of concentrated efforts to go beyond the hardware and
software constraints that limit the system'’s performance. Maintaining two sets of performance
goals helps to focus efforts on those goals that are truly mission-critical versus those that are
beyond the scope of the core system deliverables. In terms of the goals, you should establish
control boundaries for query and transaction performance; the application performance will be
judged to be “out of control” if the control boundaries are crossed.

Security Requirements

The development team must specify the account structure the application will use, including the
ownership of all objects in the application and the manner in which privileges will be granted.
All roles and privileges must be clearly defined. The deliverables from this section will be used to

Chapter 5: Developing and Implementing Applications 135

generate the account and privilege structure of the production application (see Chapter 9 for a full
review of Oracle’s security capabilities).

Depending on the application, you may need to specify the account usage for batch accounts
separately from that of online accounts. For example, the batch accounts may use the database’s
automatic login features, whereas the online users have to manually sign in. Your security plans
for the application must support both types of users.

Like the space requirements deliverable, security planning is an area in which the DBA’s
involvement is critical. The DBA should be able to design an implementation that meets the
application’s needs while fitting in with the enterprise database security plan.

Data Requirements
The methods for data entry and retrieval must be clearly defined. Data-entry methods must be
tested and verified while the application is in the test environment. Any special data-archiving
requirements of the application must also be documented because they will be application specific.
You must also describe the backup and recovery requirements for the application. These
requirements can then be compared to the enterprise database backup plans (see Chapter 11 for
guidelines). Any database recovery requirements that go beyond the site’s standard will require
modifying the site’s backup standard or adding a module to accommodate the application’s needs.

Query Execution Plans

Execution plans are the steps that the database will go through while executing queries. They are
generated via the explain plan or set autotrace commands, as described in Chapter 8. Recording
the execution plans for the most important queries against the database will aid in planning
the index usage and tuning goals for the application. Generating them prior to production
implementation will simplify tuning efforts and identify potential performance problems before
the application is released. Generating the explain plans for your most important queries will
also facilitate the process of performing code reviews of the application.

If you are implementing a third-party application, you may not have visibility to all the SQL
commands the application is generating. As described in Chapter 8, you can Oracle’s automated
tuning and monitoring utilities to identify the most resource-intensive queries performed between
two points in time; many of the new automated tuning features introduced in Oracle Database
10g are enhanced in Oracle Database 11g, such as the capability to store Automatic Workload
Repository (AWR) baselines in addition to automatically create SQL profiles.

Acceptance Test Procedures

Developers and users should very clearly define what functionality and performance goals must
be achieved before the application can be migrated to production. These goals will form the
foundation of the test procedures that will be executed against the application while it is in the
test environment.

The procedures should also describe how to deal with unmet goals. The procedures should
very clearly list the functional goals that must be met before the system can move forward. A
second list of non-critical functional goals should also be provided. This separation of functional
capabilities will aid in both resolving scheduling conflicts and structuring appropriate tests.

NOTE
“ As part of acceptance testing, all interfaces to the application should

be tested and their input and output verified.

136 Oracle Database 11g DBA Handbook

Resource Management and Stored Outlines

You can use stored outlines to migrate execution paths between databases, and you can use the
Database Resource Manager to control the allocation of system resources among database users.
Stored outlines and resource management are important components in a managed development
environment. The Database Resource Manager gives DBAs more control over the allocation of
system resources than is possible with operating system controls alone.

NOTE
“ As of Oracle 10g, you can use SQL profiles to further refine the
execution path selected.

Implementing the Database Resource Manager

You can use the Database Resource Manager to allocate percentages of system resources to
classes of users and jobs. For example, you could allocate 75 percent of the available CPU
resources to your online users, leaving 25 percent to your batch users. To use the Database
Resource Manager, you will need to create resource plans, resource consumer groups, and
resource plan directives.

Prior to using the Database Resource Manager commands, you must create a “pending area” for
your work. To create a pending area, use the CREATE_PENDING_AREA procedure of the DBMS_
RESOURCE_MANAGER package. When you have completed your changes, use the VALIDATE_
PENDING_AREA procedure to check the validity of the new set of plans, subplans, and directives.
You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear the changes (via
CLEAR_PENDING_AREA). The procedures that manage the pending area do not have any input
variables, so a sample creation of a pending area uses the following syntax:

BN cxccute DBMS RESOURCE MANAGER.CREATE PENDING AREA () ;

If the pending area is not created, you will receive an error message when you try to create a
resource plan.

To create a resource plan, use the CREATE_PLAN procedure of the DBMS_RESOURCE_
MANAGER package. The syntax for the CREATE_PLAN procedure is shown in the following listing:

I CREATE _PLAN

(plan IN VARCHAR2,

comment IN VARCHAR2,

cpu_mth IN VARCHARZ2 DEFAULT 'EMPHASIS',
active sess pool mth IN VARCHAR2 DEFAULT

'ACTIVE SESS POOL ABSOLUTE',
parallel degree limit mth 1IN VARCHAR2 DEFAULT
'PARALLEL DEGREE_ LIMIT ABSOLUTE',
queueing mth IN VARCHARZ DEFAULT 'FIFO TIMEOUT')

When you create a plan, give the plan a name (in the plan variable) and a comment. By
default, the CPU allocation method will use the “emphasis” method, allocating CPU resources
based on percentage. The following example shows the creation of a plan called DEVELOPERS:

I execute DBMS RESOURCE MANAGER.CREATE PLAN -
(Plan => 'DEVELOPERS', -
Comment => 'Developers, in Development database');

Chapter 5: Developing and Implementing Applications 137

NOTE
“ The hyphen (-) character is a continuation character in SQL*Plus,
allowing a single command to span multiple lines.

In order to create and manage resource plans and resource consumer groups, you must have
the ADMINISTER_RESOURCE_MANAGER system privilege enabled for your session. DBAs have
this privilege with the with admin option. To grant this privilege to non-DBAs, you must execute
the GRANT_SYSTEM_PRIVILEGE procedure of the DBMS_RESOURCE_MANAGER_PRIVS
package. The following example grants the user MARTHAG the ability to manage the Database
Resource Manager:

I execute DBMS RESOURCE MANAGER PRIVS.GRANT SYSTEM PRIVILEGE -
(grantee _name => 'MarthaG', -
privilege_name => 'ADMINISTER_RESOURCE_MANAGER', -
admin option => TRUE);

You can revoke MARTHAG's privileges via the REVOKE_SYSTEM_PRIVILEGE procedure of the
DBMS_RESOURCE_MANAGER package.

With the ADMINISTER_RESOURCE_MANAGER privilege enabled, you can create a resource
consumer group using the CREATE_CONSUMER_GROUP procedure within DBMS_RESOURCE _
MANAGER. The syntax for the CREATE_CONSUMER_GROUP procedure is shown in the
following listing:

I CREATE_CONSUMER_GROUP
(consumer group IN VARCHARZ2,
comment IN VARCHARZ2,
cpu_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN')

You will be assigning users to resource consumer groups, so give the groups names that are
based on the logical divisions of your users. The following example creates two groups—one for
online developers and a second for batch developers:

I execute DBMS_RESOURCE MANAGER.CREATE CONSUMER GROUP -
(Consumer Group => 'Online developers', -
Comment => 'Online developers');

execute DBMS RESOURCE MANAGER.CREATE CONSUMER GROUP -
(Consumer Group => 'Batch developers', -
Comment => 'Batch developers');

Once the plan and resource consumer groups are established, you need to create resource
plan directives and assign users to the resource consumer groups. To assign directives to a plan,
use the CREATE_PLAN_DIRECTIVE procedure of the DBMS_RESOURCE_MANAGER package.
The syntax for the CREATE_PLAN_DIRECTIVE procedure is shown in the following listing:

B CREATE _PLAN DIRECTIVE

(plan IN VARCHARZ2,
group_or subplan IN VARCHAR2,
comment IN VARCHARZ2,
cpu_pl IN NUMBER DEFAULT NULL,

cpu_p2 IN NUMBER DEFAULT NULL,

138 Oracle Database 11g DBA Handbook

cpu_p3 IN NUMBER DEFAULT NULL,
cpu_p4 IN NUMBER DEFAULT NULL,
cpu_pb5 IN NUMBER DEFAULT NULL,
cpu_p6 IN NUMBER DEFAULT NULL,

cpu p7 IN NUMBER DEFAULT NULL,
cpu_p8 IN NUMBER DEFAULT NULL,
active sess pool pl IN NUMBER DEFAULT UNLIMITED,
queueing pl IN NUMBER DEFAULT UNLIMITED,
parallel degree limit pl IN NUMBER DEFAULT NULL,
Switch_group IN VARCHARZ DEFAULT NULL,
switch time IN NUMBER DEFAULT UNLIMITED,
switch estimate IN BOOLEAN DEFAULT FALSE,
max_est exec time IN NUMBER DEFAULT UNLIMITED,
undo_pool IN NUMBER DEFAULT UNLIMITED,
max idle time IN NUMBER DEFAULT NULL,

max idle time blocker IN NUMBER DEFAULT NULL,
switch time in call IN NUMBER DEFAULT NULL) ;

The multiple CPU variables in the CREATE_PLAN_DIRECTIVE procedure support the creation
of multiple levels of CPU allocation. For example, you could allocate 75 percent of all your CPU
resources (level 1) to your online users. Of the remaining CPU resources (level 2), you could
allocate 50 percent to a second set of users. You could split the remaining 50 percent of resources
available at level 2 to multiple groups at a third level. The CREATE_PLAN_DIRECTIVE procedure
supports up to eight levels of CPU allocations.

The following example shows the creation of the plan directives for the ONLINE_DEVELOPERS
and BATCH_DEVELOPERS resource consumer groups within the DEVELOPERS resource plan:

I execute DBMS RESOURCE MANAGER.CREATE PLAN DIRECTIVE -
(Plan => 'DEVELOPERS', -

Group or subplan => 'ONLINE DEVELOPERS', -

Comment => 'online developers', -

Cpu pl => 75, -

Cpu p2=> 0, -

Parallel degree limit pl => 12);

execute DBMS RESOURCE_MANAGER.CREATE PLAN DIRECTIVE -
(Plan => 'DEVELOPERS', -
Group or subplan => 'BATCH DEVELOPERS', -
Comment => 'Batch developers', -
Cpu pl => 25, -
Cpu p2 => 0,
Parallel degree limit pl => 6);

In addition to allocating CPU resources, the plan directives restrict the parallelism of
operations performed by members of the resource consumer group. In the preceding example,
batch developers are limited to a degree of parallelism of 6, reducing their ability to consume
system resources. Online developers are limited to a degree of parallelism of 12.

To assign a user to a resource consumer group, use the SET_INITIAL_CONSUMER_GROUP
procedure of the DBMS_RESOURCE_MANAGER package. The syntax for the SET_INITIAL_
CONSUMER_GROUP procedure is shown in the following listing:

Chapter 5: Developing and Implementing Applications 139

SET INITIAL CONSUMER GROUP
(user IN VARCHARZ2,
consumer group IN VARCHAR2)

If a user has never had an initial consumer group set via the SET_INITIAL_CONSUMER_GROUP
procedure, the user is automatically enrolled in the resource consumer group named DEFAULT_
CONSUMER_GROUP.

To enable the Resource Manager within your database, set the RESOURCE_MANAGER_PLAN
database initialization parameter to the name of the resource plan for the instance. Resource plans
can have subplans, so you can create tiers of resource allocations within the instance. If you do
not set a value for the RESOURCE_MANAGER_PLAN parameter, resource management is not
performed in the instance.

You can dynamically alter the instance to use a different resource allocation plan using the
RESOURCE_MANAGER_PLAN initialization parameter: for example, you could create a resource
plan for your daytime users (DAYTIME_USERS) and a second for your batch users (BATCH_
USERS). You could create a job that each day executes this command at 6:00 A.m.:

alter system set resource manager plan = 'DAYTIME USERS';
Then at a set time in the evening, you could change consumer groups to benefit the batch users:
alter system set resource manager plan = 'BATCH USERS';

The resource allocation plan for the instance will thus be altered without needing to shut down
and restart the instance.

When using multiple resource allocation plans in this fashion, you need to make sure you
don’t accidentally use the wrong plan at the wrong time. For example, if the database is down
during a scheduled plan change, your job that changes the plan allocation may not execute. How
will that affect your users? If you use multiple resource allocation plans, you need to consider the
impact of using the wrong plan at the wrong time. To avoid such problems, you should try to
minimize the number of resource allocation plans in use.

In addition to the examples and commands shown in this section, you can update existing
resource plans (via the UPDATE_PLAN procedure), delete resource plans (via DELETE_PLAN), and
cascade the deletion of a resource plan plus all its subplans and related resource consumer groups
(DELETE_PLAN_CASCADE). You can update and delete resource consumer groups via
the UPDATE_CONSUMER_GROUP and DELETE_CONSUMER_GROUP procedures, respectively.
Resource plan directives may be updated via UPDATE_PLAN_DIRECTIVE and deleted via
DELETE_PLAN_DIRECTIVE.

When you are modifying resource plans, resource consumer groups, and resource plan
directives, you should test the changes prior to implementing them. To test your changes, create a
pending area for your work. To create a pending area, use the CREATE_PENDING_AREA procedure
of the DBMS_RESOURCE_MANAGER package. When you have completed your changes, use the
VALIDATE_PENDING_AREA procedure to check the validity of the new set of plans, subplans,
and directives. You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear
the changes (via CLEAR_PENDING_AREA). The procedures that manage the pending area do
not have any input variables, so a sample validation and submission of a pending area uses the
following syntax:

execute DBMS RESOURCE MANAGER.VALIDATE PENDING AREA();
execute DBMS RESOURCE MANAGER.SUBMIT PENDING AREA();

140 Oracle Database 11g DBA Handbook

Switching Consumer Groups

Three of the parameters in the CREATE_PLAN_DIRECTIVE procedure allow sessions to switch
consumer groups when resource limits are met. As shown in the previous section, the parameters for
CREATE_PLAN_DIRECTIVE include SWITCH_GROUP, SWITCH_TIME, and SWITCH_ESTIMATE.

The SWITCH_TIME value is the time, in seconds, a job can run before it is switched to another
consumer group. The default SWITCH_TIME value is NULL (unlimited). You should set the
SWITCH_GROUP parameter value to the group the session will be switched to once the switch
time limit is reached. By default, SWITCH_GROUP is NULL. If you set SWITCH_GROUP to
the value ‘CANCEL_SQL, the current call will be canceled when the switch criteria is met. If the
SWITCH_GROUP value is ‘KILL_SESSION’, the session will be killed when the switch criteria is met.

You can use the third parameter, SWITCH_ESTIMATE, to tell the database to switch the consumer
group for a database call before the operation even begins to execute. If you set SWITCH_ESTIMATE
to TRUE, Oracle will use its execution time estimate to automatically switch the consumer group
for the operation instead of waiting for it to reach the SWITCH_TIME value.

You can use the group-switching features to minimize the impact of long-running jobs within
the database. You can configure consumer groups with different levels of access to the system
resources and customize them to support fast jobs as well as long-running jobs—the ones that
reach the switch limit will be redirected to the appropriate groups before they even execute.

Implementing Stored Outlines

As you migrate from one database to another, the execution paths for your queries may change.
Your execution paths may change for several reasons:

You may have enabled different optimizer features in the different databases.
The statistics for the queried tables may differ in the databases.

The frequency with which statistics are gathered may differ among the databases.

The databases may be running different versions of the Oracle kernel.

The effects of these differences on your execution paths can be dramatic, and they can have
a negative impact on your query performance as you migrate or upgrade your application. To
minimize the impact of these differences on your query performance, you can use a feature called
a stored outline.

A stored outline stores a set of hints for a query. Those hints will be used every time the query is
executed. Using the stored hints will increase the likelihood that the query will use the same execution
path each time. Hints decrease the impact of database moves on your query performance. You can
view the outlines and related hints via the USER_OUTLINES and USER_OUTLINE_HINTS views.

To start creating hints for all queries, create custom categories of outlines and use the category
name as a value of the CREATE_STORED_OUTLINES parameter in the database initialization file,
as shown here:

B CREATE STORED OUTLINES = development

In this example, outlines will be stored for queries within the DEVELOPMENT category.
You must have the CREATE ANY OUTLINE system privilege in order to create an outline. Use
the create outline command to create an outline for a query, as shown in the following listing:

Chapter 5: Developing and Implementing Applications 141

B create outline YTD SALES
for category DEVELOPMENT

on

select Year to Date Sales
from SALES

where region = 'SOUTH'

and period = 1;

NOTE
“ If you do not specify a name for your outline, the outline will be given

a system-generated name.

If you have set CREATE_STORED_OUTLINES to a category name in your initialization file,
Oracle will create stored outlines for your queries; using the create outline command gives you
more control over the outlines that are created. Unless you're sure that you want to create stored
outlines for the entire database, set this parameter at the session level instead of the system level.

NOTE
" You can create outlines for DML commands and for create table as
select commands.

Once an outline has been created, you can alter it. For example, you may need to alter the
outline to reflect significant changes in data volumes and distribution. You can use the rebuild
clause of the alter outline command to regenerate the hints used during query execution, as
shown next:

I alter outline YTD SALES rebuild;

You can also rename an outline via the rename clause of the alter outline command, as
shown here:

B z2lter outline YTD SALES rename to YTD SALES REGION;

You can change the category of an outline via the change category clause, as shown in the
following example:

BT alter outline YTD SALES REGION change category to DEFAULT;

To manage stored outlines, use the DBMS_OUTLN package, which gives you the following
capabilities:

B Drop outlines that have never been used
Drop outlines within a specific category
Move outlines from one category to another
Create outlines for specific statements

Update outlines to the current version’s signature

Reset the usage flag for an outline

142 Oracle Database 11g DBA Handbook

Each of these capabilities has a corresponding procedure within DBMS_OUTLN. To drop
outlines that have never been used, execute the DROP_UNUSED procedure, as shown in the
following example:

B execute DBMS OUTLN.DROP UNUSED;

You can clear the “used” setting of an outline via the CLEAR_USED procedure. Pass the name
of the outline as the input variable to CLEAR_USED:

B execute DBMS OUTLN.CLEAR USED ('YTD SALES REGION');

To drop all the outlines within a category, execute the DROP_BY_CAT procedure. The
DROP_BY_CAT procedure has the name of the category as its only input parameter. The
following example drops all the outlines within the DEVELOPMENT category:

B execute DBMS OUTLN.DROP BY CAT ('DEVELOPMENT');

To reassign outlines from an old category to a new category, use the UPDATE_BY_CAT
procedure, as shown in the following example:

B execute OUTLN PKG.UPDATE BY CAT -
(oldcat => 'DEVELOPMENT', -
newcat => 'TEST'");

To drop a specific outline, use the drop outline command.

If you have imported outlines generated in an earlier release, use the UPDATE_SIGNATURES
procedure of DBMS_OUTLN to ensure the signatures are compatible with the current release’s
computation algorithm.

Editing Stored Outlines
You can use DBMS_OUTLN_EDIT to edit the stored outlines. The procedures within DBMS_
OUTLN_EDIT are detailed in the following table:

Procedure Description

CHANGE_JOIN_POS Changes the join position for the hint identified by outline
name and hint number to the position specified. Inputs are
name, hintno, and newpos.

CREATE_EDIT_TABLES Creates outline editing tables in the user’s schema.
DROP_EDIT_TABLES Drops the outline editing tables in the user’s schema.
GENERATE_SIGNATURE Generates a signature for the specified SQL text.

REFRESH_PRIVATE_OUTLINE Refreshes the in-memory copy of the outline, synchronizing it
with the edits made.

NOTE
“ As of Oracle 10g, you no longer need to execute the CREATE_EDIT_

TABLES procedure because the edit tables are available as temporary
tables in the SYSTEM schema. The procedure is still available,
however, for backward compatibility.

You can use private outlines, which are seen only within your current session. Changes made
to a private outline do not affect any other users. To enable private outline editing, set the USE_

Chapter 5: Developing and Implementing Applications 143

PRIVATE_OUTLINES initialization parameter to TRUE. Use the REFRESH_PRIVATE_OUTLINE
procedure to have your changes take effect for the in-memory versions of the outlines.

Using SQL Profiles

As of Oracle 10g, you can use SQL profiles to further refine the SQL execution plans chosen by
the optimizer. SQL profiles are particularly useful when you are attempting to tune code that you
do not have direct access to (for example, within a packaged application). The SQL profile consists
of statistics that are specific to the statement, allowing the optimizer to know more about the exact
selectivity and cost of the steps in the execution plan.

SQL profiling is part of the automatic tuning capability that | will describe in Chapter 8. Once
you accept a SQL profile recommendation, it is stored in the data dictionary. As with stored outlines,
you can use a category attribute to control its usage. See Chapter 8 for further details on the use of
the automatic tools for detection and diagnosis of SQL performance issues.

Sizing Database Objects

Choosing the proper space allocation for database objects is critical. Developers should begin
estimating space requirements before the first database objects are created. Afterward, the space
requirements can be refined based on the actual usage statistics. In the following sections, you
will see the space estimation methods for tables, indexes, and clusters. You'll also see methods
for determining the proper settings for pctfree and pctused.

NOTE
“ You can enable Automatic Segment Space Management when you

create a tablespace; you cannot enable this feature for existing
tablespaces. If you are using Automatic Segment Space Management,
Oracle ignores the pctused, freelists, and freelist groups parameters.

Why Size Objects?

You should size your database objects for three reasons:

B To preallocate space in the database, thereby minimizing the amount of future work
required to manage objects’ space requirements

B To reduce the amount of space wasted due to overallocation of space

B To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all these goals by following the sizing methodology shown in the following
sections. This methodology is based on Oracle’s internal methods for allocating space to database
objects. Rather than rely on detailed calculations, the methodology relies on approximations that
will dramatically simplify the sizing process while simplifying the long-term maintainability of the
database.

The Golden Rule for Space Calculations

Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

144 Oracle Database 11g DBA Handbook

In the following section, you’ll see how to simplify the space-estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the default storage values for a dictionary managed tablespace or the extent sizes
for locally managed tablespaces.

NOTE
“ In an Oracle 10g database, you should be using locally managed

tablespaces. If you have upgraded from a prior release that used
dictionary-managed tablespaces, you should replace them with
locally managed tablespaces.

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

B Oracle only allocates whole blocks, not parts of blocks.
B Oracle allocates sets of blocks rather than individual blocks.

B Oracle may allocate larger or smaller sets of blocks, depending on the available free
space in the tablespace.

Your goal should be to work with Oracle’s space-allocation methods instead of against them.
If you use consistent extent sizes, you can largely delegate the space allocation to Oracle even in
a dictionary-managed tablespace.

The Impact of Extent Size on Performance

There is no direct performance benefit gained by reducing the number of extents in a table. In
some situations (such as in Parallel Query environments), having multiple extents in a table can
significantly reduce I/O contention and enhance your performance. Regardless of the number of
extents in your tables, they need to be properly sized; as of Oracle Database 10g, you should rely
on automatic (system-managed) extent allocation if the objects in the tablespace are of varying
sizes. Unless you know the precise amount of space you need for each object and the number
and size of extents, use autoallocate when you create a tablespace, as in this example:

- create tablespace usersl?2
datafile '+DATA' size 100m
extent management local autoallocate;

The extent management local clause is the default for create tablespace; autoallocate is the
default for tablespaces with local extent management.

Oracle reads data from tables in two ways: by RowID (usually immediately following an
index access) and via full table scans. If the data is read via RowlID, the number of extents in the
table is not a factor in the read performance. Oracle will read each row from its physical location
(as specified in the RowID) and retrieve the data.

If the data is read via a full table scan, the size of your extents can impact performance to a
very small degree. When reading data via a full table scan, Oracle will read multiple blocks at a
time. The number of blocks read at a time is set via the DB_FILE_MULTIBLOCK_READ_COUNT
database initialization parameter and is limited by the operating system’s I/O buffer size. For
example, if your database block size is 8KB and your operating system’s I/O buffer size is 128KB,

Chapter 5: Developing and Implementing Applications 145

you can read up to 16 blocks per read during a full table scan. In that case, setting DB_FILE_
MULTIBLOCK_READ_COUNT to a value higher than 16 will not affect the performance of the
full table scans.

Estimating Space Requirements for Tables

As of Oracle Database 10g, you can use the CREATE_TABLE_COST procedure of the DBMS_
SPACE package to estimate the space required by a table. The procedure determines the space
required for a table based on attributes such as the tablespace storage parameters, the tablespace
block size, the number of rows, and the average row length. The procedure is valid for both
dictionary-managed and locally managed tablespaces.

TIP

“ When you create a new table using Oracle Enterprise Manager DB
Control, you can click the Estimate Table Size button to estimate table
size for a given estimated row count.

There are two versions of the CREATE_TABLE_COST procedure (it is overloaded so you can
use the same procedure both ways). The first version has four input variables: tablespace_name,
avg_row_size, row_count, and pct_free. Its output variables are used_bytes and alloc_bytes.
The second version'’s input variables are tablespace_name, colinfos, row_count, and pct_free;
its output variables are used_bytes and alloc_bytes. Descriptions of the variables are provided
in the following table:

Parameter Description

tablespace_name The tablespace in which the object will be created.

avg_row_size The average length of a row in the table.

colinfos The description of the columns.

row_count The anticipated number of rows in the table.

pct_free The pctfree setting for the table.

used_bytes The space used by the table’s data. This value includes the overhead due

to the pctfree setting and other block features.

alloc_bytes The space allocated to the table’s data, based on the tablespace characteristics.
This value takes the tablespace extent size settings into account.

For example, if you have an existing tablespace named USERS, you can estimate the space
required for a new table in that tablespace. In the following example, the CREATE_TABLE_COST
procedure is executed with values passed for the average row size, the row count, and the pctfree
setting. The used_bytes and alloc_bytes variables are defined and are displayed via the DBMS_
OUTPUT.PUT_LINE procedure:

- declare
calc used bytes NUMBER;
calc alloc bytes NUMBER;
begin
DBMS SPACE.CREATE TABLE COST (
tablespace name => 'USERS',

146 Oracle Database 11g DBA Handbook

avg_row_size => 100,
row_count => 5000,
pct free => 10,
used bytes => calc used bytes,
alloc bytes => calc alloc bytes
)i
DBMS OUTPUT.PUT LINE ('Used bytes: '||calc used bytes);
DBMS OUTPUT.PUT LINE('Allocated bytes: '||calc alloc bytes);
end;

/

The output of this PL/SQL block will display the used and allocated bytes calculated for these
variable settings. You can easily calculate the expected space usage for multiple combinations of
space settings prior to creating the table. Here is the output from the preceding example:

I Used bytes: 589824
Allocated bytes: 589824

PL/SQL procedure successfully completed.

NOTE
“ You must use the set serveroutput on command to enable the script’s

output to be displayed within a SQL*Plus session.
Estimating Space Requirements for Indexes
As of Oracle Database 10g, you can use the CREATE_INDEX_COST procedure of the DBMS_
SPACE package to estimate the space required by an index. The procedure determines the space
required for a table based on attributes such as the tablespace storage parameters, the tablespace
block size, the number of rows, and the average row length. The procedure is valid for both
dictionary-managed and locally managed tablespaces.

For index space estimations, the input variables include the DDL commands executed to
create the index and the name of the local plan table (if one exists). The index space estimates
rely on the statistics for the related table. You should be sure those statistics are correct before

starting the space-estimation process; otherwise, the results will be skewed.
The variables for the CREATE_INDEX_COST procedure are described in the following table:

Parameter Description

ddl The create index command

used_bytes The number of bytes used by the index’s data
alloc_bytes The number of bytes allocated for the index’s extents
plan_table The plan table to use (the default is NULL)

Because the CREATE_INDEX_COST procedure bases its results on the table’s statistics, you
cannot use this procedure until the table has been created, loaded, and analyzed. The following
example estimates the space required for a new index on the BOOKSHELF table. The tablespace
designation is part of the create index command passed to the CREATE_INDEX_COST procedure
as part of the ddl variable value.

Chapter 5: Developing and Implementing Applications 147

- declare
calc used bytes NUMBER;
calc _alloc bytes NUMBER;
begin
DBMS SPACE.CREATE INDEX COST (
ddl => 'create index EMP_FN on EMPLOYEES '||
' (FIRST_NAME) tablespace USERS',
used bytes => calc used bytes,
alloc bytes => calc alloc bytes
)i

DBMS OUTPUT.PUT LINE ('Used bytes = '||calc used bytes);
DBMS OUTPUT.PUT LINE ('Allocated bytes = '||calc alloc bytes);
end;

/

The output of the script will show the used and allocated bytes values for the proposed index
for the employee’s first name:

B Used bytes = 749
Allocated bytes = 65536

PL/SQL procedure successfully completed.

Estimating the Proper Value for pctfree
The pctfree value represents the percentage of each data block that is reserved as free space. This
space is used when a row that has already been stored in that data block grows in length, either by
updates of previously NULL fields or by updates of existing values to longer values. The size of a
row can increase (and therefore move the row within a block) during an update when a NUMBER
column increases its precision or a VARCHAR2 column increases in length.

There is no single value for pctfree that will be adequate for all tables in all databases. To simplify
space management, choose a consistent set of pctfree values:

B For indexes whose key values are rarely changed: 2
B For tables whose rows seldom change: 2
B For tables whose rows frequently change: 10 to 30

Why maintain free space in a table or index even if the rows seldom change? Oracle needs
space within blocks to perform block maintenance functions. If there is not enough free space
available (for example, to support a large number of transaction headers during concurrent
inserts), Oracle will temporarily allocate part of the block’s pctfree area. You should choose a
pctfree value that supports this allocation of space. To reserve space for transaction headers in
insert-intensive tables, set the initrans parameter to a non-default value. In general, your pctfree
area should be large enough to hold several rows of data.

NOTE
“ Oracle automatically allows up to 255 concurrent update transactions

for any data block, depending on the available space in the block.

148 Oracle Database 11g DBA Handbook

Because pctfree is tied to the way in which updates occur in an application, determining the
adequacy of its setting is a straightforward process. The pctfree setting controls the number of
records that are stored in a block in a table. To see if pctfree has been set correctly, first determine
the number of rows in a block. You can use the DBMS_STATS package to gather statistics. If the
pctfree setting is too low, the number of chained rows will steadily increase. You can monitor the
database’s V$SYSSTAT view (or the Automatic Workload Repository) for increasing values of the
“table fetch continued row” action; these indicate the need for the database to access multiple
blocks for a single row.

NOTE

“ When rows are moved due to inadequate space in the pctfree area,
the move is called a row migration. Row migration will impact the
performance of your transactions.

The DBMS_STATS procedure, while powerful, does not collect statistics on chained rows. You
can still use the analyze command, which is otherwise deprecated in favor of DBMS_STATS, to
reveal chained rows, as in this example:

B analyze table employees list chained rows;

NOTE
“ For indexes that will support a large number of inserts, pctfree may

need to be as high as 50 percent.

Reverse Key Indexes
In a reverse key index, the values are stored backward—for example, a value of 2201 is stored as
1022. If you use a standard index, consecutive values are stored near each other. In a reverse key
index, consecutive values are not stored near each other. If your queries do not commonly perform
range scans and you are concerned about I/O contention (in a RAC database environment) or
concurrency contention (buffer busy waits statistic in ADDM) in your indexes, reverse key indexes
may be a tuning solution to consider. When sizing a reverse key index, follow the same method
used to size a standard index, as shown in the prior sections of this chapter.

There is a downside to reverse key indexes, however: they need a high value for pctfree to
allow for frequent inserts, and must be rebuilt often, more often than a standard B-tree index.

Sizing Bitmap Indexes

If you create a bitmap index, Oracle will dynamically compress the bitmaps generated. The
compression of the bitmap may result in substantial storage savings. To estimate the size of a bitmap
index, estimate the size of a standard (B-tree) index on the same columns using the methods provided
in the preceding sections of this chapter. After calculating the space requirements for the B-tree
index, divide that size by 10 to determine the most likely maximum size of a bitmap index for
those columns. In general, bitmap indexes will be between 2 and 10 percent of the size of a
comparable B-tree index for a bitmap index with low cardinality. The size of the bitmap index
will depend on the variability and number of distinct values in the indexed columns; if a bitmap
index is created on a high-cardinality column, the space occupied by a bitmap index may exceed
the size of a B-tree index on the same column!

Chapter 5: Developing and Implementing Applications 149

NOTE
“ Bitmap indexes are only available in Oracle Enterprise Edition and

Standard Edition One.

Sizing Index-Organized Tables
An index-organized table is stored sorted by its primary key. The space requirements of an index-
organized table closely mirror those of an index on all of the table’s columns. The difference in
space estimation comes in calculating the space used per row, because an index-organized table
does not have RowlIDs.

The following listing gives the calculation for the space requirement per row for an index-
organized table (note that this storage estimate is for the entire row, including its out-of-line storage):

B Row length for sizing = Average row length
+ number of columns
+ number of LOB columns + 2 header
bytes

Enter this value as the row length when using the CREATE_TABLE_COST procedure for the index-
organized table.

Sizing Tables That Contain Large Objects (LOBs)

LOB data (in BLOB or CLOB datatypes) is usually stored apart from the main table. You can use
the lob clause of the create table command to specify the storage attributes for the LOB data, such
as a different tablespace. In the main table, Oracle stores a LOB locator value that points to the
LOB data. When the LOB data is stored out of line, between 36 and 86 bytes of control data

(the LOB locator) remain inline in the row piece.

Oracle does not always store the LOB data apart from the main table. In general, the LOB
data is not stored apart from the main table until the LOB data and the LOB locator value total
more than 4000 bytes. Therefore, if you will be storing short LOB values, you need to consider
their impact on the storage of your main table. If your LOB values are less than 4000 characters,
you may be able to use VARCHAR2 datatypes instead of LOB datatypes for the data storage.

To explicitly specify where the LOB will reside if its size is 4000 bytes or less, use the disable
storage in row or enable storage in row clause in the LOB storage clause of the create table
statement. If a LOB is stored inline, and its value starts out with a size less than 4000 bytes, it will
migrate to out of line. If an out of line LOB'’s size becomes less than 4000 bytes, it stays out of line.

Sizing Partitions

You can create multiple partitions of a table. In a partitioned table, multiple separate physical
partitions constitute the table. For example, a SALES table may have four partitions: SALES_NORTH,
SALES_SOUTH, SALES_EAST, and SALES_WEST. You should size each of those partitions using
the table-sizing methods described earlier in this chapter. You should size the partition indexes
using the index-sizing methods shown earlier in this chapter.

Using Temporary Tables

You can create temporary tables to hold temporary data during your application processing.
The table’s data can be specific to a transaction or maintained throughout a user’s session.
When the transaction or session completes, the data is truncated from the table.

150 Oracle Database 11g DBA Handbook

To create a temporary table, use the create global temporary table command. To automatically
delete the rows at the end of the transaction, specify on commit delete rows, as shown here:

| create global temporary table MY TEMP TABLE

(Name VARCHAR? (25),
Street VARCHAR2 (25),
Ccity VARCHAR? (25))

on commit delete rows;

You can then insert rows into MY_TEMP_TABLE during your application processing. When you
commit, Oracle will truncate MY_TEMP_TABLE. To keep the rows for the duration of your session,
specify on commit preserve rows instead.

From the DBA perspective, you need to know if your application developers are using this
feature. If they are, you need to account for the space required by their temporary tables during
their processing. Temporary tables are commonly used to improve processing speeds of complex
transactions, so you may need to balance the performance benefit against the space costs. You
can create indexes on temporary tables to further improve processing performance, again at the
cost of increased space usage.

NOTE
“ Temporary tables and their indexes do not allocate any space until

the first insert into them occurs. When they are no longer in use, their
space is deallocated. In addition, if you are using PGA_AGGREGATE
TARGET, Oracle will try to create the tables in memory and will only
write them to temporary space if necessary.

Supporting Tables Based on Abstract Datatypes

User-defined datatypes, also known as abstract datatypes, are a critical part of object-relational
database applications. Every abstract datatype has related constructor methods used by developers
to manipulate data in tables. Abstract datatypes define the structure of data—for example, an
ADDRESS_TY datatype may contain attributes for address data, along with methods for manipulating
that data. When you create the ADDRESS_TY datatype, Oracle will automatically create a constructor
method called ADDRESS_TY. The ADDRESS_TY constructor method contains parameters that
match the datatype’s attributes, facilitating inserts of new values into the datatype’s format. In
the following sections, you will see how to create tables that use abstract datatypes, along with
information on the sizing and security issues associated with that implementation.

You can create tables that use abstract datatypes for their column definitions. For example,
you could create an abstract datatype for addresses, as shown here:

I create type ADDRESS TY as object
(Street VARCHAR2 (50),

City VARCHARZ2 (25),
State CHAR(2),
Zip NUMBER) ;

Once the ADDRESS_TY datatype has been created, you can use it as a datatype when
creating your tables, as shown in the following listing:

Chapter 5: Developing and Implementing Applications 151

create table CUSTOMER
(Name VARCHAR2 (25),
Address ADDRESS TY) ;

When you create an abstract datatype, Oracle creates a constructor method for use during
inserts. The constructor method has the same name as the datatype, and its parameters are the
attributes of the datatype. When you insert records into the CUSTOMER table, you need to use
the ADDRESS_TY datatype’s constructor method to insert Address values, as shown here:

insert into CUSTOMER values
("Joe',ADDRESS TY('My Street', 'Some City', 'ST', 10001));

In this example, the insert command calls the ADDRESS_TY constructor method in order to insert
values into the attributes of the ADDRESS_TY datatype.

The use of abstract datatypes increases the space requirements of your tables by eight bytes
for each datatype used. If a datatype contains another datatype, you should add eight bytes for
each of the datatypes.

Using Object Views
The use of abstract datatypes may increase the complexity of your development environment. When
you query the attributes of an abstract datatype, you must use a syntax different from the syntax
you use against tables that do not contain abstract datatypes. If you do not implement abstract
datatypes in all your tables, you will need to use one syntax for some of your tables and a separate
syntax for other tables—and you will need to know ahead of time which queries use abstract
datatypes.

For example, the CUSTOMER table uses the ADDRESS_TY datatype described in the previous
section:

create table CUSTOMER
(Name VARCHARZ2 (25),
Address ADDRESS TY) ;

The ADDRESS_TY datatype, in turn, has four attributes: Street, City, State, and Zip. If you want
to select the Street attribute value from the Address column of the CUSTOMER table, you may write
the following query:

select Address.Street from CUSTOMER;

However, this query will not work. When you query the attributes of abstract datatypes, you
must use correlation variables for the table names. Otherwise, there may be an ambiguity regarding
the object being selected. To query the Street attribute, use a correlation variable (in this case, “C")
for the CUSTOMER table, as shown in the following example:

select C.Address.Street from CUSTOMER C;

As shown in this example, you need to use correlation variables for queries of abstract datatype
attributes even if the query only accesses one table. There are therefore two features of queries
against abstract datatype attributes: the notation used to access the attributes and the correlation
variables requirement. In order to implement abstract datatypes consistently, you may need to alter
your SQL standards to support 100-percent usage of correlation variables. Even if you use correlation

152 Oracle Database 11g DBA Handbook

variables consistently, the notation required to access attribute values may cause problems as
well, because you cannot use a similar notation on tables that do not use abstract datatypes.

Object views provide an effective compromise solution to this inconsistency. The CUSTOMER
table created in the previous examples assumes that an ADDRESS_TY datatype already exists. But
what if your tables already exist? What if you had previously created a relational database application
and are trying to implement object-relational concepts in your application without rebuilding and
re-creating the entire application? What you would need is the ability to overlay object-oriented
(O0) structures such as abstract datatypes on existing relational tables. Oracle provides object
views as a means for defining objects used by existing relational tables.

If the CUSTOMER table already exists, you could create the ADDRESS_TY datatype and use
object views to relate it to the CUSTOMER table. In the following listing, the CUSTOMER table is
created as a relational table, using only the normally provided datatypes:

I create table CUSTOMER

(Name VARCHAR2 (25) primary key,
Street VARCHARZ2 (50) ,

City VARCHAR2 (25),

State CHAR (2),

Zip NUMBER) ;

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY datatype. However, for consistency, that
datatype should be applied to the CUSTOMER table as well. The following examples will use the
ADDRESS_TY datatype created in the preceding section.

To create an object view, use the create view command. Within the create view command,
specify the query that will form the basis of the view. The code for creating the CUSTOMER_OV
object view on the CUSTOMER table is shown in the following listing:

B create view CUSTOMER OV (Name, Address) as
select Name,
ADDRESS TY (Street, City, State, Zip)
from CUSTOMER;

The CUSTOMER_OV view will have two columns: the Name and the Address columns (the latter
is defined by the ADDRESS_TY datatype). Note that you cannot specify object as an option within
the create view command.

Several important syntax issues are presented in this example. When a table is built on existing
abstract datatypes, you select column values from the table by referring to the names of the columns
(such as Name) instead of their constructor methods. When creating the object view, however,
you refer to the names of the constructor methods (such as ADDRESS_TY) instead. Also, you can
use where clauses in the query that forms the basis of the object view. You can therefore limit the
rows that are accessible via the object view.

If you use object views, you as the DBA will administer relational tables the same way as you
did before. You will still need to manage the privileges for the datatypes (see the following section
of this chapter for information on security management of abstract datatypes), but the table and
index structures will be the same as they were before the creation of the abstract datatypes. Using
the relational structures will simplify your administration tasks while allowing developers to access
objects via the object views of the tables.

You can also use object views to simulate the references used by row objects. Row objects are
rows within an object table. To create an object view that supports row objects, you need to first
create a datatype that has the same structure as the table, as shown here:

Chapter 5: Developing and Implementing Applications 153

create or replace type CUSTOMER TY as object

(Name VARCHARZ2 (25),
Street VARCHAR2 (50),
City VARCHARZ2 (25),
State CHAR (2),
Zip NUMBER) ;

Next, create an object view based on the CUSTOMER_TY type while assigning object
identifier, or OID, values to the rows in CUSTOMER:

create view CUSTOMER OV of CUSTOMER TY
with object identifier (Name) as

select Name, Street, City, State, Zip
from CUSTOMER;

The first part of this create view command gives the view its name (CUSTOMER_OV) and tells
Oracle that the view’s structure is based on the CUSTOMER_TY datatype. An object identifier
identifies the row object. In this object view, the Name column will be used as the OID.

If you have a second table that references CUSTOMER via a foreign key or primary key
relationship, you can set up an object view that contains references to CUSTOMER_OV. For example,
the CUSTOMER_CALL table contains a foreign key to the CUSTOMER table, as shown here:

create table CUSTOMER CALL

(Name VARCHAR2 (25),
Call Number NUMBER,
Call Date DATE,

constraint CUSTOMER CALL PK
primary key (Name, Call Number),
constraint CUSTOMER CALL FK foreign key (Name)
references CUSTOMER (Name)) ;

The Name column of CUSTOMER_CALL references the same column in the CUSTOMER table.
Because you have simulated OIDs (called pkOIDs) based on the primary key of CUSTOMER, you
need to create references to those OIDs. Oracle provides an operator called MAKE_REF that creates
the references (called pkREFs). In the following listing, the MAKE_REF operator is used to create
references from the object view of CUSTOMER_CALL to the object view of CUSTOMER:

create view CUSTOMER CALL OV as
select MAKE REF (CUSTOMER OV, Name) Name,
Call Number,
Call Date
from CUSTOMER CALL;

Within the CUSTOMER_CALL_OV view, you tell Oracle the name of the view to reference
and the columns that constitute the pkREF. You could now query CUSTOMER_OV data from
within CUSTOMER_CALL_OV by using the DEREF operator on the Customer_ID column:

select DEREF (CCOV.Name)
from CUSTOMER CALL OV CCOV
where Call Date = TRUNC (SysDate);

You can thus return CUSTOMER data from your query without directly querying the CUSTOMER
table. In this example, the Call_Date column is used as a limiting condition for the rows returned
by the query.

154 Oracle Database 11g DBA Handbook

Whether you use row objects or column objects, you can use object views to shield your
tables from the object relationships. The tables are not modified; you administer them the way
you always did. The difference is that the users can now access the rows of CUSTOMER as if they
are row objects.

From a DBA perspective, object views allow you to continue creating and supporting standard
tables and indexes while the application developers implement the advanced object-relational
features as a layer above those tables.

Security for Abstract Datatypes

The examples in the previous sections assumed that the same user owned the ADDRESS_TY
datatype and the CUSTOMER table. What if the owner of the datatype is not the table owner?
What if another user wants to create a datatype based on a datatype you have created? In the
development environment, you should establish guidelines for the ownership and use of abstract
datatypes just as you would for tables and indexes.

For example, what if the account named KAREN_SHELL owns the ADDRESS_TY datatype,
and the user of the account named CON_K tries to create a PERSON_TY datatype? I'll show you
the problem with type ownership, and then show you an easy solution later in this section. For
example, CON_K executes the following command:

B create type PERSON TY as object
(Name VARCHAR2 (25),
Address ADDRESS TY);
/

If CON_K does not own the ADDRESS_TY abstract datatype, Oracle will respond to this
create type command with the following message:

B Warning: Type created with compilation errors.

The compilation errors are caused by problems creating the constructor method when the
datatype is created. Oracle cannot resolve the reference to the ADDRESS_TY datatype because
CON_K does not own a datatype with that name.

CON_K will not be able to create the PERSON_TY datatype (which includes the ADDRESS_
TY datatype) unless KAREN_SHELL first grants her EXECUTE privilege on the type. The following
listing shows this grant command in action:

B grant EXECUTE on ADDRESS TY to CON_K;

NOTE
“ You must also grant EXECUTE privilege on the type to any user who

will perform DML operations on the table.

Now that the proper grants are in place, CON_K can create a datatype that is based on
KAREN_SHELL’s ADDRESS_TY datatype:

B create or replace type PERSON TY as object
(Name VARCHARZ2 (25),
Address KAREN_SHELL.ADDRESS_TY);

Chapter 5: Developing and Implementing Applications 155

CON_K’s PERSON_TY datatype will now be successfully created. However, using datatypes
based on another user’s datatypes is not trivial. For example, during insert operations, you must
fully specify the name of the owner of each type. CON_K can create a table based on her
PERSON_TY datatype (which includes KAREN_SHELL's ADDRESS_TY datatype), as shown
in the following listing:

create table CON_K CUSTOMERS
(Customer ID NUMBER,
Person PERSON TY) ;

If CON_K owned the PERSON_TY and ADDRESS_TY datatypes, an insert into the
CUSTOMER table would use the following format:

insert into CON K CUSTOMERS values
(1,PERSON_TY ('Jane Doe',
ADDRESS TY('101 Main Street', 'Dodgeville','WI',53595)));

This command will not work. During the insert, the ADDRESS_TY constructor method is
used, and KAREN_SHELL owns it. Therefore, the insert command must be modified to specify
KAREN_SHELL as the owner of ADDRESS_TY. The following example shows the corrected insert
statement, with the reference to KAREN_SHELL shown in bold:

insert into CON_K CUSTOMERS values
(1, PERSON_TY ('John Doe',
KAREN_SHELL.ADDRESSiTY('lOl Main Street', 'Dodgeville', 'WI',53595)));

Solving this problem is easy: as of Oracle Database 10g, you can create and use a public
synonym for a datatype. Continuing with the previous examples, KAREN_SHELL can create a
public synonym like so and grant EXECUTE privileges on the type:

create public synonym pub address ty for address ty;
grant execute on address ty to public;

As a result, any user, including CON_K, can now reference the type using the synonym for
creating new tables or types:

create or replace type person ty as object
(name varchar2 (25),
address pub_address ty);

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on procedural
objects, such as procedures and packages. Within the object-relational implementation of Oracle,
the EXECUTE privilege is extended to cover abstract datatypes as well, as you can see in the example
earlier in this section. The EXECUTE privilege is used because abstract datatypes can include
methods—PL/SQL functions and procedures that operate on the datatypes. If you grant someone
the privilege to use your datatype, you are granting the user the privilege to execute the methods
you have defined on the datatype. Although KAREN_SHELL did not yet define any methods on
the ADDRESS_TY datatype, Oracle automatically creates constructor methods that are used to access
the data. Any object (such as PERSON_TY) that uses the ADDRESS_TY datatype uses the constructor
method associated with ADDRESS_TY.

156 Oracle Database 11g DBA Handbook

You cannot create public types, but as you saw earlier in this section, you can create public
synonyms for your types. This helps to alleviate solution to the problem of datatype management;
one solution would be to create all types using a single schema name and creating the
appropriate synonyms. The users who reference the type do not have to know the owner of the
types to use them effectively.

Indexing Abstract Datatype Attributes

In the preceding example, the CON_K_CUSTOMERS table was created based on a PERSON_TY
datatype and an ADDRESS_TY datatype. As shown in the following listing, the CON_K_CUSTOMERS
table contains a scalar (non-object-oriented) column—Customer_ID—and a Person column that is
defined by the PERSON_TY abstract datatype:

B create table GEORGE CUSTOMERS
(Customer_ ID NUMBER,
Person PERSON TY) ;

From the datatype definitions shown in the previous section of this chapter, you can see
that PERSON_TY has one column—Name—followed by an Address column defined by the
ADDRESS_TY datatype.

When referencing columns within the abstract datatypes during queries, updates, and
deletes, specify the full path to the datatype attributes. For example, the following query returns
the Customer_ID column along with the Name column. The Name column is an attribute of
the datatype that defines the Person column, so you refer to the attribute as Person.Name, as
shown here:

- select C.Customer ID, C.Person.Name
from CON K CUSTOMERS C;

You can refer to attributes within the ADDRESS_TY datatype by specifying the full path
through the related columns. For example, the Street column is referred to as Person.Address.
Street, which fully describes its location within the structure of the table. In the following
example, the City column is referenced twice—once in the list of columns to select and once
within the where clause:

| select C.Person.Name,
C.Person.Address.City

from CON K CUSTOMERS C

where C.Person.Address.City like 'C%';

Because the City column is used with a range search in the where clause, the optimizer may be
able to use an index when resolving the query. If an index is available on the City column, Oracle
can quickly find all the rows that have City values starting with the letter C, as requested by the
query.

To create an index on a column that is part of an abstract datatype, you need to specify the
full path to the column as part of the create index command. To create an index on the City
column (which is part of the Address column), you can execute the following command:

B create index I _CON_K_CUSTOMERS CITY
on CON K CUSTOMERS (Person.Address.City);

Chapter 5: Developing and Implementing Applications 157

This command will create an index named I_CON_K_CUSTOMER_CITY on the Person.Address.
City column. Whenever the City column is accessed, the optimizer will evaluate the SQL used
to access the data and determine if the new index can be useful to improve the performance of
the access.

When creating tables based on abstract datatypes, you should consider how the columns
within the abstract datatypes will be accessed. If, like the City column in the previous example,
certain columns will commonly be used as part of limiting conditions in queries, they should be
indexed. In this regard, the representation of multiple columns in a single abstract datatype may
hinder your application performance, because it may obscure the need to index specific columns
within the datatype.

When you use abstract datatypes, you become accustomed to treating a group of columns as
a single entity, such as the Address columns or the Person columns. It is important to remember
that the optimizer, when evaluating query access paths, will consider the columns individually.
You therefore need to address the indexing requirements for the columns even when you are
using abstract datatypes. In addition, remember that indexing the City column in one table that
uses the ADDRESS_TY datatype does not affect the City column in a second table that uses the
ADDRESS_TY datatype. If there is a second table named BRANCH that uses the ADDRESS_TY
datatype, then its City column will not be indexed unless you explicitly create an index for it.

Quiescing and Suspending the Database

You can temporarily quiesce or suspend the database during your maintenance operations. Using
these options allows you to keep the database open during application maintenance, avoiding the
time or availability impact associated with database shutdowns.

While the database is quiesced, no new transactions will be permitted by any accounts other
than SYS and SYSTEM. New queries or attempted logins will appear to hang until you unquiesce
the database. The quiesce feature is useful when performing table maintenance or complicated
data maintenance. To use the quiesce feature, you must first enable the Database Resource
Manager, as described earlier in this chapter. In addition, the RESOURCE_MANAGER_PLAN
initialization parameter must have been set to a valid plan when the database was started, and
it must not have been disabled following database startup.

While logged in as SYS or SYSTEM (other SYSDBA privileged accounts cannot execute these
commands), quiesce the database as follows:

alter system quiesce restricted;

Any non-DBA sessions logged into the database will continue until their current command
completes, at which point they will become inactive. In Real Application Clusters configurations,
all instances will be quiesced.

To see if the database is in quiesced state, log in as SYS or SYSTEM and execute the following
query:
select Active State from VSINSTANCE;

The Active_State column value will be either NORMAL (unquiesced), QUIESCING (active non-
DBA sessions are still running), or QUIESCED.
To unquiesce the database, use the following command:

alter system unquiesce;

158 Oracle Database 11g DBA Handbook

Instead of quiescing the database, you can suspend it. A suspended database performs no 1/O
to its datafiles and control files, allowing the database to be backed up without I/O interference.
To suspend the database, use the following command:

- alter system suspend;

NOTE
“ Do not use the alter system suspend command unless you have put

the database in hot backup mode.

Although the alter system suspend command can be executed from any SYSDBA privileged
account, you can only resume normal database operations from the SYS and SYSTEM accounts.
Use SYS and SYSTEM to avoid potential errors while resuming the database operations. In Real
Application Clusters configurations, all instances will be suspended. To see the current status of
the instance, use the following command:

B select Database Status from VSINSTANCE;

The database will be either SUSPENDED or ACTIVE. To resume the database, log in as SYS or
SYSTEM and execute the following command:

B alter system resume;

Supporting Iterative Development

Iterative development methodologies typically consist of a series of rapidly developed prototypes.
These prototypes are used to define the system requirements as the system is being developed.
These methodologies are attractive because of their ability to show the customers something
tangible as development is taking place. However, there are a few common pitfalls that occur
during iterative development that undermine its effectiveness.

First, effective versioning is not always used. Creating multiple versions of an application allows
certain features to be “frozen” while others are changed. It also allows different sections of the
application to be in development while others are in test. Too often, one version of the application
is used for every iteration of every feature, resulting in an end product that is not adequately
flexible to handle changing needs (which was the alleged purpose of the iterative development).

Second, the prototypes are not always thrown away. Prototypes are developed to give the
customer an idea of what the final product will look like; they should not be intended as the
foundation of a finished product. Using them as a foundation will not yield the most stable and
flexible system possible. When performing iterative development, treat the prototypes as temporary
legacy systems.

Third, the divisions between development, test, and production environments are clouded.
The methodology for iterative development must very clearly define the conditions that have to
be met before an application version can be moved to the next stage. It may be best to keep the
prototype development completely separate from the development of the full application.

Finally, unrealistic timelines are often set. The same deliverables that applied to the structured
methodology apply to the iterative methodology. The fact that the application is being developed
at an accelerated pace does not imply that the deliverables will be any quicker to generate.

Chapter 5: Developing and Implementing Applications 159

Iterative Column Definitions

During the development process, your column definitions may change frequently. You can
drop columns from existing tables. You can drop a column immediately, or you can mark it as
UNUSED to be dropped at a later time. If the column is dropped immediately, the action may
impact performance. If the column is marked as unused, there will be no impact on performance.
The column can actually be dropped at a later time when the database is less heavily used.
To drop a column, use either the set unused clause or the drop clause of the alter table
command. You cannot drop a pseudocolumn, a column of a nested table, or a partition key column.
In the following example, column Col2 is dropped from a table named TABLET:

B zlter table TABLEL drop column Col2;
You can mark a column as unused, as shown here:
B 2lter table TABLEl set unused column Col3;

Marking a column as unused does not release the space previously used by the column. You
can also drop any unused columns:

- alter table TABLEl drop unused columns;

You can query USER_UNUSED_COL_TABS, DBA_UNUSED_COL, and ALL_UNUSED_COL_TABS
to see all tables with columns marked as unused.

NOTE

“ Once you have marked a column as unused, you cannot access that
column. If you export the table after designating a column as unused,
the column will not be exported.

You can drop multiple columns in a single command, as shown in the following example:

- alter table TABLEl drop (Col4, Col5);

NOTE
“ When dropping multiple columns, you should not use the column

keyword of the alter table command. The multiple column names
must be enclosed in parentheses, as shown in the preceding example.

If the dropped columns are part of primary keys or unique constraints, you will also need to
use the cascade constraints clause as part of your alter table command. If you drop a column that
belongs to a primary key, Oracle will drop both the column and the primary key index.

If you cannot immediately arrange for a maintenance period during which you can drop
the columns, mark them as unused. During a later maintenance period, you can complete the
maintenance from the SYS or SYSTEM account.

Forcing Cursor Sharing

Ideally, application developers should use bind variables in their programs to maximize the reuse
of their previously parsed commands in the shared SQL area. If bind variables are not in use, you
may see many very similar statements in the library cache—queries that differ only in the literal
value in the where clause.

160 Oracle Database 11g DBA Handbook

Statements that are identical except for their literal value components are called similar
statements. Similar statements can reuse previously parsed commands in the shared SQL area
if the CURSOR_SHARING initialization parameter is set to SIMILAR or FORCE. In general, you
should favor using SIMILAR over FORCE, because SIMILAR will allow for a new execution plan
to be generated reflecting any histogram data known about the literal value.

Setting CURSOR_SHARING to EXACT (the default setting) reuses previously parsed commands
only when the literal values are identical.

To use stored outlines with CURSOR_SHARING set to FORCE or SIMILAR, the outlines must
have been generated with that CURSOR_SHARING setting in effect.

NOTE
“ Dynamic SQL commands are always parsed, essentially bypassing the

value of the shared SQL area.

Managing Package Development

Imagine a development environment with the following characteristics:
B None of your standards are enforced.
B Objects are created under the SYS or SYSTEM account.
B Proper distribution and sizing of tables and indexes is only lightly considered.
|

Every application is designed as if it were the only application you intend to run in your
database.

As undesirable as these conditions are, they are occasionally encountered during the
implementation of purchased packaged applications. Properly managing the implementation
of packages involves many of the same issues that were described for the application development
processes in the previous sections. This section will provide an overview of how packages should
be treated so they will best fit with your development environment.

Generating Diagrams

Most CASE tools have the ability to reverse-engineer packages into a physical database diagram.
Reverse engineering consists of analyzing the table structures and generating a physical database
diagram that is consistent with those structures, usually by analyzing column names, constraints,
and indexes to identify key columns. However, normally there is no one-to-one correlation
between the physical database diagram and the entity relationship diagram. Entity relationship
diagrams for packages can usually be obtained from the package vendor; they are helpful in
planning interfaces to the package database.

Space Requirements

Most Oracle-based packages provide fairly accurate estimates of their database resource usage
during production usage. However, they usually fail to take into account their usage requirements
during data loads and software upgrades. You should carefully monitor the package’s undo
requirements during large data loads. A spare DATA tablespace may be needed as well if the
package creates copies of all its tables during upgrade operations.

Chapter 5: Developing and Implementing Applications 161

Tuning Goals

Just as custom applications have tuning goals, packages must be held to tuning goals as well.
Establishing and tracking these control values will help to identify areas of the package in need
of tuning (see Chapter 8).

Security Requirements

Unfortunately, many packages that use Oracle databases fall into one of two categories: either
they were migrated to Oracle from another database system, or they assume they will have full
DBA privileges for their object owner accounts.

If the packages were first created on a different database system, their Oracle port very likely
does not take full advantage of Oracle’s functional capabilities, such as sequences, triggers, and
methods. Tuning such a package to meet your needs may require modifying the source code.

If the package assumes that it has full DBA authority, it must not be stored in the same
database as any other critical database application. Most packages that require DBA authority do
so in order to add new users to the database. You should determine exactly which system-level
privileges the package administrator account actually requires (usually just CREATE SESSION and
CREATE USER). You can create a specialized system-level role to provide this limited set of system
privileges to the package administrator.

Packages that were first developed on non-Oracle databases may require the use of the same
account as another Oracle-ported package. For example, ownership of a database account called
SYSADM may be required by multiple applications. The only way to resolve this conflict with full
confidence is to create the two packages in separate databases.

Data Requirements

Any processing requirements that the packages have, particularly on the data-entry side, must be
clearly defined. These requirements are usually well documented in package documentation.

Version Requirements

Applications you support may have dependencies on specific versions and features of Oracle. If
you use packaged applications, you will need to base your kernel version upgrade plans on the
vendor’s support for the different Oracle versions. Furthermore, the vendor may switch the optimizer
features it supports—for example, requiring that your COMPATIBLE parameter be set to a specific
value. Your database environment will need to be as flexible as possible in order to support these
changes.

Because of these restrictions outside of your control, you should attempt to isolate the
packaged application to its own instance. If you frequently query data across applications, the
isolation of the application to its own instance will increase your reliance on database links. You
need to evaluate the maintenance costs of supporting multiple instances against the maintenance
costs of supporting multiple applications in a single instance.

Execution Plans

Generating execution plans requires accessing the SQL statements that are run against the database.
The shared SQL area in the SGA maintains the SQL statements that are executed against the
database (accessible via the V$SQL_PLAN view). Matching the SQL statements against specific parts
of the application is a time-consuming process. You should attempt to identify specific areas whose
functionality and performance are critical to the application’s success and work with the package’s

162 Oracle Database 11g DBA Handbook

support team to resolve performance issues. You can use the Automated Workload Repository (see
Chapter 8) to gather all the commands generated during testing periods and then determine the
explain plans for the most resource-intensive queries in that set. If the commands are still in the
shared SQL area, you can see the statistics via V$SQL and the explain plan via V$SQL_PLAN.

Acceptance Test Procedures

Purchased packages should be held to the same functional requirements that custom applications
must meet. The acceptance test procedures should be developed before the package has been
selected; they can be generated from the package-selection criteria. By testing in this manner,
you will be testing for the functionality you need rather than what the package developers
thought you wanted.

Be sure to specify what your options are in the event the package fails its acceptance test
for functional or performance reasons. Critical success factors for the application should not be
overlooked just because it is a purchased application.

The Testing Environment
When establishing a testing environment, follow these guidelines:

B [t must be larger than your production environment. You need to be able to forecast
future performance.

B It must contain known data sets, explain plans, performance results, and data result sets.

It must be used for each release of the database and tools, as well as for new features.

B It must support the generation of multiple test conditions to enable the evaluation of the
features’ business costs. You do not want to have to rely on point analysis of results; ideally,
you can determine the cost/benefit curves of a feature as the database grows in size.

B [t must be flexible enough to allow you to evaluate different licensing cost options.
B [t must be actively used as a part of your technology implementation methodology.

When testing transaction performance, be sure to track the incremental load rate over time.
In general, the indexes on a table will slow the performance of loads when they reach a second
internal level. See Chapter 8 for details on indexes and load performance.

When testing, your sample queries should represent each of the following groups:

Queries that perform joins, including merge joins, nested loops, outer joins, and hash joins
Queries that use database links

DML statements that use database links

Each type of DML statement (insert, update, and delete statements)

Each major type of DDL statement, including table creations, index rebuilds, and grants

Queries that use Parallel Query (if that option is in use in your environment)

The sample set should not be fabricated; it should represent your operations, and it must be
repeatable. Generating the sample set should involve reviewing your major groups of operations
as well as the OLTP operations executed by your users. The result will not reflect every action
within the database, but will allow you to be aware of the implications of upgrades and thus
allow you to mitigate your risk and make better decisions about implementing new options.

CHAPTER

Monitoring Space Usage

164 Oracle Database 11g DBA Handbook

" 1 good DBA has a toolset in place to monitor the database, both proactively
monitoring various aspects of the database, such as transaction load, security

| enforcement, space management, and performance monitoring, and effectively

| reacting to any potentially disastrous system problems. Transaction management,

' performance tuning, memory management, and database security and auditing are
covered in Chapters 7,8, and 9. In this chapter, we’'ll address how a DBA can effectively and
efficiently manage the disk space used by database objects in the different types of tablespaces:
the SYSTEM tablespace, the SYSAUX tablespace, temporary tablespaces, undo tablespaces, and
tablespaces of different sizes.

To reduce the amount of time it takes to manages disk space, it is important for the DBA to
understand how the applications will be using the database as well as to provide guidance during the
design of the database application. Designing and implementing the database application, including
tablespace layouts and expected growth of the database, have been covered in Chapters 3, 4, and 5.

In this chapter, I'll also provide some scripts that need not much more than SQL*Plus and the
knowledge to interpret the results. These scripts are good for a quick look at the database’s health
at a given point in time—for example, to see if there is enough disk space to handle a big SQL*Loader
job that evening or to diagnose some response-time issues for queries that normally run quickly.

Oracle provides a number of built-in packages to help the busy DBA manage space and diagnose
problems. For example, Oracle Segment Advisor, introduced in Oracle Database 10g, helps to
determine if a database object has space available for reuse, given how much fragmentation exists
in the object. Other features of Oracle, such as Resumable Space Allocation, allow a long-running
operation that runs out of disk space to be suspended until the DBA can intervene and allocate
enough additional disk space to complete the operation. As a result, the long-running job will
not have to be restarted from the beginning.

We'll also cover some of the key data dictionary and dynamic performance views that give
us a close look at the structure of the database and a way to optimize space usage. Many of the
scripts provided in this chapter use these views.

At the end of this chapter, we'll cover two different methods for automating some of the scripts
and Oracle tools: using the DBMS_SCHEDULER built-in package as well as using the Oracle
Enterprise Manager (OEM) infrastructure.

Space usage for tablespaces will be the primary focus in this chapter, along with the objects
contained within the tablespaces. Other database files, such as control files and redo log files, take
up disk space, but as a percentage of the total space used by a database they are small. We will,
however, briefly consider how archived log files are managed because the number of archived log
files will increase indefinitely at a pace proportional to how much DML activity occurs in the
database. Therefore, a good plan for managing archived log files will help keep disk space usage
under control.

Common Space Management Problems

Space management problems generally fall into one of three categories: running out of space in a
regular tablespace, not having enough undo space for long-running queries that need a consistent
“before” image of the tables, and insufficient space for temporary segments. Although we may still
have some fragmentation issues within a database object such as a table or index, locally managed
tablespaces solve the problem of tablespace fragmentation.

Chapter 6: Monitoring Space Usage 165

[will address each of these three problem areas by using the techniques described in the
following sections.

Running Out of Free Space in a Tablespace

If a tablespace is not defined with the AUTOEXTEND attribute, then the total amount of space in
all the datafiles that compose the tablespace limits the amount of data that can be stored in the
tablespace. If the AUTOEXTEND attribute is defined, then one or more of the datafiles that compose
the tablespace will grow to accommodate the requests for new segments or the growth of existing
segments. Even with the AUTOEXTEND attribute, the amount of space in the tablespace is ultimately
limited by the amount of disk space on the physical disk drive or storage group.

The AUTOEXTEND attribute is the default if you don’t specify the SIZE parameter in the
create tablespace command and you are using OMF, so you’ll actually have to go out of your
way to prevent a datafile from autoextending. In Oracle Database 11g with the initialization
parameter DB_CREATE_FILE_DEST set to an ASM or file system location, you can run a create
tablespace command like this:

create tablespace bi_02;

In this case, the tablespace BI_02 is created with a size of T00MB in a single datafile,
AUTOEXTEND is on, and the next extent is T00MB when the first datafile fills up. In addition,
extent management is set to LOCAL, space allocation is AUTOALLOCATE, and segment space
management set to AUTO.

The conclusion to be reached here is that we want to monitor the free and used space within
a tablespace to detect trends in space usage over time, and as a result be proactive in making sure
that enough space is available for future space requests. As of Oracle Database 10g, you can use
the DBMS_SERVER_ALERT package to automatically notify you when a tablespace reaches a
warning or critical space threshold level, either at a percent used, space remaining, or both.

Insufficient Space for Temporary Segments

A temporary segment stores intermediate results for database operations such as sorts, index builds,
distinct queries, union queries, or any other operation that necessitates a sort/merge operation that
cannot be performed in memory. Temporary segments should be allocated in a temporary tablespace,
which I introduced in Chapter 1. Under no circumstances should the SYSTEM tablespace be used for
temporary segments; when the database is created, a non-SYSTEM tablespace should be specified as
a default temporary tablespace for users who are not otherwise assigned a temporary tablespace. If
the SYSTEM tablespace is locally managed, a default temporary tablespace must be defined when the
database is created.

When there is not enough space available in the user’s default temporary tablespace, and
either the tablespace cannot be autoextended or the tablespace’s AUTOEXTEND attribute is
disabled, the user’s query or DML statement fails.

Too Much or Too Little Undo Space Allocated

As of Oracle9i, undo tablespaces have simplified the management of rollback information by
managing undo information automatically within the tablespace. The DBA no longer has to define
the number and size of the rollback segments for the kinds of activity occurring in the database.
As of Oracle 10g, manual rollback management has been deprecated.

166 Oracle Database 11g DBA Handbook

Not only does an undo segment allow a rollback of an uncommitted transaction, it provides
for read consistency of long-running queries that begin before inserts, updates, and deletes occur
on a table. The amount of undo space available for providing read consistency is under the control
of the DBA and is specified as the number of seconds that Oracle will attempt to guarantee that
“before” image data is available for long-running queries.

As with temporary tablespaces, we want to make sure we have enough space allocated in an
undo tablespace for peak demands without allocating more than is needed. As with any tablespace,
we can use the AUTOEXTEND option when creating the tablespace to allow for unexpected growth
of the tablespace without reserving too much disk space up front.

Undo segment management is discussed in detail in Chapter 7, whereas the tools to help size
the undo tablespaces are discussed later in this chapter.

Fragmented Tablespaces and Segments

As of Oracle8i, a tablespace that is locally managed uses bitmaps to keep track of free space, which,
in addition to eliminating the contention on the data dictionary, eliminates wasted space because
all extents are either the same size (with uniform extent allocation) or are multiples of the smallest
size (with autoallocation). For migrating from a dictionary-managed tablespace, we will review
an example that converts a dictionary-managed tablespace to a locally managed tablespace. In a
default installation of Oracle Database 10g or Oracle Database 11g using the Database Creation
Assistant (DBCA), all tablespaces, including the SYSTEM and SYSAUX tablespaces, are created as
locally managed tablespaces.

Even though locally managed tablespaces with automatic extent management (using the
autoallocate clause) are created by default when you use create tablespace, you still need to
specify extent management local if you need to specify uniform for the extent management
type in the create tablespace statement:

B sOL> create tablespace USERS4

2 datafile '+DATA'

3 size 250M autoextend on next 250M maxsize 2000M
4 extent management local uniform size 8M

5 segment space management auto;

Tablespace created.

This tablespace will be created with an initial size of 250MB, and it can grow as large
as 2000MB (2GB); extents will be locally managed with a bitmap, and every extent in this
tablespace will be exactly 8MB in size. Space within each segment (table or index) will be
managed automatically with a bitmap instead of freelists.

Even with efficient extent allocation, table and index segments may eventually contain a
lot of free space due to update and delete statements. As a result, a lot of unused space can be
reclaimed by using some of the scripts | provide later in this chapter, as well as by using the
Oracle Segment Advisor.

Oracle Segments, Extents, and Blocks

In Chapter 1, | gave you an overview of tablespaces and the logical structures contained within
them. | also briefly presented datafiles, allocated at the operating system level, as the building
blocks for tablespaces. Being able to effectively manage disk space in the database requires an
in-depth knowledge of tablespaces and datafiles, as well as the components of the segments

Chapter 6: Monitoring Space Usage 167

stored within the tablespaces, such as tables and indexes. At the lowest level, a tablespace
segment consists of one or more extents, each extent comprising one or more data blocks.
Figure 6-1 shows the relationship between segments, extents, and blocks in an Oracle database.

In the following sections, we'll cover some of the details of data blocks, extents, and segments
with the focus on space management.

Data Blocks

A data block is the smallest unit of storage in the database. Ideally, an Oracle block is a multiple
of the operating system block to ensure efficient /O operations. The default block size for the
database is specified with the DB_BLOCK_SIZE initialization parameter; this block size is used

for the SYSTEM, TEMP, and SYSAUX tablespaces at database creation and cannot be changed
without re-creating the database.

The format for a data block is presented in Figure 6-2.

Every data block contains a header that specifies what kind of data is in the block—table rows
or index entries. The table directory section has information about the table with rows in the block;
a block can have rows from only one table or entries from only one index, unless the table is a
clustered table, in which case the table directory identifies all the tables with rows in this block.
The row directory provides details of the specific rows of the table or index entries in the block.

Segment ‘
95Kb
N Extent i
Extent |||~ 72kb [b]
24Kb b
’ N ND |! KO ZKD > b
t {20} [2Kkb | 2K [2K0
v {2kb |t | 2kb | 2Kb | 2Kb
t [2Kb |} [2Kb | 2Kb [2Kb
t2kb | [2Kb | 2kb [2K
1 2kb | 1 2kb | 2kb [2K
' 2kb| | 2kb | 2Kb | 2Kb
2Kb | | 2Kb | 2Kb | 2Kb

Data Blocks

FIGURE 6-1 Oracle segments, extents, and blocks

168 Oracle Database 11g DBA Handbook

Database Block

B Common and Variable Header
[l Table Directory

i : [] Row Directory

T E [] Free Space

|:| Row Data

FIGURE 6-2 Contents of an Oracle data block

The space for the header, table directory, and row directory is a very small percentage of the
space allocated for a block; our focus, then, is on the free space and row data within the block.

Within a newly allocated block, free space is available for new rows and updates to existing
rows; the updates may increase or decrease the space allocated for the row if there are varying-
length columns in the row or a non-NULL value is changed to a NULL value, or vice versa. Space
is available within a block for new inserts until there is less than a certain percentage of space
available in the block defined by the PCTFREE parameter, specified when the segment is created.
Once there is less than PCTFREE space in the block, no inserts are allowed. If freelists are used
to manage space within the blocks of a segment, then new inserts are allowed on the table when
used space within the block falls below PCTUSED.

A row may span more than one block if the row size is greater than the block size or an
updated row no longer fits into the original block. In the first case, a row that is too big for a
block is stored in a chain of blocks; this may be unavoidable if a row contains columns that
exceed even the largest block size allowed, which in Oracle 11g is 32KB.

Chapter 6: Monitoring Space Usage 169

In the second case, an update to a row in a block may no longer fit in the original block, and
as a result Oracle will migrate the data for the entire row to a new block and leave a pointer in
the first block to point to the location in the second block where the updated row is stored. As
you may infer, a segment with many migrated rows may cause 1/O performance problems because
the number of blocks required to satisfy a query can double. In some cases, adjusting the value of
PCTFREE or rebuilding the table may result in better space utilization and 1/O performance. More
tips on how to improve 1/O performance can be found in Chapter 8.

Starting with Oracle9/ Release 2, you can use Automatic Segment Space Management (ASSM)
to manage free space within blocks; you enable ASSM in locally managed tablespaces by using
the segment space management auto keywords in the create tablespace command (although this
is the default for locally managed tablespaces).

Using ASSM reduces segment header contention and improves simultaneous insert concurrency;
this is because the free space map in a segment is spread out into a bitmap block within each
extent of the segment. As a result, you dramatically reduce waits because each process performing
insert, update, or delete operations will likely be accessing different blocks instead of one freelist
or one of a few freelist groups. In addition, each extent’s bitmap block lists each block within the
extent along with a four-bit “fullness” indicator defined as follows (with room for future expansion
from values 6-15):

0000 Unformatted block
0001 Block full
0010 Less than 25 percent free space available

0011 25 percent to 50 percent free space

0100 50 percent to 75 percent free space

B 0101 Greater than 75 percent free space

In a RAC database environment, using ASSM segments means you no longer need to create
multiple freelist groups. In addition, you no longer need to specify PCTUSED, FREELISTS, or
FREELIST GROUPS parameters when you create a table; if you specify any of these parameters,
they are ignored.

Extents

An extent is the next level of logical space allocation in a database; it is a specific number of
blocks allocated for a specific type of object, such as a table or index. An extent is the minimum
number of blocks allocated at one time; when the space in an extent is full, another extent is
allocated.

When a table is created, an initial extent is allocated. Once the space is used in the initial extent,
incremental extents are allocated. In a locally managed tablespace, these subsequent extents can
either be the same size (using the UNIFORM keyword when the tablespace is created) or optimally
sized by Oracle (AUTOALLOCATE). For extents that are optimally sized, Oracle starts with a
minimum extent size of 64KB and increases the size of subsequent extents as multiples of the initial
extent as the segment grows. In this way, fragmentation of the tablespace is virtually eliminated.

170 Oracle Database 11g DBA Handbook

When the extents are sized automatically by Oracle, the storage parameters INITIAL, NEXT,
PCTINCREASE, and MINEXTENTS are used as a guideline, along with Oracle’s internal algorithm,
to determine the best extent sizes. In the following example, a table created in the USERS tablespace
(during installation of a new database, the USERS tablespace is created with AUTOALLOCATE
enabled) does not use the storage parameters specified in the create table statement:

BT SOL> create table t_autoalloc (cl char(2000))
2 storage (initial 1m next 2m pctincrease 50)
3 tablespace users;

Table created.

SQL> begin
2 for i in 1..3000 loop
3 insert into t_autoalloc values ('a');
4 end loop;
5 end;
6 /

PL/SQL procedure successfully completed.

SQL> select segment name, extent id, bytes, blocks

2 from user_ extents where segment name = 'T_AUTOALLOC';
SEGMENT NAME EXTENT ID BYTES BLOCKS
T AUTOALLOC 0 65536 8
T AUTOALLOC 1 65536 8
T AUTOALLOC 15 65536 8
T AUTOALLOC 16 1048576 128
T AUTOALLOC 22 1048576 128

23 rows selected.

Unless a table is truncated or the table is dropped, any blocks allocated to an extent remain
allocated for the table, even if all rows have been deleted from the table. The maximum number
of blocks ever allocated for a table is known as the high-water mark (HWM).

Segments

Groups of extents are allocated for a single segment. A segment must be wholly contained within
one and only one tablespace. Every segment represents one and only one type of database object,
such as a table, a partition of a partitioned table, an index, or a temporary segment. For partitioned
tables, every partition resides in its own segment; however, a cluster (with two or more tables)
resides within a single segment. Similarly, a partitioned index consists of one segment for each
index partition.

Temporary segments are allocated in a number of scenarios. When a sort operation cannot fit
in memory, such as a select statement that needs to sort the data to perform a distinct, group by,
or union operation, a temporary segment is allocated to hold the intermediate results of the sort.

Chapter 6: Monitoring Space Usage 171

Index creation also typically requires the creation of a temporary segment. Because allocation and
deallocation of temporary segments occurs often, it is highly desirable to create a tablespace
specifically to hold temporary segments. This helps to distribute the I/O required for a given
operation, and it reduces the possibility that fragmentation may occur in other tablespaces

due to the allocation and deallocation of temporary segments. When the database is created,

a default temporary tablespace can be created for any new users who do not have a specific
temporary tablespace assigned; if the SYSTEM tablespace is locally managed, a separate temporary
tablespace must be created to hold temporary segments.

How space is managed within a segment depends on how the tablespace containing the block
is created. If the tablespace is dictionary managed, the segment uses freelists to manage space
within the data blocks; if the tablespace is locally managed, space in segments can be managed
with either freelists or bitmaps. Oracle strongly recommends that all new tablespaces be created
as locally managed and that free space within segments be managed automatically with bitmaps.
Automatic segment space management allows more concurrent access to the bitmap lists in a
segment compared to freelists; in addition, tables that have widely varying row sizes make more
efficient use of space in segments that are automatically managed.

As | mentioned earlier, in the section titled “Data Blocks,” if a segment is created with automatic
segment space management, bitmaps are used to manage the space within the segment. As a result,
the pctused, freelist, and freelist groups keywords within a create table or create index statement
are ignored. The three-level bitmap structure within the segment indicates whether blocks below
the HWM are full (less than pctfree), O to 25 percent free, 25 to 50 percent free, 50 to 75 percent
free, 75 to 100 percent free, or unformatted.

Data Dictionary Views and Dynamic
Performance Views

A number of data dictionary and dynamic performance views are critical in understanding how
disk space is being used in your database. The data dictionary views that begin with DBA_ are of
a more static nature, whereas the V$ views, as expected, are of a more dynamic nature and give
you up-to-date statistics on how space is being used in the database.

In the next few sections, I'll highlight the space management views and provide some quick
examples; later in this chapter, you'll see how these views form the basis of Oracle’s space
management tools.

DBA_TABLESPACES

The view DBA_TABLESPACES contains one row for each tablespace, whether native or currently
plugged in from another database. It contains default extent parameters for objects created in the
tablespace that don't specify initial and next values. The EXTENT_MANAGEMENT column indicates
whether the tablespace is locally managed or dictionary managed. As of Oracle 10g, the column
BIGFILE indicates whether the tablespace is a smallfile or a bigfile tablespace. Bigfile tablespaces
are discussed later in this chapter.

In the following query we retrieve the tablespace type and the extent management type for all
tablespaces within the database:

SQL> select tablespace_name, block_size,
2 contents, extent management from dba_tablespaces;

172 Oracle Database 11g DBA Handbook

TABLESPACE NAME BLOCK SIZE CONTENTS EXTENT MAN
SYSTEM 8192 PERMANENT LOCAL
SYSAUX 8192 PERMANENT LOCAL
UNDOTBS1 8192 UNDO LOCAL
TEMP 8192 TEMPORARY LOCAL
USERS 8192 PERMANENT LOCAL
EXAMPLE 8192 PERMANENT LOCAL
DMARTS 16384 PERMANENT LOCAL
XPORT 8192 PERMANENT LOCAL
USERS2 8192 PERMANENT LOCAL
USERS3 8192 PERMANENT LOCAL
USERS4 8192 PERMANENT LOCAL

11 rows selected.

In this example, all the tablespaces are locally managed; in addition, the DMARTS tablespace
has a larger block size to improve response time for data mart tables that are typically accessed
hundreds or thousands of rows at a time.

DBA_SEGMENTS

The data dictionary view DBA_SEGMENTS has one row for each segment in the database. This
view is not only good for retrieving the size of the segment, in blocks or bytes, but also for identifying
the owner of the object and the tablespace where an object resides:

BT sOL> select tablespace_name, count(*) NUM_OBJECTS,
2 sum(bytes), sum(blocks), sum(extents) from dba_segments
3 group by rollup (tablespace name) ;

TABLESPACE NAME NUM OBJECTS SUM(BYTES) SUM(BLOCKS) SUM(EXTENTS)

DMARTS 2 67108864 4096 92
EXAMPLE 418 81068032 9896 877
SYSAUX 5657 759103488 92664 8189
SYSTEM 1423 732233728 89384 2799
UNDOTBS1 10 29622272 3616 47
USERS 44 11665408 1424 73
XPORT 1 134217728 16384 87

7555 1815019520 217464 12164

DBA_EXTENTS

The DBA_EXTENTS view is similar to DBA_SEGMENTS, except that DBA_EXTENTS drills down
further into each database object. There is one row in DBA_EXTENTS for each extent of each
segment in the database, along with the FILE_ID and BLOCK_ID of the datafile containing the extent:

BT SQL> select owner, segment name, tablespace name,
2 extent_id, file_id, block_id, bytes from dba_ extents
3 where segment name = 'AUDS';

Chapter 6: Monitoring Space Usage 173

OWNER SEGMENT NAM TABLESPACE EXTENT ID FILE ID BLOCK ID BYTES
SYS AUDS SYSTEM 3 1 32407 196608
SYS AUDS$ SYSTEM 4 1 42169 262144
SYS AUDS SYSTEM 5 2 289 393216
SYS AUDS SYSTEM 2 1 31455 131072
SYS AUDS SYSTEM 1 1 30303 65536
SYS AUDS$ SYSTEM 0 1 261 16384

In this example, the table AUD$ owned by SYS has extents in two different datafiles that
compose the SYSTEM tablespace.

DBA_FREE_SPACE

The view DBA_FREE_SPACE is broken down by datafile number within the tablespace. You can
easily compute the amount of free space in each tablespace by using the following query:

SQL> select tablespace_name, sum(bytes) from dba free_space
2 group by tablespace name;

TABLESPACE NAME SUM (BYTES)

DMARTS 194969600
XPORT 180289536
SYSAUX 44105728
UNDOTBS1 75169792
USERS3 104792064
USERS4 260046848
USERS 1376256
USERS2 104792064
SYSTEM 75104256
EXAMPLE 23724032

10 rows selected.

Note that the free space does not take into account the space that would be available if and
when the datafiles in a tablespace are autoextended. Also, any space allocated to a table for rows
that are later deleted will be available for future inserts into the table, but it is not counted in the
preceding query results as space available for other database objects. When a table is truncated,
however, the space is made available for other database objects.

DBA_LMT_FREE_SPACE

The view DBA_LMT_FREE_SPACE provides the amount of free space, in blocks, for all tablespaces
that are locally managed, and it must be joined with DBA_DATA_FILES to get the tablespace names.

DBA_THRESHOLDS

New to Oracle 10g, DBA_THRESHOLDS contains the currently active list of the different metrics
that gauge the database’s health and specify a condition under which an alert will be issued if the
metric threshold reaches or exceeds a specified value.

174 Oracle Database 11g DBA Handbook

The values in this view are typically maintained via the OEM interface; in addition, the Oracle
10g DBMS_SERVER_ALERT built-in PL/SQL package can set and get the threshold values with
the SET_THRESHOLD and GET_THRESHOLD procedures, respectively. To read alert messages
in the alert queue, you can use the DBMS_AQ and DBMS_AQADM packages, or OEM can be
configured to send a pager or e-mail message when the thresholds have been exceeded.

For a default installation of Oracle Database 10g and Oracle Database 11g, a number of
thresholds are configured, including the following:

B At least one user session is blocked every minute for three consecutive minutes.
B Any segments are not able to extend for any reason.

B The total number of concurrent processes comes within 80 percent of the PROCESSES
initialization parameter value.

B More than two invalid objects exist for any individual database user.

B The total number of concurrent user sessions comes within 80 percent of the SESSIONS
initialization parameter value.

B There are more than 1200 concurrent open cursors.

B There are more than 100 logons per second.

B Atablespace is more than 85 percent full (warning) or more than 97 percent full (critical).

B User logon time is greater than 1000 milliseconds (1 second).

DBA_OUTSTANDING_ALERTS

The Oracle 10g view DBA_OUTSTANDING_ALERTS contains one row for each active alert in the
database, until the alert is cleared or reset. One of the fields in this view, SUGGESTED_ACTION,
contains a recommendation for addressing the alert condition.

DBA_ALERT_HISTORY

After an alert in DBA_OUTSTANDING_ALERTS has been addressed and cleared, a record of the
cleared alert is available in the view DBA_ALERT_HISTORY.

VSALERT_TYPES

The dynamic performance view V$ALERT_TYPES (new to Oracle 10g) lists the 158 alert conditions
(as of Oracle 11g, Release 1) that can be monitored. The GROUP_NAME column categorizes the
alert conditions by type. For example, for space management issues, we would use alerts with a
GROUP_NAME of 'Space':

BT SOL> select reason_id, object type, scope, internal metric_category,

2 internal metric_name from v$alert types
3 where group name = 'Space';
REASON ID OBJECT TYPE SCOPE INTERNAL METRIC CATE INTERNAL METRIC NA
123 RECOVERY AREA Database Recovery Area Free Space
1 SYSTEM Instance

0 SYSTEM Instance

Chapter 6: Monitoring Space Usage 175

133 TABLESPACE Database problemTbsp bytesFree
9 TABLESPACE Database problemTbsp pctUsed
12 TABLESPACE Database Suspended Session Tablespace
10 TABLESPACE Database Snap Shot Too 0l1d Tablespace
13 ROLLBACK SEGMENT Database Suspended Session Rollback Segment
11 ROLLBACK SEGMENT Database Snap_Shot Too 0Old Rollback Segment
14 DATA OBJECT Database Suspended Session Data Object
15 QUOTA Database Suspended Session Quota

11 rows selected.

Using alert type with REASON_ID=123 as an example, an alert can be initiated when the free
space in the database recovery area falls below a specified percentage.

VSUNDOSTAT

Having too much undo space and having not enough undo space are both problems. Although
an alert can be set up to notify the DBA when the undo space is not sufficient to provide enough
transaction history to satisfy Flashback queries or enough “before” image data to prevent
“Snapshot Too Old” errors, a DBA can be proactive by monitoring the dynamic performance
view VSUNDOSTAT during heavy database usage periods.

V$UNDOSTAT displays historical information about the consumption of undo space for ten-
minute intervals. By analyzing the results from this table, a DBA can make informed decisions
when adjusting the size of the undo tablespace or changing the value of the UNDO_RETENTION
initialization parameter.

VS$OBJECT_USAGE

If an index is not being used, it not only takes up space that could be used by other objects, but
the overhead of maintaining the index whenever an insert, update, or delete occurs is wasted.
By using the alter index . . . monitoring usage command, the view V$OBJECT_USAGE will be
updated when the index has been accessed indirectly because of a select statement.

V$SORT_SEGMENT

The view V$SORT_SEGMENT can be used to view the allocation and deallocation of space in a
temporary tablespace’s sort segment. The column CURRENT_USERS indicates how many distinct
users are actively using a given segment. V$SORT_SEGMENT is only populated for temporary
tablespaces.

VSTEMPSEG_USAGE

From the perspective of users requesting temporary segments, the view V$TEMPSEG_USAGE
identifies the locations, types, and sizes of the temporary segments currently being requested.
Unlike V§SORT_SEGMENT, V$TEMPSEG_USAGE will contain information about temporary
segments in both temporary and permanent tablespaces. Later in this chapter, I'll introduce the
improved and simplified temporary tablespace management tools available in Oracle Database 11g.

Space Management Methodologies

In the following sections, we will consider various features of Oracle 11g to facilitate the efficient
use of disk space in the database. Locally managed tablespaces offer a variety of advantages to the
DBA, improving the performance of the objects within the tablespace, as well as easing administration

176 Oracle Database 11g DBA Handbook

of the tablespace—fragmentation of a tablespace is a thing of the past. Another feature introduced
in Oracle9i, Oracle Managed Files, eases datafile maintenance by automatically removing files at
the operating system level when a tablespace or other database object is dropped. Bigfile
tablespaces, introduced in Oracle 10g, simplify datafile management because one and only one
datafile is associated with a bigfile tablespace. This moves the maintenance point up one level,
from the datafile to the tablespace. We'll also review a couple other features introduced in
Oracle9i—undo tablespaces and multiple block sizes.

Locally Managed Tablespaces

Prior to Oracle8i, there was only one way to manage free space within a tablespace—by using
data dictionary tables in the SYSTEM tablespace. If a lot of insert, delete, and update activity
occurs anywhere in the database, there is the potential for a “hot spot” to occur in the SYSTEM
tablespace where the space management occurs. Oracle removed this potential bottleneck by
introducing locally managed tablespaces (LMTs). A locally managed tablespace tracks free space
in the tablespace with bitmaps, as discussed in Chapter 1. These bitmaps can be managed very
efficiently because they are very compact compared to a freelist of available blocks. Because they
are stored within the tablespace itself, instead of in the data dictionary tables, contention in the
SYSTEM tablespace is reduced.

As of Oracle 10g, by default, all tablespaces are created as locally managed tablespaces,
including the SYSTEM and SYSAUX tablespaces. When the SYSTEM tablespace is locally
managed, you can no longer create any dictionary-managed tablespaces in the database that
are read/write. A dictionary-managed tablespace may still be plugged into the database from
an earlier version of Oracle, but it is read-only.

An LMT can have objects with one of two types of extents: automatically sized or all of a
uniform size. If extent allocation is set to UNIFORM when the LMT is created, all extents, as
expected, are the same size. Because all extents are the same size, there can be no fragmentation.
Gone is the classic example of a 51MB segment that can’t be allocated in a tablespace with two
free 50MB extents because the two 50MB extents are not adjacent.

On the other hand, automatic segment extent management within a locally managed tablespace
allocates space based on the size of the object. Initial extents are small, and if the object stays
small, very little space is wasted. If the table grows past the initial extent allocated for the segment,
subsequent extents to the segment are larger. Extents in an autoallocated LMT have sizes of 64KB,
1MB, 8MB, and 64MB, and the extent size increases as the size of the segment increases, up to a
maximum of 64MB. In other words, Oracle is specifying what the values of INITIAL, NEXT, and
PCTINCREASE are automatically, depending on how the object grows. Although it seems like
fragmentation can occur in a tablespace with autoallocation, in practice the fragmentation is
minimal because a new object with a 64KB initial segment size will fit nicely in a TMB, 4MB,
8MB, or 64MB block preallocated for all other objects with an initial 64KB extent size.

Given an LMT with either automatically managed extents or uniform extents, the free space
within the segment itself can be AUTO or MANUAL. With AUTO segment space management,

a bitmap is used to indicate how much space is used in each block. The parameters PCTUSED,
FREELISTS, and FREELIST GROUPS no longer need to be specified when the segment is created.
In addition, the performance of concurrent DML operations is improved because the segment’s
bitmap allows concurrent access. In a freelist-managed segment, the data block in the segment
header that contains the freelist is locked out to all other writers of the block when a single writer
is looking for a free block in the segment. Although allocating multiple freelists for very active
segments does somewhat solve the problem, it is another structure that the DBA has to manage.

Chapter 6: Monitoring Space Usage 177

Another advantage of LMTs is that rollback information is reduced or eliminated when any
LMT space-related operation is performed. Because the update of a bitmap in a tablespace is not
recorded in a data dictionary table, no rollback information is generated for this transaction.

Other than third-party applications, such as older versions of SAP that require dictionary-
managed tablespaces, there are no other reasons for creating new dictionary-managed tablespaces
in Oracle 10g. As mentioned earlier, compatibility is provided in part to allow dictionary-managed
tablespaces from previous versions of Oracle to be “plugged into” an Oracle 11g database, although
if the SYSTEM tablespace is locally managed, any dictionary-managed tablespaces must be opened
read-only. Later in this chapter, you'll see some examples where we can optimize space and
performance by moving a tablespace from one database to another and allocating additional
data buffers for tablespaces with different sizes.

Migrating a dictionary-managed tablespace to a locally managed tablespace is very
straightforward using the DBMS_SPACE_ADMIN built-in package:

execute sys.dbms space admin.tablespace migrate to local ('USERS')

After upgrading a database to either Oracle9i, Oracle 10g, or Oracle 11g, you may also want to
consider migrating the SYSTEM tablespace to an LMT; if so, a number of prerequisites are in order:

B Before starting the migration, shut down the database and perform a cold backup of the
database.

Any non-SYSTEM tablespaces that are to remain read/write should be converted to LMTs.
The default temporary tablespace must not be SYSTEM.

If automatic undo management is being used, the undo tablespace must be online.

For the duration of the conversion, all tablespaces except for the undo tablespace must
be set to read-only.

B The database must be started in RESTRICTED mode for the duration of the conversion.

If any of these conditions are not met, the TABLESPACE_MIGRATE_TO_LOCAL procedure will
not perform the migration.

Using OMF to Manage Space

In a nutshell, Oracle-Managed Files (OMF) simplifies the administration of an Oracle database. At
database-creation time, or later by changing a couple parameters in the initialization parameter
file, the DBA can specify a number of default locations for database objects such as datafiles,
redo log files, and control files. Prior to Oracle9i, the DBA had to remember where the existing
datafiles were stored by querying the DBA_DATA_FILES and DBA_TEMP_FILES views. On many
occasions, a DBA would drop a tablespace, but would forget to delete the underlying datafiles,
thus wasting space and the time it took to back up files that were no longer used by the database.

Using OMEF, Oracle not only automatically creates and deletes the files in the specified
directory location, it ensures that each filename is unique. This avoids corruption and database
downtime in a non-OMF environment due to existing files being overwritten by a DBA inadvertently
creating a new datafile with the same name as an existing datafile, and using the REUSE clause.

In a test or development environment, OMF reduces the amount of time the DBA must spend
on file management and lets him or her focus on the applications and other aspects of the test

178 Oracle Database 11g DBA Handbook

database. OMF has an added benefit for packaged Oracle applications that need to create
tablespaces: The scripts that create the new tablespaces do not need any modification to include
a datafile name, thus increasing the likelihood of a successful application deployment.

Migrating to OMF from a non-OMF environment is easy, and it can be accomplished over a
longer time period. Non-OMEF files and OMEF files can coexist indefinitely in the same database.
When the appropriate initialization parameters are set, all new datafiles, control files, and redo
log files can be created as OMF files, while the previously existing files can continue to be managed
manually until they are converted to OMEF, if ever.

The OMF-related initialization parameters are detailed in Table 6-1. Note that the operating
system path specified for any of these initialization parameters must already exist; Oracle will not
create the directory. Also, these directories must be writable by the operating system account that
owns the Oracle software (which on most platforms is oracle).

Bigfile Tablespaces

Bigfile tablespaces, introduced in Oracle 10g, take OMF files to the next level; in a bigfile tablespace,
a single datafile is allocated, and it can be up to 8EB (exabytes, a million terabytes) in size.

Bigfile tablespaces can only be locally managed with automatic segment space management.
If a bigfile tablespace is used for automatic undo or for temporary segments, then segment space
management must be set to MANUAL.

Bigfile tablespaces can save space in the System Global Area (SGA) and the control file because
fewer datafiles need to be tracked; similarly, all alter tablespace commands on bigfile tablespaces
need not refer to datafiles because one and only one datafile is associated with each bigfile
tablespace. This moves the maintenance point from the physical (datafile) level to the logical
(tablespace) level, simplifying administration. One downside to bigfile tablespaces is that a

Initialization Parameter Description

DB_CREATE_FILE_DEST The default operating system file directory where
datafiles and tempfiles are created if no pathname
is specified in the create tablespace command.
This location is used for redo log files and control
files if DB_CREATE_ONLINE_LOG_DEST_n is not
specified.

DB_CREATE_ONLINE_LOG_DEST_n Specifies the default location to store redo log files
and control files when no pathname is specified for
redo log files or control files at database-creation
time. Up to five destinations can be specified with
this parameter, allowing up to five multiplexed
control files and five members of each redo log group.

DB_RECOVERY_FILE_DEST Defines the default pathname in the server’s file
system where RMAN backups, archived redo logs,
and flashback logs are located. Also used for redo
log files and control files if neither DB_CREATE_
FILE_DEST nor DB_CREATE_ONLINE_LOG_DEST_n
is specified.

TABLE 6-1 OMF-Related Initialization Parameters

Chapter 6: Monitoring Space Usage 179

backup of a bigfile tablespace uses a single process; a number of smaller tablespaces, however,
can be backed up using parallel processes and will most likely take less time to back up than a
single bigfile tablespace.

Creating a bigfile tablespace is as easy as adding the bigfile keyword to the create tablespace
command:

SQL> create bigfile tablespace whsO01l
2 datafile '/u06/oradata/whs0l.dbf' size 10g;
Tablespace created.

If you are using OMEF, then the datafile clause can be omitted. To resize a bigfile tablespace,
you can use the resize clause:

SQL> alter tablespace whs0l resize 80g;
Tablespace altered.

In this scenario, even 80GB is not big enough for this tablespace, so we will let it autoextend
20GB at a time:

SQL> alter tablespace whs0l autoextend on next 20g;
Tablespace altered.

Notice in both cases that we do not need to refer to a datafile; there is only one datafile, and once
the tablespace is created, we no longer need to worry about the details of the underlying datafile
and how it is managed.

Bigfile tablespaces are intended for use with Automatic Storage Management, discussed in the
next section.

Automatic Storage Management

Using Automatic Storage Management (ASM) can significantly reduce the administrative overhead
of managing space in a database because a DBA need only specify an ASM disk group when
allocating space for a tablespace or other database object. Database files are automatically
distributed among all available disks in a disk group, and the distribution is automatically updated
whenever the disk configuration changes. For example, when a new disk volume is added to an
existing disk group in an ASM instance, all datafiles within the disk group are redistributed to use
the new disk volume. I introduced ASM in Chapter 4. In this section, I'll revisit some other key
ASM concepts from a storage management point of view and provide more examples.

Because ASM automatically places datafiles on multiple disks, performance of queries and
DML statements is improved because the 1/O is spread out among several disks. Optionally, the
disks in an ASM group can be mirrored to provide additional redundancy and performance benefits.

Using ASM provides a number of other benefits. In many cases, an ASM instance with a number
of physical disks can be used instead of a third-party volume manager or network-attached storage
(NAS) subsystem. As an added benefit over volume managers, ASM maintenance operations do
not require a shutdown of the database if a disk needs to be added or removed from a disk group.

In the next few sections, we’ll delve further into how ASM works, with an example of how to
create a database object using ASM.

Disk Group Redundancy
A disk group in ASM is a collection of one or more ASM disks managed as a single entity. Disks
can be added or removed from a disk group without shutting down the database. Whenever a

180 Oracle Database 11g DBA Handbook

disk is added or removed, ASM automatically rebalances the datafiles on the disks to maximize
redundancy and I/O performance.

In addition to the advantages of high redundancy, a disk group can be used by more than one
database. This helps to maximize the investment in physical disk drives by easily reallocating disk
space among several databases whose disk space needs may change over the course of a day or
the course of a year.

As | explained in Chapter 4, the three types of disk groups are normal redundancy, high
redundancy, and external redundancy. The normal-redundancy and high-redundancy groups
require that ASM provide the redundancy for files stored in the group. The difference between
normal redundancy and high redundancy is in the number of failure groups required: A normal-
redundancy disk group typically has two failure groups, and a high-redundancy disk group will
have at least three failure groups. A failure group in ASM would roughly correspond to a redo log
file group member using traditional Oracle datafile management. External redundancy requires
that the redundancy be provided by a mechanism other than ASM (for example, with a hardware
third-party RAID storage array). Alternatively, a disk group might contain a non-mirrored disk
volume that is used for a read-only tablespace that can easily be re-created if the disk volume fails.

ASM Instance

ASM requires a dedicated Oracle instance, typically on the same node as the database that is
using an ASM disk group. In an Oracle Real Application Clusters (RAC) environment, each node
in a RAC database has an ASM instance.

An ASM instance never mounts a database; it only coordinates the disk volumes for other
database instances. In addition, all database I/O from an instance goes directly to the disks in a
disk group. Disk group maintenance, however, is performed in the ASM instance; as a result, the
memory footprint needed to support an ASM instance can be as low as 64MB.

For more details on how to configure ASM for use with RAC, see Chapter 10.

Background Processes

Two new Oracle background processes exist in the ASM instance. The RBAL background process
coordinates the automatic disk group rebalance activity for a disk group. The other background
processes, ORBO through ORB9, perform the actual rebalance activity in parallel.

Creating Objects Using ASM

Before a database can use an ASM disk group, the group must be created by the ASM instance. In
the following example, a new disk group, KMS25, is created to manage the Unix disk volumes /
dev/hdat, /dev/hda2, /dev/hdb1, /dev/hdc1, and /dev/hdd4:

SQL> create diskgroup kms25 normal redundancy
2 failgroup mirl disk '/dev/hdal','/dev/hda2',
3 failgroup mir2 disk '/dev/hdbl','/dev/hdcl','/dev/hdd4';

When normal redundancy is specified, at least two failure groups must be specified to provide
two-way mirroring for any datafiles created in the disk group.

In the database instance that is using the disk group, OMF is used in conjunction with ASM
to create the datafiles for the logical database structures. In the following example, we set the
initialization parameter DB_CREATE_FILE_DEST using a disk group so that any tablespaces
created using OMF will automatically be named and placed in the disk group KMS25:

db create file dest = '+kms25'

Chapter 6: Monitoring Space Usage 181

Creating a tablespace in the disk group is straight to the point:
SQL> create tablespace lob_video;

Once an ASM file is created, the automatically generated filenames can be found in V§DATAFILE
and V$LOGFILE, along with manually generated filenames. All typical database files can be created
using ASM, except for administrative files, including trace files, alert logs, backup files, export
files, and core dump files.

OMF is a handy option when you want to let Oracle manage the datafile naming for you,
whether the datafile is on a conventional file system or in an ASM disk group. You can also mix
and match: some of your datafiles can be OMF-named, and others manually named.

Undo Management Considerations

Creating an undo tablespace provides a number of benefits for both the DBA and a typical database
user. For the DBA, the management of rollback segments is a thing of the past—all undo segments
are managed automatically by Oracle in the undo tablespace. In addition to providing a read-
consistent view of database objects to database readers when a long transaction against an object is
in progress, an undo tablespace can provide a mechanism for a user to recover rows from a table.

A big enough undo tablespace will minimize the possibility of getting the classic “Snapshot
too old” error message, but how much undo space is enough? If it is undersized, then the
availability window for flashback queries is short; if it is sized too big, disk space is wasted and
backup operations may take longer than necessary.

A number of initialization parameter files control the allocation and use of undo tablespaces.
The UNDO_MANAGEMENT parameter specifies whether AUTOMATIC undo management is used,
and the UNDO_TABLESPACE parameter specifies the undo tablespace itself. To change undo
management from rollback segments to automatic undo management (changing the value of
UNDO_MANAGEMENT from MANUAL to AUTO), the instance must be shut down and restarted
for the change to take effect; you can change the value of UNDO_TABLESPACE while the database
is open. The UNDO_RETENTION parameter specifies, in seconds, the minimum amount of time
that undo information should be retained for Flashback queries. However, with an undersized
undo tablespace and heavy DML usage, some undo information may be overwritten before the
time period specified in UNDO_RETENTION.

New to Oracle 10g is the RETENTION GUARANTEE clause of the CREATE UNDO TABLESPACE
command. In essence, an undo tablespace with a RETENTION GUARANTEE will not overwrite
unexpired undo information at the expense of failed DML operations when there is not enough free
undo space in the undo tablespace. More details on using this clause can be found in Chapter 7.

The following initialization parameters enable automatic undo management with the undo
tablespace UNDOO4 using a retention period of at least 24 hours:

undo management = auto
undo_tablespace = undo04
undo_retention = 86400

The dynamic performance view VSUNDOSTAT can assist in sizing the undo tablespace
correctly for the transaction load during peak processing periods. The rows in V§UNDOSTAT
are inserted at ten-minute intervals and give a snapshot of the undo tablespace usage:

SQL> select to_char(end time, 'yyyy-mm-dd hh24:mi') end_ time,
2 undoblks, ssolderrcnt from v$undostat;

182 Oracle Database 11g DBA Handbook

END TIME UNDOBLKS SSOLDERRCNT
2007-07-23 10:28 522 0
2007-07-23 10:21 1770 0
2007-07-23 10:11 857 0
2007-07-23 10:01 1605 0
2007-07-23 09:51 2864 3
2007-07-23 09:41 783 0
2007-07-23 09:31 1543 0
2007-07-23 09:21 1789 0
2007-07-23 09:11 890 0
2007-07-23 09:01 1491 0

In this example, a peak in undo space usage occurred between 9:41 a.m. and 9:51 Am.,
resulting in a “Snapshot too old” error for three queries. To prevent these errors, the undo
tablespace should be either manually resized or allowed to autoextend.

SYSAUX Monitoring and Usage

The SYSAUX tablespace, introduced in Oracle 10g, is an auxiliary tablespace to the SYSTEM
tablespace, and it houses data for several components of the Oracle database that either required
their own tablespace or used the SYSTEM tablespace in previous releases of Oracle. These
components include the Enterprise Manager Repository, formerly in the tablespace OEM_
REPOSITORY, as well as LogMiner, Oracle Spatial, and Oracle Text, all of which formerly used
the SYSTEM tablespace for storing configuration information. The current occupants of the
SYSAUX tablespace can be identified by querying the V$SYSAUX_OCCUPANTS view:

BT SOL> select occupant name, occupant_desc, space_usage_kbytes
2 from v$sysaux_ occupants;

OCCUPANT NAME OCCUPANT DESC SPACE USAGE KBYTES

LOGMNR LogMiner 7744
LOGSTDBY Logical Standby 960
SMON_SCN TIME Transaction Layer - SCN to TIME mapping 3328
PL/SCOPE PL/SQL Identifier Collection 384
STREAMS Oracle Streams 1024
XDB XDB 98816
AO Analytical Workspace Object Table 38208
XSOQHIST OLAP API History Tables 38208
XSAMD OLAP Catalog 15936
SM/AWR Server Manageability - Automatic Workloa 131712
d Repository
SM/ADVISOR Server Manageability - Advisor Framework 13248
SM/OPTSTAT Server Manageability - Optimizer Statist 52672
ics History
SM/OTHER Server Manageability - Other Components 6016
STATSPACK Statspack Repository 0
SDO Oracle Spatial 47424
WM Workspace Manager 7296
ORDIM Oracle interMedia ORDSYS Components 11200

Chapter 6: Monitoring Space Usage 183

ORDIM/PLUGINS Oracle interMedia ORDPLUGINS Components 0

ORDIM/SQLMM Oracle interMedia SI INFORMTN SCHEMA Com 0
ponents

EM Enterprise Manager Repository 155200

TEXT Oracle Text 5568

ULTRASEARCH Oracle Ultra Search 7616

ULTRASEARCH D Oracle Ultra Search Demo User 12288

EMO_USER

EXPRESSION FI Expression Filter System 3968

LTER

EM MONITORING Enterprise Manager Monitoring User 1536

_USER

TSM Oracle Transparent Session Migration User 256

SQL MANAGEMEN SQL Management Base Schema 1728

T BASE

AUTO TASK Automated Maintenance Tasks 320

JOB_SCHEDULER Unified Job Scheduler 576

29 rows selected.

If the SYSAUX tablespace is taken offline or otherwise becomes corrupted, only these
components of the Oracle database will be unavailable; the core functionality of the database will
be unaffected. In any case, the SYSAUX tablespace helps to take the load off of the SYSTEM
tablespace during normal operation of the database.

To monitor the usage of the SYSAUX tablespace, you can query the column SPACE_USAGE_
KBYTES on a routine basis, and it can alert the DBA when the space usage grows beyond a certain
level. If the space usage for a particular component requires a dedicated tablespace to be allocated
for the component, such as for the EM Repository, the procedure identified in the MOVE_
PROCEDURE column of the V§SYSAUX_OCCUPANTS view will move the application to
another tablespace:

SQL> select occupant_name, move procedure from v$sysaux_occupants
2 where occupant_name = 'EM';

OCCUPANT NAME MOVE _PROCEDURE

EM emd maintenance.move em tblspc

In the following scenario, we know that we will be adding several hundred nodes to our
management repository in the near future. Because we want to keep the SYSAUX tablespace from
growing too large, we decide to create a new tablespace to hold only the Enterprise Manager
data. In the following example, we'll create a new tablespace and move the Enterprise Manager
schema into the new tablespace:

SQL> create tablespace EM REP

2> datafile '+DATA' size 250m autoextend on next 100m;
Tablespace created.
SQL> execute sysman.emd maintenance.move_em tblspc('EM REP');
PL/SQL procedure successfully completed.

SQL> select occupant name, occupant_desc, space_usage_kbytes
2> from v§sysaux occupants

184 Oracle Database 11g DBA Handbook

3> where occupant_name = 'EM';
OCCUPANT NAME OCCUPANT DESC SPACE_USAGE KBYTES
EM Enterprise Manager Repository 0

1 row selected.

Since the current space allocation for the EM tools is about 150MB, a tablespace starting at a
size of 250MB with additional extents of T00MB each should be sufficient for most environments.
Note that the row for Enterprise Manager is still in V$SYSAUX_OCCUPANTS; even though it is
not taking up any space in the SYSAUX tablespace, we may want to move its metadata back into
SYSAUX at some point in the future. Therefore, we may need to query V$SYSAUX_OCCUPANTS
again to retrieve the move procedure. We use the same procedure for moving the application into
and out of SYSAUX:

- SQL> execute sysman.emd maintenance.move_em tblspc('SYSAUX');
PL/SQL procedure successfully completed.

If a component is not being used in the database at all, such as Ultra Search, a negligible
amount of space is used in the SYSAUX tablespace.

Archived Redo Log File Management

It is important to consider space management for objects that exist outside of the database, such as
archived redo log files. In ARCHIVELOG mode, an online redo log file is copied to the destination(s)
specified by LOG_ARCHIVE_DEST_n (where n is a number from 1 to 10) or by DB_RECOVERY_
FILE_DEST (the flash recovery area) if none of the LOG_ARCHIVE_DEST_n values are set.

The redo log being copied must be copied successfully to at least one of the destinations
before it can be reused by the database. The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter
defaults to 1 and must be at least 1. If none of the copy operations are successful, the database
will be suspended until at least one of the destinations receives the log file. Running out of disk
space is one possible reason for this type of failure.

If the destination for the archived log files is on a local file system, an operating system
shell script can monitor the space usage of the destination, or it can be scheduled with DBMS_
SCHEDULER or with OEM.

Built-in Space Management Tools

Oracle 10g provides a number of built-in tools that a DBA can use on demand to determine if
there are any problems with disk space in the database. Most, if not all, of these tools can be
manually configured and run by calling the appropriate built-in package. In this section, we’ll
cover the packages and procedures used to query the database for space problems or advice

on space management. In addition, I'll show you the new initialization parameter used by the
Automatic Diagnostic Repository to identify the alert and trace file location. Later in this chapter,
you'll see how some of these tools can be automated to notify the DBA via e-mail or pager when
a problem is imminent; many, if not all, of these tools are available on demand via the EM
Database Control web interface.

Chapter 6: Monitoring Space Usage 185

Segment Advisor

Frequent inserts, updates, and deletes on a table may, over time, leave the space within a table
fragmented. Oracle can perform segment shrink on a table or index. Shrinking the segment makes
the free space in the segment available to other segments in the tablespace, with the potential to
improve future DML operations on the segment because fewer blocks may need to be retrieved
for the DML operation after the segment shrink. Segment shrink is very similar to online table
redefinition in that space in a table is reclaimed. However, segment shrink can be performed

in place without the additional space requirements of online table redefinition.

To determine which segments will benefit from segment shrink, you can invoke Segment
Advisor to perform growth trend analysis on specified segments. In this section, we’'ll invoke
Segment Advisor on some candidate segments that may be vulnerable to fragmentation.

In the example that follows, we'll set up Segment Advisor to monitor the HR.EMPLOYEES
table. In recent months, there has been high activity on this table; in addition, a new column,
WORK_RECORD, has been added to the table, which HR uses to maintain comments about
the employees:

SQL> alter table hr.employees add (work_record varchar2(4000)) ;
Table altered.

SQL> alter table hr.employees enable row movement;

Table altered.

We have enabled ROW MOVEMENT in the table so that shrink operations can be performed on
the table if recommended by Segment Advisor.

After Segment Advisor has been invoked to give recommendations, the findings from Segment
Advisor are available in the DBA_ADVISOR_FINDINGS data dictionary view. To show the potential
benefits of shrinking segments when Segment Advisor recommends a shrink operation, the view
DBA_ADVISOR_RECOMMENDATIONS provides the recommended shrink operation along with
the potential savings, in bytes, for the operation.

To set up Segment Advisor to analyze the HR.EMPLOYEES table, we will use an anonymous
PL/SQL block, as follows:

-- begin Segment Advisor analysis for HR.EMPLOYEES

-- rev. 1.1 RJB 07/07/2007

-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task id number

-- PL/SQL block follows
declare
name varchar2 (100);
descr varchar2 (500);
obj id number;

begin
name := ''; -- unique name generated from create task
descr := 'Check HR.EMPLOYEE table';

dbms advisor.create task
('Segment Advisor', :task id, name, descr, NULL);
dbms advisor.create object
(name, 'TABLE', 'HR', 'EMPLOYEES', NULL, NULL, obj id);

186 Oracle Database 11g DBA Handbook

dbms advisor.set task parameter (name, 'RECOMMEND ALL', 'TRUE');
dbms_advisor.execute_task(name);
end;

PL/SQL procedure successfully completed.
SQL> print task_id

TASK_ID

SQL>

The procedure DBMS_ADVISOR.CREATE_TASK specifies the type of advisor; in this case, it is
Segment Advisor. The procedure will return a unique task ID and an automatically generated
name to the calling program; we will assign our own description to the task.

Within the task, identified by the uniquely generated name returned from the previous procedure,
we identify the object to be analyzed with DBMS_ADVISOR.CREATE_OBJECT. Depending on the
type of object, the second through the sixth arguments vary. For tables, we only need to specify the
schema name and the table name.

Using DBMS_ADVISOR.SET_TASK_PARAMETER, we tell Segment Advisor to give all possible
recommendations about the table. If we want to turn off recommendations for this task, we would
specify FALSE instead of TRUE for the last parameter.

Finally, we initiate the Segment Advisor task with the DBMS_ADVISOR.EXECUTE_TASK
procedure. Once it is done, we display the identifier for the task so we can query the results
in the appropriate data dictionary views.

Now that we have a task number from invoking Segment Advisor, we can query DBA_
ADVISOR_FINDINGS to see what we can do to improve the space utilization of the
HR.EMPLOYEES table:

BT SOL> select owner, task_id, task name, type,

2 message, more_info from dba_advisor_ findings
3 where task_id = 384;

OWNER TASK ID TASK NAME TYPE

RS 6 TASK 00003 INFORMATION

MESSAGE

Perform shrink, estimated savings is 107602 bytes.

MORE INFO

Allocated Space:262144: Used Space:153011: Reclaimable Space :107602:

The results are fairly self-explanatory. We can perform a segment shrink operation on the table
to reclaim space from numerous insert, delete, and update operations on the HR.EMPLOYEES
table. Because the WORK_RECORD column was added to the HR.EMPLOYEES table after the table
was already populated, we may have created some chained rows in the table; in addition, since
the WORK_RECORD column can be up to 4000 bytes long, updates or deletes of rows with big

Chapter 6: Monitoring Space Usage 187

WORK_RECORD columns may create blocks in the table with free space that can be reclaimed.
The view DBA_ADVISOR_RECOMMENDATIONS provides similar information:

SQL> select owner, task_id, task name, benefit type
2 from dba_advisor_recommendations
3 where task_id = 384;

OWNER TASK_ID TASK NAME

RJB 384 TASK 00003

BENEFIT TYPE

Perform shrink, estimated savings is 107602 bytes.

In any case, we will shrink the segment HR.EMPLOYEES to reclaim the free space. As an
added time-saving benefit to the DBA, the SQL needed to perform the shrink is provided in the
view DBA_ADVISOR_ACTIONS:

SQL> select owner, task_id, task_name, command, attrl

2 from dba_advisor_actions where task id = 384;
OWNER TASK ID TASK NAME COMMAND
RIB G TASK 00003 SHRINK SPACE
ATTRI1

alter table HR.EMPLOYEES shrink space
1 row selected.

SQL> alter table HR.EMPLOYEES shrink space;
Table altered.

As mentioned earlier, the shrink operation does not require extra disk space and does not
prevent access to the table during the operation, except for a very short period of time at the end of
the process to free the unused space. All indexes are maintained on the table during the operation.

In addition to freeing up disk space for other segments, there are other benefits to shrinking a
segment. Cache utilization is improved because fewer blocks need to be in the cache to satisfy
SELECT or other DML statements against the segment. Also, because the data in the segment is
more compact, the performance of full table scans is improved.

There are a couple of caveats and minor restrictions. First, segment shrink will not work
on LOB segments if you are using Oracle Database 10g. Online table reorganization is a more
appropriate method in this case. Also, segment shrink is not allowed on a table that contains
any function-based indexes regardless of whether you are using Oracle Database 10g or 11g.

Undo Advisor and the Automatic Workload Repository

New to Oracle 10g, the Undo Advisor provides tuning information for the undo tablespace,
whether it's sized too large, it's too small, or the undo retention (via the initialization parameter
UNDO_RETENTION) is not set optimally for the types of transactions that occur in the database.

188 Oracle Database 11g DBA Handbook

Using the Undo Advisor is similar to using the Segment Advisor in that we will call the
DBMS_ADVISOR procedures and query the DBA_ADVISOR_* data dictionary views to see
the results of the analysis.

The Undo Advisor, however, relies on another feature new to Oracle 10g—the Automatic
Workload Repository (AWR). The Automatic Workload Repository, built into every Oracle
database, contains snapshots of all key statistics and workloads in the database at 60-minute
intervals by default. The statistics in the AWR are kept for seven days, after which the oldest
statistics are dropped. Both the snapshot intervals and the retention period can be adjusted to
suit your environment, however. The AWR maintains the historical record of how the database
is being used over time and helps to diagnose and predict problems long before they can cause
a database outage.

To set up Undo Advisor to analyze undo space usage, we will use an anonymous PL/SQL
block similar to what we used for Segment Advisor. Before we can use Segment Advisor, however,
we need to determine the timeframe to analyze. The data dictionary view DBA_HIST_SNAPSHOT
contains the snapshot numbers and date stamps; we will look for the snapshot numbers from 8:00
P.M. Saturday, July 21, 2007 through 9:30 p.m. Saturday, July 21, 2007:

I SQoL> select snap_id, begin_interval time, end interval time

2 from DBA HIST_ SNAPSHOT

3 where begin_interval_ time > '21-Jul-07 08.00.00 PM' and
4 end_interval_ time < '21-Jul-07 09.31.00 PM'

5 order by end interval_ time desc;

SNAP ID BEGIN INTERVAL TIME END INTERVAL TIME
8 21-JAN-07 09.00.30.828 PM 21-JAN-07 09.30.14.078 PM
7 21-JAN-07 08.30.41.296 PM 21-JAN-07 09.00.30.828 PM
6 21-JAN-07 08.00.56.093 PM 21-JAN-07 08.30.41.296 PM

Given these results, we will use a SNAP_ID range from 6 to 8 when we invoke Undo Advisor.
The PL/SQL anonymous block is as follows:

I - begin Undo Advisor analysis

-- rev. 1.1 RJB 7/16/2007

-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task id number

declare
task id number;
name varchar?2 (100) ;
descr varchar2 (500) ;
obj id number;
begin
name := ''; -- unique name generated from create task
descr := 'Check Undo Tablespace';

dbms_ advisor.create task

('Undo Advisor', :task id, name, descr);
dbms advisor.create object

(name, 'UNDO TBS', NULL, NULL, NULL, 'null', obj id);
dbms_advisor.set task parameter (name, 'TARGET OBJECTS', obj id);
dbms advisor.set task parameter (name, 'START SNAPSHOT', 6);

Chapter 6: Monitoring Space Usage 189

dbms advisor.set task parameter (name, 'END SNAPSHOT', 8);
dbms_advisor.set_task_parameter(name, '"INSTANCE', 1);
dbms advisor.execute task(name);

end;

PL/SQL procedure successfully completed.
SQL> print task_id

TASK_ID

As with the Segment Advisor, we can review the DBA_ADVISOR_FINDINGS view to see the
problem and the recommendations.

SQL> select owner, task_id, task name, type,

2 message, more_info from dba_advisor_ findings
3 where task id = 527;

OWNER TASK ID TASK NAME TYPE

B 527 TASK_00003 PROBLEM

MESSAGE

The undo tablespace is OK.

MORE_INFO

In this particular scenario, Undo Advisor indicates that there is enough space allocated in the
undo tablespace to handle the types and volumes of queries run against this database.

Index Usage

Although indexes provide a tremendous benefit by speeding up queries, they can have an impact
on space usage in the database. If an index is not being used at all, the space occupied by an
index can be better used elsewhere; if we don’t need the index, we also can save processing time
for insert, update, and delete operations that have an impact on the index. Index usage can be
monitored with the dynamic performance view V$OBJECT_USAGE. In our HR schema, we
suspect that the index on the JOB_ID column of the EMPLOYEES table is not being used. We
turn on monitoring for this index as follows:

SQL> alter index hr.emp job ix monitoring usage;
Index altered.

We take a quick look at the V$OBJECT_USAGE view to make sure this index is being monitored:

SQL> select * from v$object_usage;
INDEX NAME TABLE NAME MON USED START MONITORING

EMP_JOB_IX EMPLOYEES YES NO 07/24/2007 10:04:55

190 Oracle Database 11g DBA Handbook

The column USED will tell us if this index is accessed to satisfy a query. After a full day of
typical user activity, we check V$OBJECT_USAGE again and then turn off monitoring:

BT SOL> alter index hr.emp_ job_ix nomonitoring usage;

Index altered.

SQL> select * from v$object usage;

INDEX NAME TABLE NAME MON USED START MONITORING END MONITORING

EMP_JOB IX EMPLOYEES NO YES 07/24/2007 10:04:55 07/25/2007 11:39:45

Sure enough, the index appears to be used at least once during a typical day.

On the other end of the spectrum, an index may be accessed too frequently. If key values are
inserted, updated, and deleted frequently, an index can become less efficient in terms of space
usage. The following commands can be used as a baseline for an index after it is created, and
then run periodically to see if the space usage becomes inefficient:

B sOL> analyze index hr.emp_job_ix validate structure;
Index analyzed.

SQL> select pct used from index_stats where name = 'EMP_JOB_IX';
PCT_USED
78

The PCT_USED column indicates the percentage of the allocated space for the index in use.
Over time, the EMPLOYEES table is heavily used, due to the high turnover rate of employees at
the company, and this index, among others, is not using its space efficiently, as indicated by the
following analyze command and select query, so we decide that a rebuild is in order:

I soL> analyze index hr.emp_ job_ix validate structure;
Index analyzed.

SQL> select pct used from index_stats where name = 'EMP_JOB_IX';
PCT USED
26

SQL> alter index hr.emp_ job_ix rebuild online;
Index altered.

Notice the inclusion of the online option in the alter index . . . rebuild statement. The
indexed table can remain online with minimal overhead while the index is rebuilding. In rare
circumstances, such as on longer key lengths, you may not be able to use the online option.

Space Usage Warning Levels

Earlier in this chapter, we reviewed the data dictionary view DBA_THRESHOLDS, which contains
a list of the active metrics to measure a database’s health. In a default installation of Oracle 11g,
use the following select statement to see some of the 22 built-in thresholds:

BT SQL> select metrics_name, warning operator warn, warning value wval,
2 critical operator crit, critical_value cval,

3 consecutive_occurrences consec

4 from dba_thresholds;

Chapter 6: Monitoring Space Usage 191

METRICS NAME WARN WVAL CRIT CVAL CONSEC
Average Users Waiting Counts GT 10 NONE 3
Blocked User Session Count GT 0 NONE 15
Current Open Cursors Count GT 1200 NONE 3
Database Time Spent Waiting (%) GT 30 NONE 3
Logons Per Sec GE 100 NONE 2
Session Limit % GT 90 GT 97 3
Tablespace Bytes Space Usage LE 0 LE 0 1
Tablespace Space Usage GE 85 GE 97 1

22 rows selected.

In terms of space usage, we see that the warning level for a given tablespace is when the
tablespace is 85 percent full, and the space is at a critical level when it reaches 97 percent full.
In addition, this condition need only occur during one reporting period, which by default is one
minute. For the other conditions in this list, the condition must be true anywhere between 2 and
15 consecutive reporting periods before an alert is issued.

To change the level at which an alert is generated, we can use the DBMS_SERVER_ALERT.
SET_THRESHOLD procedure. In this example, we want to be notified sooner if a tablespace is
running out of space, so we will update the warning threshold for alert notification from 85
percent down to 60 percent:

-- PL/SQL anonymous procedure to update the Tablespace Space Usage threshold

declare
/* OUT */
warning operator number;
warning value varchar?2 (100) ;

critical operator number;
critical value varchar?2 (100) ;
observation period number;
consecutive occurrences number;

/* IN */
metrics id number;
instance name varchar2 (50) ;
object type number;
object name varchar2 (50) ;
new _warning value varchar2(100) := '60';
begin
metrics id := DBMS SERVER ALERT.TABLESPACE PCT FULL;
object type := DBMS SERVER ALERT.OBJECT TYPE TABLESPACE;
instance name := 'dw';

object name := NULL;

192 Oracle Database 11g DBA Handbook

-- retrieve the current values with get threshold
dbms_server alert.get threshold(
metrics_id, warning operator, warning value,
critical operator, critical value,
observation period, consecutive occurrences,
instance name, object type, object name);

-- update the warning threshold value from 85 to 60
dbms server alert.set threshold(
metrics id, warning operator, new warning value,
critical operator, critical value,
observation period, consecutive occurrences,
instance name, object type, object name);

end;

PL/SQL procedure successfully completed.

Checking DBA_THRESHOLDS again, we see the warning level has been changed to 60
percent:

I s0L> select metrics name, warning operator warn, warning value wval

2 from dba_thresholds;
METRICS NAME WARN WVAL
Average Users Waiting Counts GT 10
éléc#ed User Session Count GT 0
Current Open Cursors Count GT 1200

Database Time Spent Waiting (%) GT 30

Logons Per Sec GE 100

Session Limit % GT 90
Tablespace Bytes Space Usage LE 0
Tablespace Space Usage GE 60

22 rows selected.

A detailed example of how to use Oracle’s Advanced Queuing to subscribe to queue alert
messages is beyond the scope of this book. Later in this chapter, | will, however, show some
examples of how to use Enterprise Manager to set up asynchronous notification of alert conditions
using e-mail, a pager, or a PL/SQL procedure.

Resumable Space Allocation

Starting with Oracle9i, the Oracle database provides a way to suspend long-running operations in
the event of space allocation failures. Once the DBA is notified and the space allocation problem
has been corrected, the long-running operation can complete. The long-running operation does
not have to be restarted from the beginning.

Chapter 6: Monitoring Space Usage 193

Three types of space management problems can be addressed with Resumable Space Allocation:

B Out of space in the tablespace
B Maximum extents reached in the segment

B Space quota exceeded for a user

The DBA can automatically make statements resumable by setting the initialization parameter
RESUMABLE_TIMEOUT to a value other than 0. This value is specified in seconds. At the session
level, a user can enable resumable operations by using the ALTER SESSION ENABLE RESUMABLE
command:

SQL> alter session enable resumable timeout 3600;

In this case, any long-running operation that may run out of space will suspend for up to 3600
seconds (60 minutes) until the space condition is corrected. If it is not corrected within the time
limit, the statement fails.

In the scenario that follows, the HR department is trying to add the employees from the branch
office EMPLOYEES table to an EMPLOYEE_SEARCH table that contains employees throughout the
company. Without Resumable Space Allocation, the HR user receives an error, as follows:

SQL> insert into employee search
2 select * from employees;
insert into employee search
*
ERROR at line 1:
ORA-01653: unable to extend table HR.EMPLOYEE SEARCH by 128
in tablespace USERS9

After running into this problem many times, the HR user decides to use Resumable Space
Allocation to prevent a lot of rework whenever there are space problems in the database, and
tries the operation again:

SQL> alter session enable resumable timeout 3600;
Session altered.
SQL> insert into hr.employee_search

2 select * from hr.employees;

The user does not receive a message, and it is not clear that the operation has been
suspended. However, in the alert log (managed by the Automatic Diagnostic Repository
as of Oracle Database 11g), the XML message reads as follows:

<msg time='2007-07-23T22:58:26.749-05:00"
org id='oracle' comp id='rdbms'

client id='' type='UNKNOWN' level='l6"

host id='dw' host addr='192.168.2.95"'" module='SQL*Plus'
pid='1843">
<txt> ORA-01653: unable to extend table

HR.EMPLOYEE SEARCH by 128 in tablespace USERS9

</txt>
</msg>

194 Oracle Database 11g DBA Handbook
The DBA receives a pager alert, set up in OEM, and checks the data dictionary view DBA_
RESUMABLE:

BT SQL> select user_id, instance_id, status, name, error_msg
2 from dba_resumable;

USER_ID INSTANCE_ID STATUS NAME ERROR_MSG
80 1 SUSPENDED User HR(80), Session ORA-01653: unable to
113, Instance 1 extend table HR.EMP

LOYEE SEARCH by 128
in tablespace USERS9

The DBA notices that the tablespace USERS9 does not allow autoextend, and modifies the
tablespace to allow growth:

I s0L> alter tablespace users9

2 add datafile '+DATA'
3 size 100m autoextend on;
Tablespace altered.

The user session’s insert completes successfully, and the status of the resumable operation is
reflected in the DBA_RESUMABLE view:

| USER_ID INSTANCE ID STATUS NAME ERROR MSG

80 1 NORMAL User HR(80), Session
113, Instance 1

The alert log file also indicates a successful resumption of this operation:

B <msg time='2007-07-23T23:06:31.178-05:00"

org id='oracle' comp id='rdbms'
client id='' type='UNKNOWN' level='l6"
host id='dw' host addr='192.168.2.95"'" module='SQL*Plus'
pid='1843">
<txt>statement in resumable session 'User HR(80),
Session 113, Instance l' was resumed </txt>
</msg>

In Figure 6-3, you can see the tablespace USERS9 space alert appear on the instance’s home
page in the Alerts section, in addition to the previous alert warning you that the USERS9 tablespace
was nearly full about 15 minutes before the HR user temporarily ran out of space!

As far as the user is concerned, the operation took longer than expected but still completed
successfully. Another way to provide more information to the user is to set up a special type of
trigger introduced in Oracle9i called a system trigger. A system trigger is like any other trigger,

Chapter 6: Monitoring Space Usage 195

¥ alerts
Category | Al v | Co) Critical O Warning Mg
Alert
Severity ICategory Name Impact Message Triggered
\D User Audit Audited User User 55 logged on from dw, Jul 23, 2007
: 9:07:55 PM
\D Tablespaces Tablespace Space Used Tablespace USERS is 90 percent full ul 23, 2007
- Full % 10:44:06 PM
\3 Session Session Suspended by Dperation on resumable session User HR(S0), Session 113, Instance 1 session id 113 suspended because | Jul 23, 2007
: Suspended Tablespace Limitation of errors in tablespace ISERSS. Error message is ORA-01653: unable to extend table 10:58:25 PM

HR.EMPLOYEE SEARCH by 128 in tablespace LISERSY

FIGURE 6-3 Alerts section on the instance home page

except it is based on some type of system event rather than on a DML statement against a table.
Here is a template for a system trigger that fires on an AFTER SUSPEND event:

create or replace trigger resumable notify
after suspend on database -- fired when resumable space event occurs

declare

-- variables, if required
begin

-- give DBA 2 hours to resolve

dbms_resumable.set_timeout(7200);

-- check DBA RESUMABLE for user ID, then send e-mail

utl mail.send ('karen s@rjbdba.com', . . .);
end;

Managing Alert and Trace Files with ADR

New to Oracle Database 11g, the Automatic Diagnostic Repository (ADR) is a system-managed
repository for storing database alert logs, trace files, and any other diagnostic data previously
controlled by several other initialization parameters.

The initialization parameter DIAGNOSTIC_DEST sets the base location for all diagnostic
directories; in the dw database I use throughout this chapter, the value of the parameter
DIAGNOSTIC_DEST is /u01/app/oracle. Figure 6-4 shows a typical directory structure starting
with the subdirectory /u01/app/oracle/diag.

Notice that there are separate directories for the ASM databases and the database (rdbms)
instances; within the rdbms directory, you can see the dw directory twice: the first-level directory
is the database dw, and the second dw is the instance dw. If this were a Real Application Clusters
(RAC) database, you would see each instance of the dw database under the first-level dw directory.
In fact, Oracle strongly recommends that all instances within a RAC database have the same
value for DIAGNOSTIC_DEST.

Because the location of all logging and diagnostic information is controlled by the initialization
parameter DIAGNOSTIC_DEST, the following initialization parameters are ignored:

B BACKGROUND_DUMP_DEST
B USER_DUMP_DEST
B CORE_DUMP_DEST

196 Oracle Database 11g DBA Handbook

File Browser; trace E][E][z]
File Edit Miew Go Bookmarks Help
< P . A O & @& O
Back Forward Up Stop Reload Home Computer
Location |qulfappfuracIefd\ag!rdbms;’dwl’dwhrace | 8, 100% &
Treev *x B
-
= %
~ D [&] L } eyl L
@ app alert_dw.log dw_arc0_18364.trm
~ Dmacle
I [0 admin ‘E:Ei :;:i? ‘;::;
lmirt 0 fmirt
b 2 cfgtocliogs dw_arc0_4213.trc dw_arc0_4213.trm dw_arc0_7122.trc
~ Ddiag
b [Jasm fri==s) fEi=zs)
‘am[‘am[
~ B rabms d 01r22 d 0_7149 d OlrQQ
> dw hw_arc0_ trm w_arc0_ tre hw_arc0_ .trm
v de ti=z:
b alen u ‘E
I Dcdump dw_arcl_18366.trc dw_arc1_18366.1rm dw_arcl_7201.trc
b [hm
b [incident ‘;’,:? ‘;;:?
. 0 0
b Dincpkg z dw_arcl 7201.trm dw_arcl_8044.trc dw_arcl_8044.trm
P i
b ek =
-
b [metadata 5
b Dslage dw_arc2_18368.trc dw_arc2_18368 trm dw_arc3_18370.trc
b [sweep I r r
fri=zs fri=zs
s =
b [inslsnr dw_arc3_18370.trm dw_cjq0_10785 trc dw_cjq0_10785.trm
b 2 oralnventory [+] — — — [+]
1277 items, Free space; 3.8 GB v

FIGURE 6-4 ADR directory structure

For backward compatibility, however, you can still use these as read-only parameters to
determine the location of the alert log, trace files, and core dumps:

SQL> show parameter dump dest
background dump dest
core dump dest

user dump dest

string
string

string

/u0l/app/oracle/diag/rdbms/dw/
dw/trace
/u0l/app/oracle/diag/rdbms/dw/
dw/cdump
/u0l/app/oracle/diag/rdbms/dw/
dw/trace

You can still alter the values for these parameters, but they are ignored by ADR. Alternatively,
you can use the view V$DIAG_INFO to find all diagnostic-related directories for the instance:

SQL> select name, value from v$diag_info;

Diag Enabled

Chapter 6: Monitoring Space Usage 197

ADR Base /u0l/app/oracle

ADR Home /u0l/app/oracle/diag/rdbms/dw/dw

Diag Trace /u0l/app/oracle/diag/rdbms/dw/dw/trace

Diag Alert /ul0l/app/oracle/diag/rdbms/dw/dw/alert

Diag Incident /u0l/app/oracle/diag/rdbms/dw/dw/incident

Diag Cdump /u0l/app/oracle/diag/rdbms/dw/dw/cdump

Health Monitor /u0l/app/oracle/diag/rdbms/dw/dw/hm

Default Trace File /ul0l/app/oracle/diag/rdbms/dw/dw/trace/dw _ora
~28810.trc

Active Problem Count 0

Active Incident Count 0

11 rows selected.

OS Space Management

Outside of the Oracle environment, space should be monitored by the system administrator with
a thorough understanding from the DBA as to the parameters in place for autoextending datafiles.
Setting AUTOEXTEND ON with large NEXT values for a tablespace will allow a tablespace to
grow and accommodate more inserts and updates, but this will fail if the server’s disk volumes
do not have the space available.

Space Management Scripts

In this section, | provide a couple scripts you can run on an as-needed basis, or you can schedule
them to run on a regular basis to proactively monitor the database.

These scripts take the dictionary views and give a more detailed look at a particular structure.
The functionality of some of these scripts might overlap with the results provided by some of the
tools I've mentioned earlier in the chapter, but they might be more focused and in some cases
provide more detail about the possible space problems in the database.

Segments That Cannot Allocate Additional Extents

In the following script, we want to identify segments (most likely tables or indexes) that cannot
allocate additional extents:

select s.tablespace name, s.segment name,
s.segment type, s.owner
from dba_segments s
where s.next extent >=
(select max (f.bytes)
from dba_free_space f
where f.tablespace name = s.tablespace_name)
or s.extents = s.max_extents
order by tablespace name, segment name;

TABLESPACE_ NAME SEGMENT _NAME SEGMENT_TYPE OWNER

USERS9 EMPLOYEE SEARCH TABLE HR

198 Oracle Database 11g DBA Handbook

In this example, we're using a correlated subquery to compare the size of the next extent to
the amount of free space left in the tablespace. The other condition we’re checking is whether the
next extent request will fail because the segment is already at the maximum number of extents.

The reason these objects might be having problems is most likely one of two possibilities: The
tablespace does not have room for the next extent for this segment, or the segment has the maximum
number of extents allocated. To solve this problem, the DBA can extend the tablespace by adding
another datafile or by exporting the data in the segment and re-creating it with storage parameters
that more closely match its growth pattern. As of Oracle9i, using locally managed tablespaces
instead of dictionary-managed tablespaces solves this problem when disk space is not the issue—
the maximum number of extents in an LMT is unlimited.

Used and Free Space by Tablespace and Datafile

The following SQL*Plus script breaks down the space usage of each tablespace, which is further
broken down by datafile within each tablespace. This is a good way to see how space is used
and extended within each datafile of a tablespace, and it may be useful for load balancing when
you're not using ASM or other high-availability storage.

-- Free space within non-temporary datafiles, by tablespace.

-- No arguments.
-- 1024*1024*1000 = 1048576000 = 1GB to match OEM

column free_space gb format 9999999.999
column allocated gb format 9999999.999

column used gb format 9999999.999
column tablespace format al2
column filename format a20

select ts.name tablespace, trim(substr(df.name,1,100)) filename,
df .bytes/1048576000 allocated gb,
((df.bytes/1048576000) - nvl(sum(dfs.bytes)/1048576000,0)) used gb,
nvl (sum(dfs.bytes) /1048576000,0) free_space_gb
from v$datafile df
join dba_ free_space dfs on df.file# = dfs.file_id
join v$tablespace ts on df.ts# = ts.ts#
group by ts.name, dfs.file id, df.name, df.file#, df.bytes
order by filename;

TABLESPACE FILENAME ALLOCATED_GB USED_GB FREE_ SPACE GB

DMARTS +DATA/dw/datafile/dm .25 .0640625 .1859375
arts.269.628621093

EM REP +DATA/dw/datafile/em .25 .0000625 .2499375
_rep.270.628640521

EXAMPLE +DATA/dw/datafile/ex .1 .077375 .022625
ample.265.627433157

SYSAUX +DATA/dw/datafile/sy .7681875 .7145 .0536875

saux.257.627432973

Chapter 6: Monitoring Space Usage 199

SYSTEM +DATA/dw/datafile/sy .77 .7000625 .0699375
stem.256.627432971

UNDOTBS1 +DATA/dw/datafile/un .265 .0155625 .2494375
dotbsl1.258.627432975

USERS +DATA/dw/datafile/us .0125 .0111875 .0013125
ers.259.627432977

USERS2 +DATA/dw/datafile/us .1 .0000625 .0999375
ers2.267.627782171

USERS4 +DATA/dw/datafile/us .25 .002 .248
ers4.268.628561597

USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
ers9.271.628727991

USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
ers9.272.628729587

USERS9 +DATA/dw/datafile/us .05 .0000625 .0499375
ers9.273.628730561

USERS3 +DATA2/dw/datafile/u .1 .0000625 .0999375
sers3.256.627786775

XPORT /u05/oradata/xport.d .3 .1280625 .1719375
bf

14 rows selected.

Only the USERS9 tablespace has more than one datafile in this database. To include temporary
tablespaces on this report, you can use a union query to combine this query with a similar query
based on V$TEMPFILE.

Automating and Streamlining
the Notification Process

Although any of the scripts and packages presented earlier in this chapter can be executed on
demand, some of them can and should be automated, not only to save time for the DBA but also
to be proactive and catch problems long before they cause a system outage.

Two of the primary methods for automating the scripts and packages are DBMS_SCHEDULER
and Oracle Enterprise Manager. Each of these methods has its advantages and disadvantages.
DBMS_SCHEDULER can provide more control over how the task is scheduled and can be set
up using only a command-line interface. Oracle Enterprise Manager, on the other hand, uses a
completely web-based environment that allows a DBA to oversee a database environment from
wherever there is access to a web browser.

Using DBMS_SCHEDULER

New to Oracle 10g is the DBMS_SCHEDULER package. It provides new features and functionality
over the previous job scheduler package, DBMS_JOB. Although DBMS_JOB is still available in
Oracle 10g, it is highly recommended that your jobs convert to DBMS_SCHEDULER because the
DBMS_JOB package may be deprecated in a future release.

DBMS_SCHEDULER contains many of the procedures you’d expect from a scheduling package:
CREATE_JOB, DROP_JOB, DISABLE, STOP_JOB, and COPY_JOB. In addition, DBMS_SCHEDULER
makes it easy to automatically repeat job executions with CREATE_SCHEDULE and to partition jobs
into categories based on resource usage with the CREATE_JOB_CLASS procedure.

200 Oracle Database 11g DBA Handbook

OEM Job Control and Monitoring

Not only can Oracle Enterprise Manager present most database administration tasks in a graphical,
web-based environment, it can automate some of the routine tasks that a DBA might perform on a
daily basis. In this section, we'll cover the OEM-equivalent functionality to Segment Advisor and
Undo Advisor, covered previously in this chapter.

Segment Advisor

Figure 6-5 shows the home page for OEM. Many of the space management functions, including

Segment Advisor, are available directly from this home page, especially when there is a pending alert.
The top portion of the home page lists general availability information of the instance, including

the instance name, host name, CPU usage, and session information. The bottom half of the home

page contains direct links to status pages and advisors. Figure 6-6 shows the bottom half of the

home page from Figure 6-5.

ORACLE Enterprise Manager 11g Help Logout

Database Control

Logged in As RIB

Database Instance: dw.world

Home Petformance Availability: Server Schema Diata Movement Software and Support
Latest Data Colecked From Target Jul 24, 2007 9:27:37 AM CDT | Rafrach | View Data Automatically (50 sec) »
General Host CPU Active Sessions SOL Response Time

[Shutdown)| Black Out)

Status Up 75
Up Since Jul 24, 2007 9:06:02 AM CDT oth I st T2
Instance Mame dw 50 = 05 W User 10 ’
version 11.1.0.5.0 Wdn o
Host dw 25 =
Listener LISTENER dw 0.0
ATM A5 e 4] 0.0 o
Larest collection is ermpy.
View Al Properties Load 0.50 Paging 0.01 Maxirmurn P 1 SQL Response Time (Ya) Unavailable

|_Edit Reference Collection

Diagnostic Summary

Space Summary

High availability

A0DM Findings & Database Size (GE) 111 Instance Recovery Time (sec) 27
Period Start Time Jul 24, 2007 §:00:31 AM CDT Problem Tablespaces i} Last Backup nfa
Alert Log [Mo ORA- errors Segment Advisor Recommendations i} Usable Flash Recovery Area (%) &0.71
Active Incidents @ a Policy wiclations « 0 Flashback Database Logging Disablad
Dump Area Used (%) 49
Diatabase Instance Health

¥ alerts

Categary | Al ¥\ Go Critical @ Warning (=) 1

| Severity |Eategnry Name |Impact Message Alert Triggered

\ﬂ User Audit Audited User User 5%5 logaed on from dw. Jul 23, 2007 2:07:55 PM

FIGURE 6-5 OEM home page

Chapter 6: Monitoring Space Usage 201

3 User Audit Audited Lser User 5Y5 logoed on from dw. Jul 23, 2007 9:07:55 PM
P>Related Alerts

ADDM Performance Analysis
Period Start Time Jul 24, 2007 8:00:31 AM CDT Period Duration {minutes) 609 Instance de.world

1-50f § (% | Mext3 =

|Impact %) |Finding Dccurrences (last 24 hrs)
] 60.2 Hard Parse 33 0of 22

I 546 “User 0" wait Class 24 of 22

- 23,6 Top SOL by DB Time 12 of 22

- 18.5 Top Segments by [Q 12 of 22

] 11,3 PLISOL Compilation 13of 22

Policy Violations

Al 12 Critical Rules Violabed 2 Crikical Security Patches 0 [3) Compliance Score [3%) 92

Job Activity

Jobs scheduled to start no more than 7 days ago

Scheduled Executions ORunning Executions 0Suspended Executions «f OProblem Executions < 0

Home Petformance Awailability Server Schemna Data Mavement Software and Support

Related Links

Access Advisor Ceritral Alert History

Alerk Log Conkents All Metrics Eascling Metric Thresholds
Blackouts EM SOL History Metric and Policy Settings
Metric Collection Errors Monitoring Configuration Monitor in Memory Access Mode
Policy Groups Repotts Scheduler Central

SOL Worksheet Target Properties User-Defined Metrics

Database | Helo | Logout

Copytight @ 1396, 2007, Cracle. All rights resarved.
Cracle, 10 Edwards, PeopleSoft, and Retek are registered tradernatks of Oracle Corporation andjfor its affiliates. Other names may be tradernatks of their respactive owners.

About Oracle Enterprise Manager

FIGURE 6-6 OEM home page-related links

If there is not an outstanding space-related alert, and you want to run Segment Advisor, click
the Advisor Central link in Figure 6-6, and then click the Segment Advisor link; you will see the
page in Figure 6-7.

In Figure 6-7, select the Tablespaces radio button; you suspect that one or more tables in the
USERS tablespace might need reorganization. Click Next; you will see Step 2 in Figure 6-8. Add
the USERS tablespace to the list of objects to be analyzed.

When you click Next in Figure 6-8, you can change the scheduling for the analysis job; by
default, the job runs immediately, which is what you want to do in this case. Figure 6-9 shows the
other scheduling options.

When you click Next in Figure 6-9, you see the review page in Figure 6-10. You can click Show
SQL if you are curious or if you want to use the SQL statements in your own custom batch job.

202 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11g Help Logout

Databhase Control Database

Scope Objects Schedule Review
Segment Advisor: Scope
Database dw.world Logged In As RIB | Cancel | sStepiof4 Mext

(1) Automatic Segment Advisor Information
Eeginning in ©racle Database 10,2, Oracle provides an Automatic Segment Advisor job which automatically detects segment issues, Any segment issues that have already
been detected can be viewed using the link below,

q

Adyisor Rec ions
‘fou can get advice on shrinking segments For individual schema objects or entire tablespaces. Overview
@Tablespaces The segment advisor determines whether objects hawve

unused space that can be released, taking estimated
future space requirements into consideration. The
estimated future space calculation is based on histarical
trends,

O schema Objects

| Cancel] Step1of4 [MNext)

Database | Help | Logout

Copytight @ 1996, 2007, Crace, All ights reserved,
Oracle, D Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation andfor its affiliates, Other names may be trademarks of their respective awners,

About Oracle Enterprise Mananer

FIGURE 6-7 Segment Advisor Step 1: select analysis type

As you might suspect, clicking Submit in Figure 6-10 submits the job to be run either
immediately or at the specified time. The next page you see is the Advisors tab in Figure 6-11.

ORACLE Enterprise Manager 11g Help Logout

Database Control Database

Objects Schedule Review

Segment Advisor: Tablespaces

Database dw.world LoggedIn 4s RIB | Cancel | | Baclﬁl stepzof 4 | Mext | [Submit)

| Add)

Name . Type Extent | ! Space | Size (MB)| Used {MB) |Used (%o} |Remuve
LISERS PERMAMNENT LOCAL AUTO 21.25 11.19 _2.65

Options
bShow Advanced Options

(_Cancel) (Back|Stepzof 4 | Mext) [Submit)

Database | Help | Logout

Copytight @ 1996, 2007, Oracle, All ights reserved,
Oracle, I Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation andfor its affiliates, Other names may be tradernarks of their respective owners,

About Oracle Enberprise Manager

FIGURE 6-8 Segment Advisor Step 2: select objects

Chapter 6: Monitoring Space Usage 203

ORACLE Enterprise Manager 11g
Database Control

Help Logout

Database

Segment Advisor: Schedule
Database dw.world

Schedule

Lagged In As

Feniaw

RIB

@ TIP This operation may be resource-intensive and should be scheduled during off-peak hours.

Task Information

= Task Mame |SEGMENTADV_6542228

Task Description |Get shrink advice based on object growth trend

Schedule

Schedule Type | Standard - |

Time Zone [(UTC-08:00) US Central Time |

&

Repeating
Repeat | Do Mot Repeat v

Start

® Immediakely

O Later
Date |Jul 24, 2007

(example: Jul 24, 2007)

@an O

FIGURE 6-9 Segment Advisor Step 3: scheduling options

ORACLE Enterprise Manager 11¢g
Database Control

Help Logout

Datahase

Segment Advisor: Review

Database dw.world Logged In As

TaskMame SEGMEMTADY_6542228
Task Description
Time Limit for Analysis (mins)

Advisory Results Retention (days)

Unlimited
30

Selected Dbjects

Review

RIB

Get shrink advice based on object growth trend

|Tahlespace

Type |

LISERS

PERMANEMT

|_Cancel) | Show SQL) | Bacgl Step4of 4 [Submit)

Database | Help | Logout

Copytight @ 1396, 2007, Oracle, All ights reserved,

Cracle, J0 Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation andfor its affiliates, Other names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 6-10 Segment Advisor Step 4: review

204 Oracle Database 11g DBA Handbook

Advisor Central
Advisors Checkers

Page Refreshed Jul 24, 2007 %:46:01 AM CDT | Refresh)

Advisors

ADCHM Automatic Undo Management Data Recovery ddvisor
Memory Advisors MTTR Advisor Seament Advisor

SOL Advisars Sl Performance Analyzer

Advisor Tasks
| Change Default Parameters}

Search
Select an advisory bype and optionally enter a task name to filter the data that is displayed in your results set,
Advisory Type Task Mame Advisor Runs Skatus

Segment Advisar v Al | al | Co)

By default, the search retums all uppetcase matches beginning with the string you entered, To run an exact or case-sensitive match, double quate the search string, You can use the wildcard
syrnbol [35) in a double quated sting,

Results
[_Wiew Result)| Delete Jactions| Re-schedule v| Co) 125 0F 31 % | Mexks (=
Advisory Duration| Expires In
Select [Type Name Description User [Status Start Time {seconds) {days)
® Segment SEGMEMTADY 6542228 Get shrink advice based on RIE CREATED Jul24, 2007 9:46:00 30
Advisar ohject growth trend AM
O Segment SEGMEMTADY 7944115 Get shrink advice based on RIE COMPLETED Jul 24, 2007 9:38:19 16 i}
Advisor obiject growth trend AM
® Seament S¥S AUTO SPCADY 27032472007 |Auto Space Advisor SYS COMPLETED Jul 23, 2007 124 29
Advisor 10:00:34 PM
O Segment TASK 504 Check HR.EMPLOYEE table SYS COMPLETED Jul 22, 2007 7 20
Advisar 11:05:58 PM
® Seqment Y5 AUTO SPCADY 2035232272007 Auto Space Advisor SYS COMPLETED Jul 22, 2007 6:35:21 17 25
Advisar P
O Segment SYS AUTO SPCADY 3120102272007 Auko Space Advisor SYS COMPLETED Jul 22, 2007 2:20:32 S 28
Advisor PR
O Segment SY5 AUTO SPCADY 39152272007 |Auto Space Advisor 5Y3 COMPLETED Jul 22, 2007 & 28
Advisar 10:02:03 &M

FIGURE 6-11 Advisors and Tasks

In Figure 6-11, you see the Segment Advisor task you just initiated. In this case, all of the recent
Advisor tasks are Segment Advisor tasks; depending on the time of day and other jobs you have
scheduled, this can be a mix of Memory Advisor tasks, SQL Advisor tasks, and so forth. Most of
the tasks in Figure 6-11 are created with the default Oracle installation and are run on a regular
basis, such as the Auto Space Advisor. As a result, any results you see in your ad hoc analysis task
would show up eventually in one of the periodic Segment Advisor task results.

When the Status column for your Segment Advisor job changes to COMPLETED (you can
refresh the list by refreshing the browser window or clicking Refresh), you can click the job name
to see the results of the job; you can see the results of this job in Figure 6-12.

The advisor results in Figure 6-12 indicate that the table EMPLOYEES_SEARCH would benefit
from a shrink operation, potentially improving access to the table and freeing up space in the
USERS tablespace. To implement the recommendation, you can click the Shrink button in the
Recommendation column.

Undo Advisor

To start the Automatic Undo Management Advisor, start at the page in Figure 6-11, and click the
Automatic Undo Management link at the top of the page. In Figure 6-13, you see the current
settings for the undo tablespace UNDOTBST.

Chapter 6: Monitoring Space Usage 205

Help Logout

ORACLE Enterprise Manager 11g
Database

Database Control

Database Instance: dw.world > Advisor Central > Segment Advisor Task: SEGMENTADY_1058733 >

Recommendation Details for Tablespace: USERS
The following table contains the reclaimable space information For the evaluated segments in the selected tablespace, Based on growth trends, the advisor takes inta
consideration estimated future space requirements, Oracle recommends shrinking or reorganizing these segments to release wasted space, Select the segment: to implement

the recommendation,

Task Mame SEGMENTADY_1058733 Started Jul 24, 2007 9:59:25 AM CDT
Status COMPLETED Ended Jul 24, 2007 9:59:42 AM CDT
Running Time (seconds) 17 Time Limit {mins) UNLIMITED
Schema Seqrent Partition Minirum Reclaimable Space (ME))
,5? [Search)
[Implement)
Select Al ‘ Select Mone
Select |5chema !" 4 | Rec dation | Reclaimable Space {MB) ‘ Allocated Space (MB)| Used Space (MB} !" t Type

O e EMPLOYEES_SEARCH Shrink) 97.65 112,00 14,35 TABLE
Database | Help | Logout

Copytight @ 1996, 2007, Orade, Al rights resenved,
racle, IO Edwards, Peopl » and Retek are regi d trad, iz of Oracle Corporation and/or its affiliates, Other names may be trademarks of their respactive owners,

About Oracle Enberprise Manager

FIGURE 6-12 Segment Advisor results

ORACLE Enterprise Manager 11g Help Logout
Database Control

Database Instance: dw.world >

Automatic Undo Management
In the General tab, you can view the current undo settings For your instance and use the Unda Advisor to analyze the undo tablespace requirements. This analysis can be
performed based on the specified analysis period or the desired undo retention. The system activity for the specified time period can be viewed in the System Activity tab,

General System Activiky

Undo Retention Settings Undo Tablespace for this Instance
Unda Retention (minutes) 15 Tablespace UMOCTESL [Change Tablespace |
Retention Guarantes [o Size (ME) 265

Auto-Extensible ves

Undo Advisor: Undo Retention and Undo Tablespace Sizing Advice

Undo retention is the length of time that unda data is retained in the undo tablespaces, Undo data must be retained for the length of the longest running query, the
longest running transaction, and the longest Flashback duration (except for Flashback Database), The undo tablespace should be sized large enough to hold the undo
generated by the database during the undo retention period, Mote that the undo retention parameter is also used as the retention value For LOB columns,

Analysis Period
Analysis Time Period | Last Seven Days -
Desired Unda Retention (5 ptomatically chosen based on langest query in analysis period
] specified manually to allow for longer duration queries or flashback,

Curation minukes

(Run Analysis |

Analysis Results
(_Edit Undo Tahlespace) (Edit Undo Retention)

Selected Analysis Time Period Jul 17, 2007 12:00:00 PM CDT To Jul 24, 2007 12:00:00 PM CDT
Minimurn Required Undo Tablespace Size (MB) 273

Recommended Undo Tablespace Size (ME) 312
@ TIP Recommended size is three times the minimurn size to allow For workload Fluctuations

FIGURE 6-13 Undo Advisor current settings and options

206 Oracle Database 11g DBA Handbook

Given the recent SQL load in this database, the current size of the undo tablespace (265MB)
is sufficient (with AUTOEXTEND set at 5MB increments) to satisfy the undo data needs for similar
queries in the future. However, you're expecting to add some data warehouse tables and you may
have long-running queries that may exceed the current 15-minute undo retention window, and
you want to maintain overall system performance by avoiding frequent extensions to the existing
undo tablespace. Therefore, you probably need to increase the size of the undo tablespace; in
Figure 6-13, specify 45 minutes in the Duration text box and click the Run Analysis button. The
analysis is performed immediately; at the bottom of Figure 6-14, you see that the minimum
required undo tablespace size is 545MB.

You don’t need to change your undo tablespace size immediately; the beauty of Undo
Advisor is that you can change the time period for analysis and retention to see what your disk
requirements will be in a given scenario.

ORACLE Enterprise Manager 11¢g Help Logout

Database Instance: dw.world =

Automatic Undo Management

In the General kab, you can view the current undo settings For your instance and use the Undo Advisor to analyze the undo tablespace | Show 5L) | Apply)
requirements, This analysis can be performed based on the spedfied analysis period or the desired unda retention. The system activity For
the specified time period can be viewed in the System Activity tab,

General Swsbemn Activity

Undo Retention Settings Undo Tablespace for this Instance
Undo Retention (minukes) 15 Tablespace HMOOTESL [Change Tablespace |
Retention Guarantes [o Size (MB) 265

Auto-Extensible es

Undo Advisor: Undo Retention and Undo Tablespace Sizing Advice

Undo retention is the length of time that undo data is retained in the undo tablespaces, Undo data must be retained For the length of the longest running query, the
longest running transaction, and the longest Flashback duration {except for Flashback Database), The undo tablespace should be sized large enough to hold the undo
generated by the database during the undo retention period. Moke that the undo retention parameter is also used as the retention value For LOE columns,

Analysis Period
Analysis Time Period | Last Seven Days w
Desired Undo Retention (O Automatically chosen based on longest query in analysis period
® Specified manually to allow For longer duration queries or flashback

Duration 45 minutes W

[Run Analysis |
Analysis Results
| Edit Undo Tablespace | (Edit Undo Retentian)
Selected Analysis Time Period Jul 17, 2007 1:00:00 PM CDT To Jul 24, 2007 1:00:00 PM CDT

Minimum Required Undo Tablespace Size (ME) 545
Recommended Undo Tablespace Size (ME) 312
(& TIP Recommended size is three times the minimurn size to allow For workload Fluctuations

FIGURE 6-14 Undo Advisor recommendations

CHAPTER

Managing Transactions
with Undo Tablespaces

208 Oracle Database 11g DBA Handbook

n Chapter 6, we touched briefly on how the space in an undo tablespace is
managed, along with views such as V§UNDOSTAT that can help the DBA monitor
and size the undo tablespace. In this chapter, we'll delve much more deeply into

! the configuration and management of the undo tablespace, and how we may
resolve the sometimes conflicting requirements of providing enough undo for read
consistency whlle preventing the failure of DML statements because the undo retention parameter
is set too high.

i
|
!
v
1

To start off this chapter, we’ll do a quick review of transactions from a database user’s point of
view so that you will better understand how to support the user’s transactions with the appropriately
sized undo tablespace. Next, we’ll cover the basics of how to create an undo tablespace, either
during database creation or later using the familiar create tablespace command. Undo segments
fulfill a number of requirements for database users, and we will enumerate and explain each of
those requirements in some detail.

Oracle provides a number of ways to monitor and, as a result, more precisely size undo
tablespaces. The package dbms_advisor can be used to analyze the undo tablespace usage, as
we did in Chapter 6; we will investigate this package in more detail and show how Oracle
Enterprise Manager Database Control can make it easy to perform the analysis.

The last major section of this book will review the different types of Oracle Flashback features
that rely on an adequately sized undo tablespace to recover from a number of different user error
scenarios. All the major Flashback features at the query, table, or transaction level are covered in
this section; Flashback Database is covered in Chapter 14.

Rollback segments from previous Oracle releases were hard to manage and were usually
sized too large or too small by most DBAs; Oracle strongly recommends that all new databases
use Automatic Undo Management and that databases upgraded from a previous version of Oracle
be converted to using Automatic Undo Management. We won'’t cover any aspects of manual
undo management here except for how to migrate from rollback segments to automatic undo.

Transaction Basics

A transaction is a collection of SQL DML statements that is treated as a logical unit; the failure of
any of the statements in the transaction implies that none of the other changes made to the database
in the transaction should be permanently saved to the database. Once the DML statements in the
transaction have successfully completed, the application or SQL*Plus user will issue a commit to
make the changes permanent. In the classic banking example, a transaction that transfers a dollar
amount from one account to another is successful only if both the debit of one account (an update
of the savings account balance) and the credit of another account (an update of the checking
account balance) are both successful. Failure of either or both statements invalidates the entire
transaction. When the application or SQL*Plus user issues a commit, if only one or the other update
statement is successful, the bank will have some very unhappy customers!

A transaction is initiated implicitly. After a commit of a previous transaction is completed, and
at least one row of a table is inserted, updated, or deleted, a new transaction is implicitly created.
Also, any DDL commands such as create table and alter index will commit an active transaction
and begin a new transaction. You can name a transaction by using the set transaction . . . name
‘transaction_name’ command. Although this provides no direct benefit to the application, the
name assigned to the transaction is available in the dynamic performance view V$TRANSACTION
and allows a DBA to monitor long-running transactions; in addition, the transaction name helps

Chapter 7: Managing Transactions with Undo Tablespaces 209

the DBA resolve in-doubt transactions in distributed database environments. The set transaction
command, if used, must be the first statement within the transaction.

Within a given transaction, you can define a savepoint. A savepoint allows the sequence of DML
commands within a transaction to be partitioned so that it is possible to roll back one or more of
the DML commands after the savepoint, and subsequently submit additional DML commands or
commit the DML commands performed before the savepoint. Savepoints are created with the
savepoint savepoint_name command. To undo the DML commands since the last savepoint,
you use the command rollback to savepoint savepoint_name.

A transaction is implicitly committed if a user disconnects from Oracle normally; if the user
process terminates abnormally, the most recent transaction is rolled back.

Undo Basics

Undo tablespaces facilitate the rollback of logical transactions. In addition, undo tablespaces
support a number of other features, including read consistency, various database-recovery
operations, and Flashback functions.

Rollback

As described in the previous section, any DML command within a transaction—whether the
transaction is one or one hundred DML commands—may need to be rolled back. When a DML
command makes a change to a table, the old data values changed by the DML command are
recorded in the undo tablespace within a system-managed undo segment or a rollback segment.

When an entire transaction is rolled back (that is, a transaction without any savepoints),
Oracle undoes all the changes made by DML commands since the beginning of the transaction
using the corresponding undo records, releases the locks on the affected rows, if any, and the
transaction ends.

If part of a transaction is rolled back to a savepoint, Oracle undoes all changes made by DML
commands after the savepoint. All subsequent savepoints are lost, all locks obtained after the
savepoint are released, and the transaction remains active.

Read Consistency

Undo provides read consistency for users who are reading rows that are involved in a DML
transaction by another user. In other words, all users who are reading the affected rows will see
no changes in the rows until they issue a new query after the DML user commits the transaction.
Undo segments are used to reconstruct the datablocks back to a read-consistent version and, as
a result, provide the previous values of the rows to any user issuing a select statement before the
transaction commits.

For example, user CLOLSEN begins a transaction at 10:00 that is expected to commit at 10:15,
with various updates and insertions to the EMPLOYEES table. As each insert, update, and delete
occurs on the EMPLOYEES table, the old values of the table are saved in the undo tablespace.
When the user SUSANP issues a select statement against the EMPLOYEES table at 10:08, none
of the changes made by CLOLSEN are visible to anyone except CLOLSEN; the undo tablespace
provides the previous values of CLOLSEN'’s changes for SUSANP and all other users. Even if the
query from SUSANP does not finish until 10:20, the table still appears to be unchanged until a
new query is issued after the changes are committed. Until CLOLSEN performs a commit at 10:15,
the data in the table appears unchanged as of 10:00.

210 Oracle Database 11g DBA Handbook

If there is not enough undo space available to hold the previous values of changed rows, the
user issuing the select statement may receive an “ORA-01555: Snapshot Too Old” error. Later in
this chapter, we will discuss ways in which we can address this issue.

Database Recovery

Undo tablespaces are also a key component of instance recovery. The online redo logs bring both
committed and uncommitted transactions forward to the point in time of the instance crash; the
undo data is used to roll back any transactions that were not committed at the time of the crash or
instance failure.

Flashback Operations

The data in the undo tablespace is used to support the various types of Flashback options: Flashback
Table, Flashback Query, and the package DBMS_FLASHBACK. Flashback Table will restore a
table as of a point of time in the past, Flashback Query lets you view a table as of an SCN or time
in the past, and DBMS_FLASHBACK provides a programmatic interface for Flashback operations.
Flashback Data Archive, new to Oracle Database 11g, stores and tracks all transactions on a
specified table for a specified time period; in a nutshell, Flashback Data Archive stores undo data
for a specific table in a specific tablespace outside of the global undo tablespace. Also new to
Oracle Database 11g is Flashback Transaction Backout that can roll back an already committed
transaction and its dependent transactions while the database is online. All these Flashback
options are covered in more detail at the end of this chapter.

Managing Undo Tablespaces

Creating and maintaining undo tablespaces is a “set it and forget it” operation once the undo
requirements of the database are understood. Within the undo tablespace, Oracle automatically
creates, sizes, and manages the undo segments, unlike previous versions of Oracle in which the
DBA would have to manually size and constantly monitor rollback segments.

In the next couple sections, we'll review the processes used to create and manage undo
tablespaces, including the relevant initialization parameters. In addition, we’ll review some
scenarios where we may create more than one undo tablespace and how to switch between
undo tablespaces.

Creating Undo Tablespaces

Undo tablespaces can be created in two ways: at database creation or with the create tablespace
command after the database is created. As with any other tablespace in Oracle 10g, the undo
tablespace can be a bigfile tablespace, further easing the maintenance of undo tablespaces.

Creating an Undo Tablespace with CREATE DATABASE

A database may have more than one undo tablespace, although only one can be active at a time.
Here’s what creating an undo tablespace at database creation looks like:

Chapter 7: Managing Transactions with Undo Tablespaces 27171

create database ord
user sys identified by ds88dkw2
user system identified by md78s233
sysaux datafile '/u02/oradata/ord/sysaux001.dbf' size 1g
default temporary tablespace tempOl
tempfile '/u03/oradata/ord/temp00l.dbf' size 150m
undo tablespace undotbs01
datafile '/u0l/oradata/ord/undo001.dbf' size 500m;

If the undo tablespace cannot be successfully created in the create database command, the
entire operation fails. The error must be corrected, any files remaining from the operation must
be deleted, and the command must be reissued.

Although the undo tablespace clause in the create database command is optional, if it is
omitted and Automatic Undo Management is enabled, an undo tablespace is still created with
an autoextensible datafile with an initial size of T0MB and the default name SYS_UNDOTBS.

Creating an Undo Tablespace with CREATE TABLESPACE

Any time after the database is created, a new undo tablespace can be created. An undo
tablespace is created just as any other tablespace with the addition of the undo keyword:

create undo tablespace undotbs02
datafile '/u0Ol/oracle/rbdbl/undo0201.dbf"
size 500m reuse autoextend on;

Depending on the volatility of the database or the expectation that the undo needs of the database
may increase dramatically in the future, we start out this tablespace at only 500MB and allow it
to grow.

Extents in an undo tablespace must be system managed; in other words, you can only specify
extent management as local autoallocate.

Creating an Undo Tablespace Using EM Database Control

Creating an undo tablespace is straightforward using Enterprise Manager Database Control. From
the Server tab on the home page, click the Tablespaces link. You will be presented with a list of
existing tablespaces; click the Create button. In Figure 7-1, we're creating a new undo tablespace
named UNDO_BATCH. Specify Undo Retention Guarantee as well. I'll explain how that works
later in this chapter.

At the bottom of the screen, click Add and specify the name of the datafile to use for the undo
tablespace, as indicated in Figure 7-2. In this example, you use the ASM disk group DATA for the
datafile with a size of 500MB and 100MB more each time it extends. Click Continue to return to
the page in Figure 7-1.

Clicking Storage allows us to specify extent allocation, although for an undo tablespace it
must be automatic. If we are supporting multiple block sizes, we can specify the block size for
the undo tablespace. Figure 7-3 shows that we are specifying automatic extent allocation and a
block size of 8192, the default and only block size defined for the database.

212 Oracle Database 11g DBA Handbook

Help Logout
Database

ORACLE Enterprise Manager 11¢

Database Control
Logged in As RIB

Database Instance: dw.world > Tablespaces >

Create Tablespace
| Show SQL) | Cancel | [OK

General l Storage

= Name }Jndo_batch

Extent Management Type Status
® Locally Managed O Permanent @ Read Write
o Dictionary Managed [Tt as default permanent rablespace Read Only
O offine
DEWYP“M |_Encryption Options
O Temporary
[set as default temporary tablespace
i undo
Undo Retention Guarantee Oyes @ o
Datafiles
Cluse bigfile tablespace
Tablespace can hawe only one datafile with no practical size limit,
| _Add
Select Name Directory Size (MB)
Ma ikerns Found
General [Storage
FIGURE 7-1 Using EM Database Control to create an undo tablespace
Help Logout

ORACLE Enterprise Manager 11¢g

Datahase Contral
Logged in As RIE

Database Instance: dw.world > Tablespaces >

Add Datafile
|_Cancel | | Continue

Storage Type | Automatic Storage Management %

= DiskGraup
AiesDirectory ||

Tablespace UNDO_BATCH

[reuse Existing File

Storage
Automatically extend datafile when Full (AUTOERTEND)

Madmum File Size (@) | pjimiced

O\falue ME %

(& TIP Changes made on this page will MOT take effect until vou dick "OK” button on the Tablespace page.
——

—_——
_Cancel) | Continue
Database | Helo | Logout

Copyright @ 199, 2007, Oracle. All fights reserved,
Cracle, J0 Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its affiliates, Cther names may be trademarks of their respective owners

About Oracle Enterprise Manager

FIGURE 7-2 Specifying a datafile for a new undo tablespace

Chapter 7: Managing Transactions with Undo Tablespaces 213

Help Logout

ORACLE Enterprise Manager 11g
Database

Database Control

Database Instance: dw.world > Tablespaces = Logged in As RJE

Create Tablespace

| Show SOL) [Cancel) [OK)
General Storage
Extent allocation

© automatic
O Unifarm

Size KB »

Block information

Block Size (E) | 5192w

General Storage

Show SOL) | Cancel) [OK

Database | Help | Logout

Copyright © 1935, 2007, Oracle. All rights reserved.
Oracle, 10 Edwards, PeopleSoft, and Retek are registered trademarks of Cracle Corporation andjor its affiliates, Other names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 7-3 Specifying storage characteristics for an undo tablespace

As with most every EM Database Control maintenance screen, we can view the actual SQL
commands that will be executed when we are ready to create the tablespace. In Figure 7-4, we
clicked the Show SQL button to preview the SQL commands used to create the tablespace.

After we click OK in Figure 7-3, the new undo tablespace is created successfully in Figure 7-5.

Note that EM Database Control, although a big timesaver for the DBA, does not cover every
possible scenario, nor does it prevent the DBA from trying to create an undo tablespace with the
wrong parameters. Earlier in Figure 7-3, we could have specified Uniform extent allocation, but
if you try to create the tablespace, it will fail with an error message. As mentioned earlier in this
chapter, undo tablespaces must have automatically allocated extents.

ORACLE Enterprise Manager 11g Help Logout
Datahase Control
Database Instance: dw.world > Tablespaces > Create Tablespace > Logged in As RIE
Show SQL

| Return)

CREATE EMALLFILE UNDO TABLESPACE "UNDO BATCH"™ DATAFILE "+DATAT SIZE 500M
AUTOEXTEND OH HEXT 100M MAXSIZE UHLIMITED RETENTICN NOGUARANTEE

| Return |

Database | Hzlp | Looodk

Copyright @ 1996, 2007, Cracle. All rights reserved.
Cwacle, 10 Edwards, PeopleSoft, and Retel: are regicterad trademarks of Cracle Corporation andfor its affiliates. Other narnes may be traderarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 7-4 Previewing SQL commands to create an undo tablespace

214 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11g Help Logout

Database Instance: dw.world > Logged in As RJE

(1) Confirmation
The object has been created successfully

Tablespaces
Object Type| Tablespace ~
Search
Enter an object name ko filker the data that is displayed in your results set,
Object Marne
(Go)

Bar default, the search retums all uppercase matches beginning with the string you entered. To run an exact or case-sensitive match, double quote the search string. You can use the wildcard symbol (3] in a
double quoted string,

Selection Mode | Single (Create)
[Edlit) View) Delete) Actions | Add Datafile ~ Go
Allocated Space Allocated Free Extent ‘Segment
Select Name Size{MB)| Used{MB) Space(MB) Status [Datafiles |Type s s
@ DMARTS 2500 64.1 1859 1 PERMARNENT LOCAL AUTO
QO [rer 250.0 0.1 2499 1 PERMAMNENT LOCAL AUTO
Q [enavpLE 1000 78.2 218 1 PERMAMNENT LOCAL AUTO
Q |sysau TET.E 724,86 829 s 1 PERMANENT LOCAL AUTO
O SVSTEM 7ro.0 703.2 BE.E 1 PERMAMNENT LOCAL MANLIAL
O TEMP 20.0 0.0 20,0 1 TEMPORARY LOCAL MANLIAL
O UNDOTESL 265.0 10.3 2547 1 UKDO LoCAL MANUAL
O |unpo BatcH S00.0 0.6 4994 1 UNDO LOCAL MAMNLIAL
O |users 131.5 123.2 83 1 PERMAMNENT LOCAL AUTO

FIGURE 7-5 Create Undo Tablespace confirmation

Dropping Undo Tablespaces

Dropping an undo tablespace is similar to dropping any other tablespace; the only restriction is
that the undo tablespace being dropped must not be the active undo tablespace or still have undo
data for an uncommitted transaction. You may, however, drop an undo tablespace that has unexpired
undo information, which may cause a long-running query to fail. To drop the tablespace we created
in the previous section, we use the drop tablespace command:

B sQL> drop tablespace undo_batch;
Tablespace dropped.
SQL>

The clause including contents is implied when dropping an undo tablespace. However,
to remove the operating system data files when the tablespace is dropped, you must specify
including contents and datafiles. Trying to drop the active undo tablespace is not allowed:

Chapter 7: Managing Transactions with Undo Tablespaces 215

SQL> drop tablespace undotbsl;

drop tablespace undotbsl
*

ERROR at line 1:
ORA-30013: undo tablespace 'UNDOTBS1l' is currently in use
SQL>

The active undo tablespace must be switched with another undo tablespace before it can be
dropped. More information on switching undo tablespaces is covered later in this chapter.

Modifying Undo Tablespaces

The following operations are allowed on undo tablespaces:
B Adding a datafile to an undo tablespace
Renaming a datafile in an undo tablespace
Changing an undo tablespace’s datafile to online or offline

Beginning or ending an open tablespace backup (alter tablespace undotbs begin backup)

Enabling or disabling the undo retention guarantee
Everything else is automatically managed by Oracle.

Using OMF for Undo Tablespaces

In addition to using a bigfile tablespace for undo tablespaces, you can also use OMF to automatically
name (and locate, if you're not using ASM) an undo tablespace; the initialization parameter DB_
CREATE_FILE_DEST contains the location where an undo tablespace will be created if the datafile
clause is not specified in the create undo tablespace command. In the following example, we
create an undo tablespace using OMF in an ASM disk group:

SQL> show parameter db_create_file dest
NAME TYPE VALUE

db create file dest string +DATA

SQL> create undo tablespace undo_bi;
Tablespace created.

SQL> select ts.name ts_name, df.name df name, bytes
2 from v$tablespace ts join v$datafile df using(ts#)
3 where ts.name = 'UNDO BI';

TS NAME DF_NAME BYTES
UNDO_BI +DATA/dw/datafile/undo bi.275.629807457 104857600
SQL>

Because we did not specify a datafile size either, the tablespace defaults to a size of 100MB;
in addition, the datafile is autoextensible with an unlimited maximum size, limited only by the file
system.

216 Oracle Database 11g DBA Handbook

Undo Tablespace Dynamic Performance Views

A number of dynamic performance views and data dictionary views contain information about
undo tablespaces, user transactions, and undo segments. Table 7-1 contains the view names and
their descriptions.

The views in Table 7-1 are described in more detail later in this chapter.

Undo Tablespace Initialization Parameters

In the following sections, we'll describe the initialization parameters needed to specify the undo
tablespace for the database as well as control how long Oracle will retain undo information in
the database.

UNDO_MANAGEMENT

The parameter UNDO_MANAGEMENT defaults to MANUAL in Oracle Database 10g, and AUTO
in Oracle Database 11g. Setting the parameter UNDO_MANAGEMENT to AUTO places the
database in Automatic Undo Management mode. At least one undo tablespace must exist in the
database for this parameter to be valid, whether UNDO_TABLESPACE is specified or not. UNDO_
MANAGEMENT is not a dynamic parameter; therefore, the instance must be restarted whenever
UNDO_MANAGEMENT is changed from AUTO to MANUAL, or vice versa.

UNDO_TABLESPACE

The UNDO_TABLESPACE parameter specifies which undo tablespace will be used for Automatic
Undo Management. If UNDO_MANAGEMENT is not specified or set to MANUAL, and UNDO_
TABLESPACE is specified, the instance will not start.

NOTE
“ UNDO_TABLESPACE is used in a Real Application Clusters (RAC)

environment to assign a particular undo tablespace to an instance,
where the total number of undo tablespaces in the database is the
same or more than the number of instances in the cluster.

View Description

DBA_TABLESPACES Tablespace names and characteristics, including the CONTENTS
column, which can be PERMANENT, TEMPORARY, or UNDO;
the undo RETENTION column is NOT APPLY, GUARANTEE, or
NOGUARANTEE.

DBA_UNDO_EXTENTS All'undo segments in the database, including their size, their
extents, the tablespace where they reside, and current status
(EXPIRED or UNEXPIRED).

V$UNDOSTAT The amount of undo usage for the database at ten-minute
intervals; contains at most 1008 rows (7 days).

V$ROLLSTAT Rollback segment statistics, including size and status.

V$TRANSACTION Contains one row for each active transaction for the instance.

TABLE 7-1 Undo Tablespace Views

Chapter 7: Managing Transactions with Undo Tablespaces 217

Conversely, if UNDO_MANAGEMENT is set to AUTO and there is no undo tablespace in the
database, the instance will start, but then the SYSTEM rollback segment will be used for all undo
operations, and a message is written to the alert log. Any user DML that attempts to make changes
in non-SYSTEM tablespaces will, in addition, receive the error message “ORA-01552: cannot use
system rollback segment for non-system tablespace ‘USERS,”” and the statement fails.

UNDO_RETENTION
UNDO_RETENTION specifies a minimum amount of time that undo information is retained for
queries. In automatic undo mode, UNDO_RETENTION defaults to 900 seconds. This value is
valid only if there is enough space in the undo tablespace to support read-consistent queries; if
active transactions require additional undo space, an unexpired undo may be used to satisfy the
active transactions and may cause “ORA-01555: Snapshot Too Old” errors.

The column TUNED_UNDORETENTION of the dynamic performance view VSUNDOSTAT
gives the tuned undo retention time for each time period; the status of the undo tablespace usage
is updated in VSUNDOSTAT every ten minutes:

B SQL> show parameter undo_retention

undo_retention integer 900

SQL> select to_char (begin_time, 'yyyy-mm-dd hh24:mi'),
2 undoblks, txncount, tuned undoretention
3 from vSundostat where rownum = 1;

TO CHAR(BEGIN TI UNDOBLKS TXNCOUNT TUNED UNDORETENTION

2007-08-05 16:07 9 89 900
1 row selected.
SQL>

Because the transaction load is very light during the most recent time period, and the instance
has just recently started up, the tuned undo retention value is the same as the minimum specified
in the UNDO_RETENTION initialization parameter: 900 seconds (15 minutes).

TIP

“ You don't need to specify UNDO_RETENTION unless you have
Flashback or LOB retention requirements; the UNDO_RETENTION
parameter is not used for managing transaction rollback.

Multiple Undo Tablespaces

As mentioned earlier in this chapter, a database can have multiple undo tablespaces, but only one
of them can be active for a given instance at any one time. In this section, we’ll show an example
of switching to a different undo tablespace while the database is open.

NOTE
“ In a Real Application Clusters (RAC) environment, one undo
tablespace is required for each instance in the cluster.

218 Oracle Database 11g DBA Handbook

In our dw database, we have three undo tablespaces:

BT SsQL> select tablespace name, status from dba_tablespaces

2 where contents = 'UNDO';
TABLESPACE_NAME STATUS
UNDOTBS1 ONLINE
UNDO_ BATCH ONLINE
UNDO_BI ONLINE

2 rows selected.
But only one of the undo tablespaces is active:

B soL> show parameter undo_tablespace
NAME TYPE VALUE

undo_tablespace string UNDOTBS1

For overnight processing, we change the undo tablespace from UNDOTBST to the tablespace
UNDO_BATCH, which is much larger to support higher DML activity. The disk containing the
daytime undo tablespace is much faster but has a limited amount of space; the disk containing
the overnight undo tablespace is much larger, but slower. As a result, we use the smaller undo
tablespace to support OLTP during the day, and the larger undo tablespace for our data mart and
data warehouse loads, as well as other aggregation activities, at night when response time is not
as big of an issue.

NOTE

“ Other than special circumstances described in this section, it is
unlikely that you will be switching undo tablespaces for a given
instance. Oracle’s best practices suggest that you create a single undo

tablespace per instance that is large enough to handle all transaction
loads; in other words, “set it and forget it.”

About the time the undo tablespace is going to be switched, the user HR is performing some
maintenance operations on the HR.EMPLOYEES table, and she has an active transaction in the
current undo tablespace:

I sSQL> connect hr/hr@dw;
Connected.
SQL> set transaction name 'Employee Maintenance';
Transaction set.
SQL> update employees set commission pct = commission_pct * 1.1;
107 rows updated.
SQL>

Checking V§TRANSACTION, you see HR’s uncommitted transaction:

BT sQL> select t.status, t.start_time, t.name
2 from v$transaction t join v$session s on t.ses_addr = s.saddr
3 where s.username = 'HR';

Chapter 7: Managing Transactions with Undo Tablespaces 219

STATUS START TIME NAME

ACTIVE 08/05/07 17:41:50 Employee Maintenance
1 row selected.

You change the undo tablespace as follows:

SQL> alter system set undo_tablespace=undo_batch;
System altered.

HR’s transaction is still active, and therefore the old undo tablespace still contains the undo
information for HR’s transaction, leaving the undo segment still available with the following status
until the transaction is committed or rolled back:

SQL> select r.status

2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
3 join v$session s on t.ses_addr = s.saddr
4 where s.username = 'HR';

STATUS

PENDING OFFLINE

1 row selected.

Even though the current undo tablespace is UNDO_BATCH, the daytime tablespace
UNDOTBS1 cannot be taken offline or dropped until HR's transaction is committed or
rolled back:

SQL> show parameter undo_tablespace
NAME TYPE VALUE

undo_tablespace string UNDO_BATCH

SQL> alter tablespace undotbsl offline;

alter tablespace undotbsl offline

*

ERROR at line 1:

ORA-30042: Cannot offline the undo tablespace

The error message ORA-30042 applies if you try to offline an undo tablespace that is in use—
either it is the current undo tablespace or it still has pending transactions. Note that if we switch
back to the daytime tablespace before HR commits or rolls back the original transaction, the status
of HR’s rollback segment reverts back to ONLINE:

SQL> alter system set undo_tablespace=undotbsl;

System altered.

SQL> select r.status
2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
3 join v$session s on t.ses_addr = s.saddr
4 where s.username = 'HR';

220 Oracle Database 11g DBA Handbook

STATUS

ONLINE

1 row selected.

Sizing and Monitoring the Undo Tablespace

There are three types of undo data in the undo tablespace: active or unexpired, expired, and
unused. Active or unexpired is undo data that is still needed for read consistency, even after a
transaction has been committed. Once all queries needing the active undo data have completed
and the undo retention period is reached, the active undo data becomes expired. Expired undo
data may still be used to support other Oracle features, such as the Flashback features, but it is
no longer needed to support read consistency for long-running transactions. Unused undo data
is space in the undo tablespace that has never been used.

As a result, the minimum size for an undo tablespace is enough space to hold the before-image
versions of all data from all active transactions that have not yet been committed or rolled back.
If the space allocated to the undo tablespace cannot even support the changes to uncommitted
transactions to support a rollback operation, the user will get the error message “ORA-30036:
unable to extend segment by space_qty in undo tablespace tablespace_name.” In this situation,
the DBA must increase the size of the undo tablespace, or as a stopgap measure the user can split
up a larger transaction into smaller ones while still maintaining any required business rules.

Manual Methods

The DBA can use a number of manual methods to correctly size the undo tablespace. As
demonstrated in Chapter 6, we can review the contents of the dynamic performance view
V$UNDOSTAT to see the undo segment usage at ten-minute intervals. In addition, the column
SSOLDERRCNT indicates how many queries failed with a “Snapshot too old” error:

BT SsQL> select to_char(end time, 'yyyy-mm-dd hh24:mi') end time,

2> undoblks, ssolderrcnt from v$undostat;
END_ TIME UNDOBLKS SSOLDERRCNT
2007-08-02 20:17 45 0
2007-08-02 20:07 116 0
2007-08-02 19:57 2763 0
2007-08-02 19:47 23 0
2007-08-02 19:37 45120 2
2007-08-02 19:27 119 0
2007-08-02 19:17 866 0

Between 19:27 and 19:37 we have a spike in undo usage, resulting in some failed queries.
As a rule of thumb, you can use the following calculations:

B undo tablespace size = UR * UPS + overhead
_ p _

In this formula, UR equals undo retention in seconds (from the initialization parameter
UNDO_RETENTION), UPS equals undo blocks used per second (maximum), and overhead
equals undo metadata, usually a very small number relative to the overall size. For example,
if a database has an 8K block size, and UNDO_RETENTION equals 43200 (12 hours), and we

Chapter 7: Managing Transactions with Undo Tablespaces 221

generate 500 undo blocks every second, all of which must be retained for at least 12 hours, our
total undo space must be:

undo_tablespace size = 43200 * 500 * 8192 = 176947200000 = 177GB

Add about 10 to 20 percent to this calculation to allow for unexpected situations. Alternatively,
you can enable autoextend for the datafiles in the undo tablespace. Although this calculation is
useful as a starting point, Oracle 10g’s and Oracle 11g’s built-in advisors, using trending analysis,
can give a better overall picture of undo space usage and recommendations.

Undo Advisor

Oracle 11g's Undo Advisor automates a lot of the tasks necessary to fine-tune the amount of space
required for an undo tablespace. In Chapter 6, we reviewed two examples of using the Undo
Advisor: via the EM Database Control interface and using the PL/SQL DBMS_ADVISOR packages
within the Automatic Workload Repository (AWR) to programmatically choose a time period to
analyze and perform the analysis.

The Automatic Undo Management GUI screen is shown in Figure 7-6.

UNDO_RETENTION is currently set to 15 minutes and the size of the active undo tablespace
(UNDO_BATCH) is 500MB. In this example, if we want a read-consistent view of table data for
720 minutes, clicking the Run Analysis button tells us that we only need an undo tablespace size
of 165MB (and ideally three times this amount) to support workload fluctuations. Therefore, our
undo tablespace is sized adequately at 500MB.

ORACLE Enterprise Manager 11g Help Logout

Database Instance: dw.world >

Automatic Undo Management

In the General bab, you can view the current undo settings for your instance and use the Unda Advisor to analyze the unda tablespace requirements. | Show SOL) Apply)
This analysis can be performed based on the specified analysis period or the desired undo retention, The system activity for the specified tme period
can be viewed in the System Activity tab,

General System Activity

Undo Retention Settings Undo Tablespace for this Instance
Urdo Retention (minukes) 15 Tablespace UMOD BATCH [Change Taklespace
Retention Guarantee [lo Size (ME) 500

Auto-Extensible ves

Undo Advisor: Undo Retention and Undo Tablespace Sizing Advice

Unda retention is the length of time that undo datais retained in the undo tablespaces, Undo data must be retained for the length of the longest running query, the longest
running transaction, and the longest Flashback duration (except For Flashback Database). The unda tablespace should be sized large enough to hold the undo generated by
the database during the undo retention period, Mote that the undo retention parameter is also used as the retention walue for LOB columns.

Analysis Period
Analysis Time Period | Last Seven Days ~
Desired Unda Retention (O gutamatically chosen based on longest query in analysis period
® Specified manually to allow For longer duration queries or flashback

Duration 720 minutes v

Run Analysis

Analysis Results
Edit Uncio Tahlespace | | Edit Undo Retention |
Selected Analysis Time Petiod Jul 29, 2007 7:00:00 PM CDT To Aug 5, 2007 7:00:00 PM CDT
Minimum Required Undo Tablespace Size (ME) 165
Recommended Undo Tablespace Size (ME) 53
(¥ TIP Recommended size is three times the minimum size to allow For workload Fluctuations

Potentizl Problems Mo Problem Found
Recommendations Mo Recommendation

bshnw Graph

FIGURE 7-6 Tablespace characteristics

222 Oracle Database 11g DBA Handbook

Controlling Undo Usage
As of Oracle9i, Oracle’s Database Resource Manager can help to control undo space usage by
user or by group of users within a resource consumer group via the UNDO_POOL directive. Each
consumer group can have its own undo pool; when the total undo generated by a group exceeds
the assigned limit, the current transaction generating the undo is terminated and generates the
error message “ORA-30027: Undo quota violation—failed to get number (bytes).” The session
will have to wait until the DBA increases the size of the undo pool or until other transactions
from users in the same consumer group complete.

In the following example, we change the default value of UNDO_POOL from NULL
(unlimited) to 50000KB (50MB) for users in the resource consumer group LOW_GROUP:

B begin
dbms resource manager.create pending areaf();
dbms resource manager.update plan directive (
plan => 'system plan',
group or subplan => 'low group',
new comment => 'Limit undo space for low priority groups',
new undo pool => 50000);
dbms resource manager.validate pending area();
dbms resource manager.submit pending area();
end;

Oracle Resource Manager and other resource directives are covered in more detail in Chapter 5.

Read Consistency vs. Successful DML

For OLTP databases, generally we want DML commands to succeed at the expense of read-consistent
queries. For a DSS environment, however, we may want long-running queries to complete without
getting a “Snapshot too old” error. Although increasing the UNDO_RETENTION parameter or
increasing the size of the undo tablespace helps to ensure that undo blocks are available for read-
consistent queries, undo tablespaces have another characteristic to help ensure that queries will run
to completion: the RETENTION GUARANTEE setting.

Undo retention guarantee is set at the tablespace level, and it can be altered at any time.
Setting a retention guarantee for an undo tablespace ensures that an unexpired undo within the
tablespace should be retained even if it means that DML transactions might not have enough
undo space to complete successfully. By default, a tablespace is created with NOGUARANTEE,
unless you specify the GUARANTEE keyword, either when the tablespace is created or later with
ALTER TABLESPACE:

B soL> alter tablespace undotbsl retention guarantee;
Tablespace altered.

SQL> select tablespace name, retention

2 from dba_tablespaces
3 where tablespace_name = 'UNDOTBS1';
TABLESPACE NAME RETENTION

UNDOTBS1 GUARANTEE

Chapter 7: Managing Transactions with Undo Tablespaces 223

1 row selected.

For non-undo tablespaces, the value of RETENTION is always NOT APPLY.

Flashback Features

In this section we'll discuss the Flashback features supported by undo tablespaces or Flashback Data
Archive: Flashback Query, Flashback Table, Flashback Version Query, and Flashback Transaction
Query. In addition, we'll cover the highlights of using the DBMS_FLASHBACK package. As of
Oracle Database 11g, these features are collectively known as the Oracle Total Recall Option.

Flashback Database and Flashback Drop are covered in Chapter 14. Flashback Database
uses Flashback logs in the Flash Recovery Area instead of undo in an undo tablespace to provide
the Flashback functionality; Flashback Drop places dropped tables into a virtual recycle bin within
the tablespace and they remain there until the user retrieves it with flashback table . . . to before
drop command or empties the recycle bin, or else until the space is needed by new permanent
objects in the tablespace.

To further extend the self-service capabilities of Oracle10g and Oracle 11g, the DBA can grant
system and object privileges to users to allow them to fix their own problems, usually without any
DBA intervention. In the following example, we're enabling the user SCOTT to perform Flashback
operations on specific tables and to access transaction metadata across the database:

SQL> grant insert, update, delete, select on hr.employees to scott;
Grant succeeded.

SQL> grant insert, update, delete, select on hr.departments to scott;
Grant succeeded.

SQL> grant flashback on hr.employees to scott;

Grant succeeded.

SQL> grant flashback on hr.departments to scott;

Grant succeeded.

SQL> grant select any transaction to scott;

Grant succeeded.

Flashback Query

Starting with Oracle9/ Release 2, the as of clause is available in a select query to retrieve the state
of a table as of a given timestamp or SCN. You might use this to find out which rows in a table were
deleted since midnight, or you might want to just do a comparison of the rows in a table today
versus what was in the table yesterday.

In the following example, HR is cleaning up the EMPLOYEES table and deletes two
employees who no longer work for the company:

SQL> delete from employees

2 where employee id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL>

224 Oracle Database 11g DBA Handbook

Normally, HR will copy these rows to the EMPLOYEES_ARCHIVE table first, but she forgot
to do that this time; HR doesn’t need to put those rows back into the EMPLOYEES table, but she
needs to get the two deleted rows and put them into the archive table. Because HR knows she
deleted the rows less than an hour ago, we can use a relative timestamp value with Flashback
Query to retrieve the rows:

B sQL> insert into hr.employees_archive

2 select * from hr.employees

3 as of timestamp systimestamp - interval '60' minute
4 where hr.employees.employee_ id not in

5 (select employee_id from hr.employees) ;

2 rows created.

SQL> commit;
Commit complete.

Because we know that EMPLOYEE_ID is the primary key of the table, we can use it to retrieve
the employee records that existed an hour ago but do not exist now. Note also that we didn’t have
to know which records were deleted; we essentially compared the table as it existed now versus
an hour ago and inserted the records that no longer exist into the archive table.

TIP

“ It is preferable to use the SCN for Flashback over a timestamp;
SCNs are exact, whereas the timestamp values are only stored every
three seconds to support Flashback operations. As a result, enabling
Flashback using timestamps may be off by as much as 1.5 seconds.

Although we could use Flashback Table to get the entire table back, and then archive and
delete the affected rows, in this case it is much simpler to merely retrieve the deleted rows and
insert them directly into the archive table.

Another variation of Flashback Table is to use Create Table As Select (CTAS) with the subquery
being a Flashback Query:

BT SQL> delete from employees where employee id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL> create table employees_deleted as

2 select * from employees

3 as of timestamp systimestamp - interval '60' minute
4 where employees.employee id not in

5 (select employee id from employees) ;

Table created.

SQL> select employee id, last name from employees deleted;

Chapter 7: Managing Transactions with Undo Tablespaces 225

EMPLOYEE ID LAST NAME

195 Jones
196 Walsh

2 rows selected.

This is known as an out-of-place restore (in other words, restoring the table or a subset of the
table to a different location than the original). This has the advantage of being able to further
manipulate the missing rows, if necessary, before placing them back in the table; for example,
after reviewing the out-of-place restore, an existing referential integrity constraint may require that
you insert a row into a parent table before the restored row can be placed back in the child table.

One of the disadvantages of an out-of-place restore using CTAS is that neither constraints nor
indexes are rebuilt automatically.

DBMS_FLASHBACK

An alternative to Flashback Query is the package DBMS_FLASHBACK. One of the key differences
between the DBMS_FLASHBACK package and Flashback Query is that DBMS_FLASHBACK operates
at the session level, whereas Flashback Query operates at the object level.

Within a PL/SQL procedure or a user session, DBMS_FLASHBACK can be enabled and all
subsequent operations, including existing applications, can be carried out without the as of clause
being added to select statements. After DBMS_FLASHBACK is enabled as of a particular timestamp
or SCN, the database appears as if the clock was turned back to the timestamp or SCN until
DBMS_FLASHBACK is disabled. Although DML is not allowed when DBMS_FLASHBACK is
enabled, a cursor can be opened in a PL/SQL procedure before DBMS_FLASHBACK is enabled
to allow data from a previous point in time to be inserted or updated in the database as of the
current point in time.

Table 7-2 lists the procedures available within DBMS_FLASHBACK.

Procedure Description

DISABLE
ENABLE_AT_SYSTEM_CHANGE_NUMBER

ENABLE_AT_TIME

GET_SYSTEM_CHANGE_NUMBER
TRANSACTION_BACKOUT

Disables Flashback mode for the session

Enables Flashback mode for the session,

specifying an SCN

Enables Flashback mode for the session,

using the SCN closest to the TIMESTAMP
specified

Returns the current SCN

Backs out a transaction and all dependent
transactions using transaction names or
transaction identifiers (XIDs)

TABLE 7-2 DBMS_FLASHBACK Procedures

226 Oracle Database 11g DBA Handbook

The procedures that enable and disable Flashback mode are relatively simple to use. The
complexity usually lies within a PL/SQL procedure, for example, that creates cursors to support
DML commands.

In the following example, we’ll revisit HR’s deletion of the EMPLOYEES rows and how HR can
restore those to the table using the DBMS_FLASHBACK package. In this scenario, HR will put the
deleted employee rows back into the table and instead add a termination date column to the table
to reflect the date at which the employees left the company:

BT SQL> delete from hr.employees where employee id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

About ten minutes later, HR decides to get those rows back using DBMS_FLASHBACK, and
enables Flashback for her session:

BT sQL> execute dbms_flashback.enable at time(
2 to_timestamp (sysdate - interval '45' minute));
PL/SQL procedure successfully completed.

Next, HR verifies that the two deleted rows existed as of 45 minutes ago:

BT sQL> select employee id, last name from hr.employees
2 where employee_id in (195,196);

EMPLOYEE_ID LAST_NAME
195 Jones
196 Walsh

SQL>

To put the rows back into the HR.EMPLOYEES table, HR writes an anonymous PL/SQL procedure
to create a cursor to hold the deleted rows, disable Flashback Query, then reinsert the rows:

B declare

-- cursor to hold deleted rows before closing
cursor del emp is
select * from employees where employee id in (195,196);
del emp rec del emp%rowtype; -- all columns of the employee row
begin
-- open the cursor while still in Flashback mode
open del emp;
-- turn off Flashback so we can use DML to put the rows
-- back into the EMPLOYEES table
dbms flashback.disable;
loop
fetch del emp into del emp rec;
exit when del emp%notfound;
insert into employees values del emp rec;
end loop;

Chapter 7: Managing Transactions with Undo Tablespaces 227

commit;
close del emp;
end; -- anonymous PL/SQL procedure

Note that HR could have enabled Flashback within the procedure; in this case, HR enabled
it outside of the procedure to run some ad hoc queries, and then used the procedure to create the
cursor, turn off Flashback, and reinsert the rows.

Flashback Transaction Backout

A given transaction in a complex application may be consistent and atomic, but the validity of the
transaction may not be validated until many other transactions have taken place; in other words,
the ill effects of an earlier transaction may cause other transactions to further modify the same
data as the original transaction. Trying to manually track the interdependent successive transactions
is tedious and error-prone. Flashback Transaction makes it easy to identify and roll back the
offending transaction and optionally all dependent transactions.

To enable Flashback Transaction Backout, enable archiving (if it is not already in ARCHIVELOG
mode) while the database is mounted (but not open):

alter database archivelog;

Next, run these commands to create at least one archived redo log file and to add additional
transaction information to the log files.

alter system archive log current;
alter database add supplemental log data;

Adding the supplemental log data will have a noticeable impact on performance in a heavy
DML environment. Be sure to monitor system resources before and after you enable the additional
logging to assess the cost of the logging operation. Finally, open the database:

alter database open;

You leverage Flashback Transaction Backout features via the DBMS_FLASHBACK procedure
TRANSACTION_BACKOUT. After you run DBMS_FLASHBACK.TRANSACTION_BACKOUT, the
DML against the related tables is performed but not committed; you must then review the tables
DBA_FLASHBACK_TRANSACTION_STATE and DBA_FLASHBACK_TRANSACTION_REPORT to
see if the correct transactions were rolled back. You must then manually perform either a commit
or a rollback.

Flashback Table

New to Oracle10g, the Flashback Table feature not only restores the state of rows in a table as of
a point of time in the past, but it also restores the table’s indexes, triggers, and constraints while
the database is online, increasing the overall availability of the database. The table can be restored
as of a timestamp or an SCN. Flashback Table is preferable to other Flashback methods if the
scope of user errors is small and limited to one or very few tables. It’s also the most straightforward if
you know that you want to restore the table to a point in the past unconditionally. For recovering
the state of a larger number of tables, Flashback Database may be a better choice. Flashback
Table cannot be used on a standby database and cannot reconstruct all DDL operations, such

as adding and dropping columns.

228 Oracle Database 11g DBA Handbook

To use Flashback Table on a table or tables, you must enable row movement on the table
before performing the Flashback operation, although row movement need not be in effect when
the user error occurs. Row movement is also required to support Oracle’s segment shrink
functionality; because row movement will change the ROWID of a table row, do not enable row
movement if your applications depend on the ROWID being the same for a given row until the
row is deleted. Because none of our applications reference our tables by ROWID, we can safely
enable row movement for the HR tables:

I soL> alter table employees enable row movement;
Table altered.

SQL> alter table departments enable row movement;
Table altered.

SQL> alter table jobs enable row movement;

Table altered.

The next day, the HR user accidentally deletes all the rows in the EMPLOYEES table due to a
cut-and-paste error from an existing script:

I soL> delete from hr.employees
2/
107 rows deleted.

SQL> commit
2
Commit complete.

SQL> where employee_id = 195
SP2-0734: unknown command beginning "where empl..." - rest of line ignored.

Because the undo tablespace is large enough and the HR user notices the problem within the
retention period, the HR user can bring back the entire table quickly without calling the DBA:

I soL> flashback table employees
2 to timestamp systimestamp - interval 'l5' minute;
Flashback complete.

SQL> select count(*) from employees;
COUNT (*)

If two or more tables have a parent/child relationship with foreign key constraints, and rows
were inadvertently deleted from both tables, they can be flashed back in the same flashback
command:

Chapter 7: Managing Transactions with Undo Tablespaces 229

ORACLE Enterprise Manager 11g Help Logout

Database Instance: dw.world >
Perform Recovery

Oracle Advised Recovery
The Data Recovery Advisor detects Failures in the database and presents options For

performing aukomated repairs, Lag in as 5YS0DEA to use the Data Recovery Advisar, [3) Overview
User Directed Recovery + Recover database failures as advised by
. Oracle
Recavery Scope | Tables _ \M} #* Restore andfor recover the entire database
Cperation Type (3 Flashback Existing Tables aor selected objects

-

) Flashback Dropped Tables Restore files ko a new lacation

+

Recover tablespaces o a point-in-time

BDecrypt Backups based on a timeskamp, system change
number {SCN), or log sequence number

-

Recover datafile data blocks that are

Host Credentials
marked as carrupted, or based on datafile

To perform recovery, supply operating system login credentials ko access the target

database. block IDs or tablespace block addresses
= |Jszrname # Flashback datsbase, tables, or transactions
= Password to & specific system change number (SCH)

ar timesktarnp
[save as Preferred Credential

Database | Hzlp | Logout

Capyright © 1996, 2007, Sracle, All rights reserved.
Oracle,)0 Edwards, PeopleSoRt, and Retel: are registered tradamarks of Orace Corporation andfor its affiliates, Cther narmes may be tradernarks of their respective owners,

About Gracle Enterprise Manager

FIGURE 7-7 EM Database Control Backup/Recovery page

SQL> flashback table employees, departments
2 to timestamp systimestamp - interval '15' minute;
Flashback complete.

The HR user can also use EM Database Control to flash back one or more tables. In Figure 7-
7, she has selected the Perform Recovery link under the Availability tab.

Selecting an object type of Tables, the HR user has the option to flash back existing tables or
dropped tables. In this case, she will be flashing back an existing table.

After clicking Next, she knows the precise time of day at which the table was valid, so she
specifies a time about ten minutes before the delete operation on the screen in Figure 7-8. In
addition, you can specify a restore point or SCN for the recovery operation if you don’t know
the time of day.

In Figure 7-9, HR is selecting the table to flash back (in this case, HR.EMPLOYEES).

230 Oracle Database 11g DBA Handbook

ORACLE Enterprise Manager 11 g
Datahase Control

Help Logout
tabase

. O——O0—0

Perform Object Level Recovery: Point-in-time
Fecovery Scope Tables
Cperation Tvpe Flashback Existing Tables
Specify the point in time ko which to recover,
O Evaluate row changes and transactions ko decide on a point in time

= Table ‘ |'l,{

Exarnple: SCOTT EMP

@ Flashback to a timestamp

Date AL S, 2007

Example: Mar 19, 2003

Time

O Flashback to a restore poink:
Restore Point | | ,,5?

O Flashback to a known SCH
SCM (4002703 |

Return to Perform Recovery
Database | Helo | Looooe

Copytight © 1996, 2007, Cracle, All ights reservad,

-y L
s Query Fiter Choose SCM Flashback Tables

O O—>»

More

ependency Options Dependencies

| Cancel | Steplof 7 | Mext

| Cancel | sSteplof 7 Mext

racle, IO Edwards, PeopleSoft, and Retek are registered trademarks of Orade Corporation and/or its affiliates, <ther names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 7-8 Specifying the time frame for table recovery operation

ORACLE Enterprise Manager 11g Help Logout
Database Control
Flashback Tables Dependency Options Dependencies Morz

Perform Object Level Recovery: Flashback Tables

Recovery Scope Tables
Operation Type Flashback Existing Tables

Specify the tables you would like to flashback,

Flashback Time Aug 5, 2007 08:10 PM
Flashback 5CH - 4002703

HR.EMPLOYEES

Tables To Flashback

Exarnple: scott.emp, one table name per row

Return to Perform Recovery
Database | Help | Logout

Coapyright & 1938, 2007, Gracle, Al ights reserved.

| Cancel | | BaEEIStEpMDF? Mext

| Add Tables)

| Cancel | | Baclglstep‘mf? Mext

Cracle, 10 Edwards, PeopleSaRt, and Retek are reqistered trademarks of Crracle Corporation andjor its affiliates, Cther names may be trademarks of their respective owners,

about Oracle Enterprise Manager

FIGURE 7-9 Specifying the table name for table recovery operation

Chapter 7: Managing Transactions with Undo Tablespaces 231

ORACLE Enterprise Manager 11g Help Logout

Datahase Control

Dependency Options Dependencies Mare

Dependency Options
Recovery Scope Tables o (Cancel) ((Back] stepsof 7 [Next)
Operation Type Flashback Existing Tables
Based on fareign key relstionships, dependent tables have been identfed for the tables you wish ta lashback, Select one of the following spters.
® cascade : Flashback the selected tables and al dependent: tables
O customize : Flashback the selected tables and some of the dependenct tables, This can resulk in inconsistent data,

O Restrict : Flashback the selected tables only, This can result ininconsistent data,

(' Show Dependencies |
Return ko Perform Recovery (cancel) | Bac)il Step Sof 7 | Mext)

Database | Help | Logout

Copyright © 1336, 2007, Orade, All rights reserved,
Cracle, I Edwards, PeapleSoft, and Retek are registered tradernarks of Oracle Corporation andjor its affiliates, Other names may be trademarks of their respective owners,

About Oracle Enterprise Manager

FIGURE 7-10 Specifying the dependency options for table recovery operation

EM Database Control identifies any dependencies, such as foreign key constraints, and alerts
the HR user in Figure 7-10. Unless there is a good reason to break any parent/child relationships
between the tables, leave the default option, Cascade, selected.

In Figure 7-11, the HR user can take one more look at the options she has selected.

ORACLE Enterprise Manager 11g Help Logout
Datahase Control Database

Review

Perform Object Level Recovery: Review

Recovery Scops Tables Cancel) | Show Row Changes) (Show SOL) (Back|seep7of 7 (Submit)
COperation Type Flashback Existing
Tables

The Fallowing tables will be Flashed back. These tables will be locked while the Aashback aperation is in progress.,
SCM 4002703
Timesktamp Aug 5, 2007 08:10 PM
Tables HR.EMPLOYEES
Dependent Tables HR.JOBS, HR.DEPARTMENTS

Return to Perform Recovery Cancel | | Show Row Changes) [ShowSOL) (Back|Step7of 7 | Submit)

Database | Help | Logout

Copyright € 1336, 2007, Oracle. Al rights ressrved,
©racle, JD Edwards, PecpleSoft, and Retek are registerad trademarks of Oracle Corparation andjor its affilistes. Other names may be trademnarks of their respactive owners,

About Oracle Enterprise Managsr

FIGURE 7-11 Reviewing table recovery operation actions

232 Oracle Database 11g DBA Handbook

In addition, as with most EM Database Control screens, she can review the SQL commands
generated:

I FLASHBACK TABLE HR.EMPLOYEES, HR.JOBS, HR.DEPARTMENTS TO TIMESTAMP
to timestamp ('2007-08-05 20:10:47"', 'YYYY-MM-DD HH24:MI:SS')

Clicking Submit runs the command.

Note that in this example, using the command line would take less time and is probably more
straightforward; however, if you have unknown dependencies or if the command-line syntax is
unfamiliar to you, then EM Database Control is a better option.

Flashback Version Query

Flashback Version Query, another Flashback feature that relies on undo data, provides a finer
level of detail than an as of query: Whereas the Flashback methods we’ve presented up to now
bring back rows of a table or an entire table for a particular point in time, Flashback Version
Query will return the entire history of a given row between two SCNs or timestamps.

For the examples in this and the next section, the user HR makes a number of changes to the
HR.EMPLOYEES and HR.DEPARTMENTS tables:

B soL> select dbms flashback.get system change number from dual;
GET_ SYSTEM CHANGE NUMBER

4011365

SQL> update hr.employees set salary = salary*1l.2 where employee id=195;
1 row updated.

SQL> select dbms_ flashback.get system change number from dual;
GET_ SYSTEM CHANGE NUMBER

4011381

SQL> delete from hr.employees where employee_id = 196;
1 row deleted.

SQL> select dbms_ flashback.get system change number from dual;
GET_ SYSTEM CHANGE NUMBER

4011409

SQL> insert into hr.departments values (660, 'Security', 100, 1700);
1 row created.

SQL> select dbms_ flashback.get system change number from dual;
GET_SYSTEM CHANGE NUMBER

4011433

SQL> update hr.employees set manager id = 100 where employee id = 195;
1 row updated.

SQL> commit;

Chapter 7: Managing Transactions with Undo Tablespaces 233

Commit complete.

SQL> select dbms_flashback.get system change_ number from dual;
GET SYSTEM CHANGE NUMBER

4011464
SQL> update hr.employees set department_id = 660 where employee id = 195;
1 row updated.

SQL> select dbms_flashback.get_system change number from dual;
GET SYSTEM CHANGE NUMBER

4011470

SQL> update hr.employees set salary = salary*1l.2 where employee id=195;
1 row updated.

SQL> commit;
Commit complete.

SQL> select dbms_flashback.get system change number from dual;
GET SYSTEM CHANGE NUMBER

4011508
SQL>

The next day, the HR user is out of the office, and the other HR department employees wants
to know what rows and tables were changed. Using Flashback Version Query, the user HR can
see not only the values of a column at a particular time, but the entire history of changes between
specified timestamps or SCNs.

A Flashback Version Query uses the versions between clause to specify a range of SCNs
or timestamps for analysis of a given table (in this case, the EMPLOYEES table). When versions
between is used in a Flashback Version Query, a number of pseudocolumns are available to help
identify the SCN and timestamp of the modifications, as well as the transaction ID and the type
of operation performed on the row. Table 7-3 shows the pseudocolumns available with Flashback
Version Queries.

Pseudocolumn Description
VERSIONS_ The starting SCN or timestamp when the change was made to
START{SCN|TIME} the row.

VERSION_END{SCN|TIME} The ending SCN or timestamp when the change was no longer
valid for the row. If this is NULL, either the row version is still
current or the row was deleted.

VERSIONS_XID The transaction ID of the transaction that created the row version.
VERSIONS_OPERATION The operation performed on the row (I=Insert, D=Delete,
U=Update).

TABLE 7-3 Flashback Version Query Pseudocolumns

234 Oracle Database 11g DBA Handbook

The HR user runs a Flashback Version Query to see the changes to any key columns in
HR.EMPLOYEES for the two employees with IDs 195 and 196:

I soL> select versions_startscn startscn, versions_endscn endscn,
2 versions_xid xid, versions_operation oper,

3 employee id empid, last name name, manager_id mgrid, salary sal
4 from hr.employees

5 versions between scn 4011365 and 4011508

6 where employee_id in (195,196);

STARTSCN ENDSCN XID OPER EMPID NAME MGRID SAL
4011507 1100120025000000 U 195 Jones 100 4032
4011463 4011507 OEO001A0024000000 U 195 Jones 100 3360

4011463 195 Jones 123 2800
4011463 0E001A0024000000 D 196 Walsh 124 3100
4011463 196 Walsh 124 3100

The rows are presented with the most recent changes first. Alternatively, HR could have filtered
the query by TIMESTAMP or displayed the TIMESTAMP values, but either can be used in a Flashback
Query or Flashback Table operation, if required later. From this output, we see that one employee
was deleted and that another employee received two pay adjustments instead of one. It’s also
worth noting that some of the transactions contain only one DML command, and others have
two.In the next section, we'll attempt to correct one or more of these problems.

Flashback Transaction Query

Once we have identified any erroneous or incorrect changes to a table, we can use Flashback
Transaction Query to identify any other changes that were made by the transaction containing the
inappropriate changes. Once identified, all changes within the transaction can be reversed as a
group, typically to maintain referential integrity or the business rules used to process the transaction
in the first place.

A Flashback Transaction Query, unlike a Flashback Version Query, does not reference the
table involved in DML transactions; instead, you query the data dictionary view FLASHBACK _
TRANSACTION_QUERY. The columns of FLASHBACK_TRANSACTION_QUERY are summarized
in Table 7-4.

To further investigate the changes that were made to the EMPLOYEES table, we will query
the view FLASHBACK_TRANSACTION_QUERY with the oldest transaction from the query in the
previous section:

B sQL> select start _scn, commit_scn, logon_user,
2 operation, table name, undo_sql
3 from flashback transaction_query
4 where xid = hextoraw('0E001A0024000000"') ;

START SCN COMMIT SCN LOGON USER OPERATION TABLE NAME
UNDO_SQL
4011380 4011463 HR UPDATE EMPLOYEES

update "HR"."EMPLOYEES" set "MANAGER ID" = '123' where ROWID =

Chapter 7: Managing Transactions with Undo Tablespaces

'AAARAXAAFAAAAHGABO';
4011380 4011463 HR INSERT DEPARTMENTS

delete from "HR"."DEPARTMENTS" where ROWID = 'AAARASAAFAAAAA3AADL';
4011380 4011463 HR DELETE EMPLOYEES

insert into "HR"."EMPLOYEES" ("EMPLOYEE ID","FIRST NAME",

"LAST NAME","EMAIL","PHONE NUMBER","HIRE DATE","JOB ID","SALARY",
"COMMISSION PCT","MANAGER ID","DEPARTMENT ID","WORK RECORD")
values ('196','Alana’', 'Walsh', "AWALSH', '650.507.9811",

TO_DATE ('24-APR-98', 'DD-MON-RR'),'SH CLERK','3100',

NULL, '124','50',NULL) ;

4011380 4011463 HR UPDATE EMPLOYEES
update "HR"."EMPLOYEES" set "SALARY" = '2800' where
ROWID = 'AAARAxXAAFAAAAHGABO';

4011380 4011463 HR BEGIN

235

We confirm what we already expected—that another user in the HR department made the
deletion and salary update (thus pointing out the usefulness of assigning separate user accounts
for each member of the HR department). The UNDO_SQL column contains the actual SQL code
that can be used to reverse the effect of the transaction. Note, however, that in this example, this
is the first transaction to occur between the SCNs of interest. If other transactions made further
updates to the same columns, we may want to review the other updates before running the SQL

code in the UNDO_SQL column.

Column Name Description

XID Transaction ID number

START_SCN SCN for the first DML in the transaction

START_TIMESTAMP Timestamp of the first DML in the transaction

COMMIT_SCN SCN when the transaction was committed

COMMIT_TIMESTAMP Timestamp when the transaction was committed

LOGON_USER User who owned the transaction

UNDO_CHANGE# Undo SCN

OPERATION DML operation performed: DELETE, INSERT, UPDATE, BEGIN, or
UNKNOWN

TABLE_NAME Table changed by DML

TABLE_OWNER Owner of the table changed by DML

ROW_ID ROWID of the row modified by DML

UNDO_SQL SQL statement to undo the DML operation

TABLE 7-4 FLASHBACK_TRANSACTION_QUERY Columns

236 Oracle Database 11g DBA Handbook

Flashback Data Archive

Recent regulations such as Sarbanes-Oxley and HIPAA require strict control and tracking
requirements for customer and patient data; keeping a historical record of all changes to rows

in critical tables is error prone and requires custom applications or database triggers to maintain
repositories for the historical changes. Every time you create a new application or update a table
in an application that requires historical tracking, you must make changes to your tracking
application as well. As of Oracle Database 11g, you can use Flashback Data Archive to
automatically save historical changes to all key tables for as long as regulatory agencies or

your stakeholders require.

Flashback Data Archive is implemented natively in Oracle Database 11g; in a nutshell, you
create one or more repository areas (one of which can be the default), assign a default retention
period for objects in the repository, and then mark the appropriate tables for tracking.

A Flashback Data Archive acts much like an undo tablespace; however, a Flashback Data
Archive only records update and delete statements, but not insert statements. In addition, undo
data is typically retained for a period of hours or days for all objects; rows in Flashback Data
Archives can span years or even decades. Flashback Data Archives has a much narrower focus as
well, recording only historical changes to table rows; Oracle uses data in an undo tablespace for
read-consistency in long-running transactions and to roll back uncommitted transactions.

You can access data in a Flashback Data Archive just as you do with Flashback Query: using
the as of clause in a select statement. In the next few sections, we’'ll show you how to create a
Flashback Data Archive, assign permissions to users and objects, and query historical data in
a Flashback Data Archive.

Creating an Archive
You can create one or several Flashback Data Archives in existing tablespaces using the create
flashback archive command; however, Oracle best practices recommends that you use dedicated
tablespaces. All archives must have a default retention period using the retention clause and can
optionally be identified as the default archive using the default keyword. The disk quota in an
archive is limited by the disk space within the tablespace unless you assign a maximum amount
of disk space in the archive using the quota keyword.

In this example, you first create a dedicated tablespace for your Flashback Data Archive:

I SsQL> create tablespace fbdal
2 datafile '+data' size 10g;

Tablespace created.
SQL>

Next, you create three Flashback Data Archives: one for the ES department with no quota limit
and a ten-year retention period, a second one for the finance department with a 500MB limit and
a seven-year retention period, and a third for all other users in the USERS4 tablespace as the default
with a 250MB limit and a two-year retention period:

B SsQL> create flashback archive fb_es
2 tablespace fbdal retention 10 year;

Flashback archive created.

SQL> create flashback archive fb_fi

Chapter 7: Managing Transactions with Undo Tablespaces 237

2 tablespace fbdal quota 500m
3 retention 7 year;

Flashback archive created.

SQL> create flashback archive default fb_dflt
2 tablespace users4 quota 250m
3 retention 2 year;

Flashback archive created.
SQL>

You cannot specify more than one tablespace in the create flashback archive command; you
must use the alter flashback archive command to add a tablespace, as you'll see later in this chapter,
in the section “Managing Flashback Data Archives.”

Using Flashback Data Archive Data Dictionary Views

Two new data dictionary views support Flashback Data Archives: DBA_FLASHBACK_ARCHIVE
and DBA_FLASHBACK_ARCHIVE_TS. DBA_FLASHBACK_ARCHIVE lists the archives, and DBA_
FLASHBACK_ARCHIVE_TS displays the tablespace-to-archive mapping:

SQL> select flashback archive_ name, flashback_archive#,
2 retention_in_days, status
3 from dba_flashback archive;

FLASHBACK AR FLASHBACK ARCHIVE# RETENTION IN DAYS STATUS

FB ES 1 3650
FB FI 2 2555
FB DFLT 3 730 DEFAULT

SQL> select * from dba_flashback_archive_ts;

FLASHBACK AR FLASHBACK ARCHIVE# TABLESPACE QUOTA IN M

FB ES 1 FBDAlL

FB FI 2 FBDAl 500
FB DFLT 3 USERS4 250
SQL>

The view DBA_FLASHBACK_ARCHIVE_TABLES tracks the tables enabled for flashback
archiving. I'll show you the contents of this view later in this chapter after enabling a table for
flashback archiving.

Assigning Flashback Data Archive Permissions

A user must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create or modify
Flashback Data Archives, and the FLASHBACK ARCHIVE object privilege to enable tracking on a
table. Once enabled, a user doesn’t need any specific permissions to use the as of clause in a select
statement other than the SELECT permission on the table itself.

238 Oracle Database 11g DBA Handbook

The FLASHBACK_ARCHIVE_ADMINSTER privilege also includes adding and removing
tablespaces from an archive, dropping an archive, and performing an ad hoc purge of history data.

Managing Flashback Data Archives

You can easily add another tablespace to an existing archive; use the alter flashback archive
command like this to add the USERS3 tablespace to the FB_DFLT archive with a quota of 400MB:

B sQL> alter flashback archive fb_dflt
2 add tablespace users3 quota 400m;

Flashback archive altered.
SQL>

You can purge archive data with the purge clause; in this example, you want to purge all rows
in the FB_DFLT archive before January 1, 2005:

I s0L> alter flashback archive fb_dflt
2 purge before timestamp
3 to_timestamp('2005-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

Assigning a Table to a Flashback Data Archive

You assign a table to an archive either at table creation using the standard create table syntax
with the addition of the flashback archive clause, or later with the alter table command, as in
this example:

BT sQL> alter table hr.employees flashback archive fb_es;
Table altered.

Note that in the previous command that specified a specific archive for the HR.EMPLOYEES
table; if you did not specify an archive, Oracle assigns FB_DFLT. You can review the tables that
use Flashback Data Archive by querying the data dictionary view DBA_FLASHBACK_ARCHIVE_
TABLES:

BT sQL> select * from dba_flashback archive_tables;

TABLE NAME OWNER NAME FLASHBACK AR ARCHIVE TABLE NAME

EMPLOYEES HR FB ES SYS FBA HIST 70313

Querying Flashback Data Archives
Querying the historical data for a table in a Flashback Data Archive is as easy as using the as of
clause in a table when you are using DML activity stored in an undo tablespace. In fact, users will
not know whether they are retrieving historical data from the undo tablespace or from a Flashback
Data Archive.

In this scenario, much like in the scenarios earlier in this chapter, one of the employees in the
HR department deletes an employee row in the EMPLOYEES table and forgets to archive it to the
EMPLOYEE_HISTORY table first; with Flashback Data Archives enabled for the EMPLOYEES table,

Chapter 7: Managing Transactions with Undo Tablespaces 239

the HR employee can rely on the FB_ES archive to satisfy any queries on employees no longer in
the EMPLOYEE table. This is the delete statement from three weeks ago:

SQL> delete from employees where employee_id = 169;
1 row deleted.
SQL>

The HR employee needs to find the hire date for employee 169, so she retrieves the historical
information from the EMPLOYEES table with the as of clause specifying a time four weeks ago:

SQL> select employee id, last name, hire_date
2 from employees
3 as of timestamp (systimestamp - interval '28' day)
4 where employee_id = 169;

EMPLOYEE ID LAST NAME HIRE DATE

169 Bloom 23-MAR-98
SQL>

Whether Oracle is using an undo tablespace or a Flashback Data Archive for a query containing
as of is completely transparent to the user.

Flashback and LOBs

Undo data for LOB columns in a table can take up gigabytes of disk space even for a single row;
therefore, to enable flashback operations for LOB columns, you must explicitly specify the retention
keyword in the storage clause for the LOB. This keyword is mutually exclusive with the pctversion
keyword, which specified a percentage of the table space for old versions of the LOBs. If you use
the retention keyword, old versions of a LOB are retained for the amount of time specified by the
UNDO_RETENTION parameter, just as any other table rows in the undo tablespace.

Migrating to Automatic Undo Management

To migrate your environment from manually managed rollback segments to Automatic Undo
Management, you need to know one thing: how large to size the undo tablespace based on the
usage of the rollback segments in manual undo mode. With all manual rollback segments online,
execute the procedure DBMS_UNDO_ADV.RBU_MIGRATION to return the size, in megabytes,
of the current rollback segment utilization:

SQL> variable undo_size number

SQL> begin
2 :undo_size := dbms_undo_adv.rbu migration;
3 end;

4/

240 Oracle Database 11g DBA Handbook

PL/SQL procedure successfully completed.
SQL> print :undo_size

UNDO SIZE

SQL>

In this example, an undo tablespace created to replace the rollback segments should be at
least 2840MB, or 2.84GB, to support the undo requirements currently supported by rollback
segments.

CHAPTER

Database Tuning

242

Oracle Database 11g DBA Handbook

rom a tuning perspective, every system has a performance bottleneck that may
move from component to component over a time period of days or even weeks
The goal of performance design is to make sure that the physical limitations of the
applications and the associated hardware—I/O throughput rates, memory sizes,

; ¥ query performance, and so on—do not impact the business performance. If the
application performance limits the business process it is supposed to be supporting, the application
must be tuned. During the design process, the limits of the application environment—including
the hardware and the design of the application’s interactions with the database—must be evaluated.
No environment provides infinite computing capacity, so every environment is designed to fail at
some performance point. In the process of designing the application, you should strive to have
your performance needs amply served by the performance capabilities of the environment.

i
!
!

Performance tuning is a part of the life cycle of every database application, and the earlier
performance is addressed (preferably before going into production), the more likely it will be
successfully resolved. As noted in previous chapters, most performance problems are not isolated
symptoms but rather are the result of the system design. Tuning efforts should therefore focus on
identifying and fixing the underlying flaws that result in unacceptable performance.

Tuning is the final step in a four-step process: planning, implementing, and monitoring must
precede it. If you tune only for the sake of tuning, you are failing to address the full cycle of
activity and will likely never resolve the underlying flaws that caused the performance problem.

Most of the database objects that can be tuned are discussed elsewhere in this book—for
example, undo segments are covered thoroughly in Chapter 7. This chapter only discusses the
tuning-related activities for such objects, while their own chapters cover planning and monitoring
activities.

As of Oracle Database 10g, and significantly enhanced in Oracle Database 11g, you can take
advantage of new tuning tools and features, including the Automated Workload Repository. For
ease of use, and to take advantage of numerous automated monitoring and diagnostic tools, OEM
Database Control is the Oracle-recommended tool on a routine basis. Before jumping into the
OEM tools, however, I'll present some of the prerequisites and principles behind effective
proactive and reactive tuning methods.

In the following sections, you will see tuning activities for the following areas:

B Application design
SQL

Memory usage
Data storage

Data manipulation
Physical storage

Logical storage

Network traffic

Chapter 8: Database Tuning 243

Tuning Application Design

Why should a DBA tuning guide include a section on application design? And why should this
section come first? Because nothing you can do as a DBA will have as great an impact on the
system performance as the design of the application. The requirements for making the DBA'’s
involvement in application development a reality are described in Chapter 5. In designing an
application, you can take several steps to make effective and proper use of the available
technology, as described in the following sections.

Effective Table Design

No matter how well designed your database is, poor table design will lead to poor performance.
Not only that, but overly rigid adherence to relational table designs will lead to poor performance.
That is due to the fact that while fully relational table designs (said to be in the third normal form
or even fourth normal form) are logically desirable, they are usually physically undesirable in
anything but OLTP environments.

The problem with such designs is that although they accurately reflect the ways in which an
application’s data is related to other data, they do not reflect the normal access paths that users will
employ to access that data. Once the user’s access requirements are evaluated, the fully relational
table design will become unworkable for many large queries. Typically, the first problems will occur
with queries that return a large number of columns. These columns are usually scattered among
several tables, forcing the tables to be joined together during the query. If one of the joined tables
is large, the performance of the whole query may suffer.

In designing the tables for an application, developers should first develop the model in third
normal form and then consider denormalizing data to meet specific requirements—for example,
creating small summary tables (or materialized views) from large, static tables. Can that data be
dynamically derived from the large, static tables on demand? Of course. But if the users frequently
request it, and the data is largely unchanging, then it makes sense to periodically store that data in
the format in which the users will ask for it.

For example, some applications store historical data and current data in the same table. Each
row may have a timestamp column, so the current row in a set is the one with the most recent
timestamp. Every time a user queries the table for a current row, the user will need to perform a
subquery, such as the following:

where timestamp col =
(select max(timestamp_col)
from table
where emp no=196811)

If two such tables are joined, there will be two subqueries. In a small database, this may not
present a performance problem, but as the number of tables and rows increase, performance
problems will follow. Partitioning the historical data away from the current data or storing the
historical data in a separate table will involve more work for the DBAs and developers but should
improve the long-term performance of the application.

User-centered table design, rather than theory-centered table design, will yield a system that
better meets the users’ requirements; this is not to say that you should not design the database

244 Oracle Database 11g DBA Handbook

using 3NF and 4NF methodologies: it's a good starting point for revealing business requirements
and a prerequisite for the physical database design. Physical database design options include
separating a single table into multiple tables, and the reverse—combining multiple tables into
one. The emphasis should be on providing the users the most direct path possible to the data they
want in the format they want.

Distribution of CPU Requirements

When effectively designed and given adequate hardware, an Oracle database application will
process 1/O requests without excessive waits, will use memory areas without swapping and
paging memory to disk, and will use the CPU without generating high load averages. Data that is
read into memory by one process will be stored in memory and reused by many processes before
it is aged out of memory. SQL commands are reused via the shared SQL area, further reducing the
burden on the system.

If the I/O burdens of the system are reduced, the CPU burden may increase. You have several
options for managing the CPU resources:

B The CPU load should be scheduled. You should time long-running batch queries or
update programs to run at off-peak hours. Rather than run them at lower operating
system priority while online users are performing transactions, run them at normal
operating system priority at an appropriate time. Maintaining their normal priority level
while scheduling the jobs appropriately will minimize potential locking, undo, and CPU
conflicts.

B Take advantage of the opportunity to physically shift CPU requirements from one server
to another. Wherever possible, isolate the database server from the application’s CPU
requirements. The data distribution techniques described in the networking chapters
of this book will result in data being stored in its most appropriate place, and the CPU
requirements of the application may be separated from the I/O requirements against the
database.

B Consider using Oracle’s Real Application Clusters (RAC) technology to spread the database
access requirements for a single database across multiple instances. See Chapter 10 for
an in-depth review of RAC features along with step-by-step instructions on how to create
a RAC database.

B Use the database resource management features. You can use the Database Resource
Manager to establish resource allocation plans and resource consumer groups. You can
use Oracle’s capabilities to change the resource allocations available to the consumer
groups. See Chapter 5 for details on creating and implementing resource consumer
groups and resource plans via the Database Resource Manager.

B Use Parallel Query to distribute the processing requirements of SQL statements among
multiple CPUs. Parallelism can be used by almost every SQL command, including select,
create table as select, create index, recover, and the SQL*Loader Direct Path loading
options.

The degree to which a transaction is parallelized depends on the defined degree of parallelism
for the transaction. Each table has a defined degree of parallelism, and a query can override the

Chapter 8: Database Tuning 245

default degree of parallelism by using the PARALLEL hint. Oracle evaluates the number of CPUs
available on the server and the number of disks on which the table’s data is stored in order to
determine the default degree of parallelism.

The maximum available parallelism is set at the instance level. The PARALLEL_MAX_SERVERS
initialization parameter sets the maximum number of parallel query server processes that can be
used at any one time by all the processes in the database. For example, if you set PARALLEL_
MAX_SERVERS to 32 for your instance, and you run a query that uses 30 parallel query server
processes for its query and sorting operations, then only two parallel query server processes are
available for all the rest of the users in the database. Therefore, you need to carefully manage the
parallelism you allow for your queries and batch operations. The PARALLEL_ADAPTIVE_MULTI_
USER parameter, when set to TRUE, enables an adaptive algorithm designed to improve
performance in multiuser environments using parallel execution. The algorithm automatically
reduces the requested degree of parallelism according to the system load at query startup time.
The effective degree of parallelism is based on the default degree of parallelism, or the degree
from the table, or hints, divided by a reduction factor.

For each table, you can set a default degree of parallelism via the parallel clause of the create
table and alter table commands. The degree of parallelism tells Oracle how many parallel query
server processes to attempt to use for each part of the operation. For example, if a query that
performs both table scanning and data sorting operations has a degree of parallelism of 5, there
could be ten parallel query server processes used—five for scanning and five for sorting. You can
also specify a degree of parallelism for an index when it is created, via the parallel clause of the
create index command.

The minimum number of parallel query server processes started is set via the PARALLEL_
MIN_SERVERS initialization parameter. In general, you should set this parameter to a very low
number (le