

®

Oracle Database
11g DBA Handbook

http://dx.doi.org/10.1036/0071496637

About the Authors
Bob Bryla is an Oracle 9i and 10g Certified Professional with more than 20 years of experience in
database design, database application development, training, and Oracle database administration.
He is the primary Internet database designer and an Oracle DBA at Lands’ End in Dodgeville,
Wisconsin.

In his spare time, he is a technical editor for a number of Oracle Press and Apress books, in
addition to authoring several certification study guides for Oracle 10g and Oracle 11g. He has
also been known to watch science fiction movies and read science fiction novels in his spare time.

Kevin Loney, Director of Data Management for a major financial institution, is an internationally
recognized expert in the design, development, administration, and tuning of Oracle databases.
An Oracle developer and DBA since 1987, he has implemented large-scale transaction processing
systems and data warehouses.

He is the author of numerous technical articles and the lead author or coauthor of such
best-selling books as Oracle: The Complete Reference. He regularly presents at Oracle user
conferences in North America and Europe, and in 2002 was named Consultant of the Year
by ORACLE Magazine.

About the Technical Editor
Scott Gossett is a Technical Director for Oracle Corporation’s Advanced Technology Solutions
organization specializing in RAC, performance tuning and high availability databases. Prior to
becoming a technical director, Scott was a Senior Principal Instructor for Oracle Education for
over twelve years, primarily teaching Oracle Internals, performance tuning, RAC and database
administration classes. In addition, Scott is one of the architects and primary authors of the Oracle
Certified Masters exam.

®

Oracle Database
11g DBA Handbook

Bob Bryla
Kevin Loney

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

http://dx.doi.org/10.1036/0071496637

Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America.
Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-159579-1

The material in this eBook also appears in the print version of this title: 0-07-149663-7.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to
the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store
and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative
works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s
prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly
prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

DOI: 10.1036/0071496637

http://dx.doi.org/10.1036/0071496637

We hope you enjoy this
McGraw-Hill eBook! If

you’d like more information about this book,
its author, or related books and websites,
please click here.

Professional

Want to learn more?

http://dx.doi.org/10.1036/0071496637

To the gang at home: I couldn’t have done it without you! And the pizzas.
—B.B.

This page intentionally left blank

Contents at a Glance

PART I

Database Architecture
 1 Getting Started with the Oracle Architecture . 3

 2 Upgrading to Oracle Database 11g . 49

 3 Planning and Managing Tablespaces . 61

 4 Physical Database Layouts and Storage Management . 75

PART II

Database Management
 5 Developing and Implementing Applications . 123

 6 Monitoring Space Usage . 163

 7 Managing Transactions with Undo Tablespaces . 207

 8 Database Tuning . 241

 9 Database Security and Auditing . 277

PART III

High Availability
 10 Real Application Clusters . 349

 11 Backup and Recovery Options . 391

 12 Using Recovery Manager (RMAN) . 417

 13 Oracle Data Guard . 475

 14 Miscellaneous High Availability Features . 495

vii

viii Oracle Database 11g DBA Handbook

PART IV

Networked Oracle
 15 Oracle Net . 511

 16 Managing Large Databases . 543

 17 Managing Distributed Databases . 599

 Appendix: Installation and Configuration . 635

 Index . 653

Contents

Acknowledgments . xix
Introduction . xxi

PART I

Database Architecture

 1 Getting Started with the Oracle Architecture . 3
An Overview of Databases and Instances . 4

Databases . 4
Instances . 5

Oracle Logical Storage Structures . 6
Tablespaces . 6
Blocks . 7
Extents . 7
Segments . 7

Oracle Logical Database Structures . 8
Tables . 8
Constraints . 15
Indexes . 17
Views . 19
Users and Schemas . 21
Profiles . 21
Sequences . 22
Synonyms . 22
PL/SQL . 22
External File Access . 23
Database Links and Remote Databases . 24

Oracle Physical Storage Structures . 24
Datafiles . 25
Redo Log Files . 26
Control Files . 26
Archived Log Files . 27
Initialization Parameter Files . 27

ix

For more information about this title, click here

http://dx.doi.org/10.1036/0071496637

x Oracle Database 11g DBA Handbook

Alert and Trace Log Files . 28
Backup Files . 28
Oracle Managed Files . 29
Password Files . 29

Multiplexing Database Files . 29
Automatic Storage Management . 29
Manual Multiplexing . 30

Oracle Memory Structures . 32
System Global Area . 32
Program Global Area . 35
Software Code Area . 35
Background Processes . 35

Backup/Recovery Overview . 38
Export/Import . 38
Offline Backups . 38
Online Backups . 39
RMAN . 39

Security Capabilities . 39
Privileges and Roles . 39
Auditing . 40
Fine-grained Auditing . 40
Virtual Private Database . 41
Label Security . 41

Real Application Clusters . 41
Oracle Streams . 42
Oracle Enterprise Manager . 42
Oracle Initialization Parameters . 43

Basic Initialization Parameters . 43
Advanced Initialization Parameters . 47

 2 Upgrading to Oracle Database 11g . 49
Choosing an Upgrade Method . 51
Before Upgrading . 52
Using the Database Upgrade Assistant . 53
Performing a Manual Direct Upgrade . 54
Using Export and Import . 57

Export and Import Versions to Use . 57
Performing the Upgrade . 57

Using the Data-Copying Method . 58
After Upgrading . 59

 3 Planning and Managing Tablespaces . 61
Tablespace Architecture . 62

Tablespace Types . 62
Optimal Flexible Architecture . 68

Oracle Installation Tablespaces . 72
SYSTEM . 72
SYSAUX . 72

Contents xi

TEMP . 72
UNDOTBS1 . 73
USERS . 73
EXAMPLE . 73

Segment Segregation . 73

 4 Physical Database Layouts and Storage Management . 75
Traditional Disk Space Storage . 76

Resizing Tablespaces and Datafiles . 76
Moving Datafiles . 92
Moving Online Redo Log Files . 94
Moving Control Files . 96

Automatic Storage Management . 98
ASM Architecture . 98
Creating an ASM Instance . 99
ASM Instance Components . 101
ASM Dynamic Performance Views . 103
ASM Filename Formats . 103
ASM File Types and Templates . 105
Administering ASM Disk Groups . 107

PART II

Database Management

 5 Developing and Implementing Applications . 123
Tuning by Design: Best Practices . 124

Do As Little As Possible . 124
Do It As Simply As Possible . 127
Tell the Database What It Needs to Know . 129
Maximize the Throughput in the Environment . 129
Divide and Conquer Your Data . 130
Test Correctly . 131
Standard Deliverables . 133

Resource Management and Stored Outlines . 136
Implementing the Database Resource Manager . 136
Implementing Stored Outlines . 140
Sizing Database Objects . 143
Using Temporary Tables . 149

Supporting Tables Based on Abstract Datatypes . 150
Using Object Views . 151
Security for Abstract Datatypes . 154
Indexing Abstract Datatype Attributes . 156

Quiescing and Suspending the Database . 157
Supporting Iterative Development . 158

Iterative Column Definitions . 159
Forcing Cursor Sharing . 159

Managing Package Development . 160
Generating Diagrams . 160

xii Oracle Database 11g DBA Handbook

Space Requirements . 160
Tuning Goals . 161
Security Requirements . 161
Data Requirements . 161
Version Requirements . 161
Execution Plans . 161
Acceptance Test Procedures . 162
The Testing Environment . 162

 6 Monitoring Space Usage . 163
Common Space Management Problems . 164

Running Out of Free Space in a Tablespace . 165
Insufficient Space for Temporary Segments . 165
Too Much or Too Little Undo Space Allocated . 165
Fragmented Tablespaces and Segments . 166

Oracle Segments, Extents, and Blocks . 166
Data Blocks . 167
Extents . 169
Segments . 170

Data Dictionary Views and Dynamic Performance Views . 171
DBA_TABLESPACES . 171
DBA_SEGMENTS . 172
DBA_EXTENTS . 172
DBA_FREE_SPACE . 173
DBA_LMT_FREE_SPACE . 173
DBA_THRESHOLDS . 173
DBA_OUTSTANDING_ALERTS . 174
DBA_ALERT_HISTORY . 174
V$ALERT_TYPES . 174
V$UNDOSTAT . 175
V$OBJECT_USAGE . 175
V$SORT_SEGMENT . 175
V$TEMPSEG_USAGE . 175

Space Management Methodologies . 175
Locally Managed Tablespaces . 176
Using OMF to Manage Space . 177
Bigfile Tablespaces . 178
Automatic Storage Management . 179
Undo Management Considerations . 181

SYSAUX Monitoring and Usage . 182
Archived Redo Log File Management . 184
Built-in Space Management Tools . 184

Segment Advisor . 185
Undo Advisor and the Automatic Workload Repository 187
Index Usage . 189
Space Usage Warning Levels . 190
Resumable Space Allocation . 192
Managing Alert and Trace Files with ADR . 195
OS Space Management . 197

Contents xiii

Space Management Scripts . 197
Segments That Cannot Allocate Additional Extents . 197
Used and Free Space by Tablespace and Datafile . 198

Automating and Streamlining the Notification Process . 199
Using DBMS_SCHEDULER . 199
OEM Job Control and Monitoring . 200

 7 Managing Transactions with Undo Tablespaces . 207
Transaction Basics . 208
Undo Basics . 209

Rollback . 209
Read Consistency . 209
Database Recovery . 210
Flashback Operations . 210

Managing Undo Tablespaces . 210
Creating Undo Tablespaces . 210
Undo Tablespace Dynamic Performance Views . 216
Undo Tablespace Initialization Parameters . 216
Multiple Undo Tablespaces . 217
Sizing and Monitoring the Undo Tablespace . 220
Read Consistency vs. Successful DML . 222

Flashback Features . 223
Flashback Query . 223
DBMS_FLASHBACK . 225
Flashback Transaction Backout . 227
Flashback Table . 227
Flashback Version Query . 232
Flashback Transaction Query . 234
Flashback Data Archive . 236
Flashback and LOBs . 239

Migrating to Automatic Undo Management . 239

 8 Database Tuning . 241
Tuning Application Design . 243

Effective Table Design . 243
Distribution of CPU Requirements . 244
Effective Application Design . 245

Tuning SQL . 247
Impact of Order on Load Rates . 248
Additional Indexing Options . 249
Generating Explain Plans . 250

Tuning Memory Usage . 252
Specifying the Size of the SGA . 255
Using the Cost-Based Optimizer . 256
Implications of the COMPUTE STATISTICS Option . 257

Tuning Data Access . 257
Locally Managed Tablespaces . 257
Identifying Chained Rows . 258
Increasing the Oracle Block Size . 259

xiv Oracle Database 11g DBA Handbook

Using Index-Organized Tables . 260
Tuning Issues for Index-Organized Tables . 261

Tuning Data Manipulation . 262
Bulk Inserts: Using the SQL*Loader Direct Path Option 262
Bulk Data Moves: Using External Tables . 263
Bulk Inserts: Common Traps and Successful Tricks . 264
Bulk Deletes: The truncate Command . 265
Using Partitions . 266

Tuning Physical Storage . 267
Using Raw Devices . 267
Using Automatic Storage Management . 267

Reducing Network Traffic . 268
Replication of Data Using Materialized Views . 268
Using Remote Procedure Calls . 270

Using the Automatic Workload Repository . 270
Managing Snapshots . 271
Managing Baselines . 271
Generating AWR Reports . 272
Running the Automatic Database Diagnostic Monitor Reports 272
Using the Automatic SQL Tuning Advisor . 272

Tuning Solutions . 275

 9 Database Security and Auditing . 277
Non-Database Security . 279
Database Authentication Methods . 279

Database Authentication . 280
Database Administrator Authentication . 280
Operating System Authentication . 283
Network Authentication . 284
3-Tier Authentication . 286
Client-Side Authentication . 286
Oracle Identity Management . 286
User Accounts . 288

Database Authorization Methods . 292
Profile Management . 292
System Privileges . 299
Object Privileges . 302
Creating, Assigning, and Maintaining Roles . 306
Using a VPD to Implement Application Security Policies 313

Auditing . 331
Auditing Locations . 331
Statement Auditing . 332
Privilege Auditing . 336
Schema Object Auditing . 337
Fine-Grained Auditing . 338
Auditing-Related Data Dictionary Views . 339
Protecting the Audit Trail . 340
Enabling Enhanced Auditing . 340

Contents xv

Data Encryption Techniques . 342
DBMS_CRYPTO Package . 342
Transparent Data Encryption . 342

PART III

High Availability

 10 Real Application Clusters . 349
Overview of Real Application Clusters . 350

Hardware Configuration . 351
Software Configuration . 351
Network Configuration . 351
Disk Storage . 352

Installation and Setup . 353
Operating System Configuration . 354
Software Installation . 360

RAC Characteristics . 378
Server Parameter File Characteristics . 379
RAC-related Initialization Parameters . 380
Dynamic Performance Views . 380

RAC Maintenance . 382
Starting Up a RAC . 382
Redo Logs in a RAC Environment . 383
Undo Tablespaces in a RAC Environment . 383
Failover Scenarios and TAF . 383
RAC Node Failure Scenario . 385
Tuning a RAC Node . 389
Tablespace Management . 390

 11 Backup and Recovery Options . 391
Capabilities . 392
Logical Backups . 392
Physical Backups . 393

Offline Backups . 393
Online Backups . 394

Using Data Pump Export and Import . 395
Creating a Directory . 395
Data Pump Export Options . 396
Starting a Data Pump Export Job . 399

Data Pump Import Options . 403
Starting a Data Pump Import Job . 406
Comparing Data Pump Export/Import to Export/Import 410
Implementing Offline Backups . 411
Implementing Online Backups . 411

Integration of Backup Procedures . 414
Integration of Logical and Physical Backups . 415
Integration of Database and Operating System Backups 416

xvi Oracle Database 11g DBA Handbook

 12 Using Recovery Manager (RMAN) . 417
RMAN Features and Components . 418

RMAN Components . 419
RMAN vs. Traditional Backup Methods . 420
Backup Types . 421

Overview of RMAN Commands and Options . 423
Frequently Used Commands . 423
Setting Up a Repository . 423
Registering a Database . 428
Persisting RMAN Settings . 428
Initialization Parameters . 432
Data Dictionary and Dynamic Performance Views . 433

Backup Operations . 434
Full Database Backups . 435
Tablespace . 439
Datafiles . 442
Image Copies . 442
Control File, SPFILE Backup . 444
Archived Redo Logs . 444
Incremental Backups . 445
Incrementally Updated Backups . 447
Incremental Backup Block Change Tracking . 450
Backup Compression . 451
Using a Flash Recovery Area . 452
Validating Backups . 453

Recovery Operations . 455
Block Media Recovery . 455
Restoring a Control File . 456
Restoring a Tablespace . 456
Restoring a Datafile . 459
Restoring an Entire Database . 461
Validating Restore Operations . 464
Point in Time Recovery . 465
Data Recovery Advisor . 465

Miscellaneous Operations . 470
Cataloging Other Backups . 470
Catalog Maintenance . 471
REPORT and LIST . 472

 13 Oracle Data Guard . 475
Data Guard Architecture . 476

Physical vs. Logical Standby Databases . 477
Data Protection Modes . 477

LOG_ARCHIVE_DEST_n Parameter Attributes . 478
Creating the Standby Database Configuration . 479

Preparing the Primary Database . 480
Creating Logical Standby Databases . 484

Using Real-Time Apply . 486
Managing Gaps in Archive Log Sequences . 486
Managing Roles—Switchovers and Failovers . 487

Switchovers . 487

Contents xvii

Switchovers to Physical Standby Databases . 487
Switchovers to Logical Standby Databases . 489
Failovers to Physical Standby Databases . 490
Failovers to Logical Standby Databases . 490

Administering the Databases . 491
Startup and Shutdown of Physical Standby Databases 491
Opening Physical Standby Databases in Read-Only Mode 491
Managing Datafiles in Data Guard Environments . 492
Performing DDL on a Logical Standby Database . 492

 14 Miscellaneous High Availability Features . 495
Recovering Dropped Tables Using Flashback Drop . 496
The Flashback Database Command . 498
Using LogMiner . 500

How LogMiner Works . 500
Extracting the Data Dictionary . 501
Analyzing One or More Redo Log Files . 502
LogMiner Features Introduced in Oracle Database 10g 504
LogMiner Features Introduced in Oracle Database 11g 505

Online Object Reorganization . 506
Creating Indexes Online . 506
Rebuilding Indexes Online . 506
Coalescing Indexes Online . 506
Rebuilding Index-Organized Tables Online . 506
Redefining Tables Online . 507

PART IV

Networked Oracle
 15 Oracle Net . 511

Overview of Oracle Net . 512
Connect Descriptors . 515
Net Service Names . 516
Replacing tnsnames.ora with Oracle Internet Directory 517
Listeners . 517

Using the Oracle Net Configuration Assistant . 520
Configuring the Listener . 521

Using the Oracle Net Manager . 525
Starting the Listener Server Process . 527
Controlling the Listener Server Process . 528

The Oracle Connection Manager . 531
Using Connection Manager . 531
Directory Naming with Oracle Internet Directory . 534

Using Easy Connect Naming . 537
Using Database Links . 538
Tuning Oracle Net . 540

Limiting Resource Usage . 541
Debugging Connection Problems . 541

 16 Managing Large Databases . 543
Creating Tablespaces in a VLDB Environment . 545

Bigfile Tablespace Basics . 545

xviii Oracle Database 11g DBA Handbook

Creating and Modifying Bigfile Tablespaces . 546
Bigfile Tablespace ROWID Format . 546
DBMS_ROWID and Bigfile Tablespaces . 547
Using DBVERIFY with Bigfile Tablespaces . 550
Bigfile Tablespace Initialization Parameter Considerations 551
Bigfile Tablespace Data Dictionary Changes . 552

Advanced Oracle Table Types . 552
Index-Organized Tables . 553
Global Temporary Tables . 553
External Tables . 555
Partitioned Tables . 557
Materialized Views . 589

Using Bitmap Indexes . 589
Understanding Bitmap Indexes . 589
Using Bitmap Indexes . 590
Using Bitmap Join Indexes . 590

Oracle Data Pump . 591
Data Pump Export . 592
Data Pump Import . 592
Using Transportable Tablespaces . 593

 17 Managing Distributed Databases . 599
Remote Queries . 601
Remote Data Manipulation: Two-Phase Commit . 602
Dynamic Data Replication . 603
Managing Distributed Data . 604

The Infrastructure: Enforcing Location Transparency . 604
Managing Database Links . 609
Managing Database Triggers . 610
Managing Materialized Views . 612
Using DBMS_MVIEW and DBMS_ADVISOR . 616
What Kind of Refreshes Can Be Performed? . 625
Using Materialized Views to Alter Query Execution Paths 629

Managing Distributed Transactions . 630
Resolving In-Doubt Transactions . 631
Commit Point Strength . 631

Monitoring Distributed Databases . 632
Tuning Distributed Databases . 632

 Appendix: Installation and Configuration . 635
Software Installation . 636

Overview of Licensing and Installation Options . 637
Using OUI to Install the Oracle Software . 638
Using the DBCA to Create a Database . 638
Manually Creating a Database . 649

 Index . 653

Acknowledgments

any technical books need the expertise of more than one person, and this one
is no exception. Thanks to Kevin for his expertise on the previous editions of
this book making this book a success.

Thanks also go out to Carolyn Welch and Lisa McClain for filling in the gaps in my
college English courses, Mandy Canales for keeping me on schedule, and Scott Gossett,
who gave me good advice when the theoretical met the practical.

Many of my professional colleagues at Lands’ End were a source of both inspiration and
guidance: Joe Johnson, Brook Swenson, and Ann Van Dyn Hoven. In this case, the whole
is truly greater than the sum of its parts.

If you have any questions or comments about any part of this book, please do not
hesitate to contact me at rjbryla@centurytel.net.

—Bob Bryla

M

xix

This page intentionally left blank

Introduction

hether you’re an experienced DBA, a new DBA, or an application developer,
you need to understand how Oracle11g’s new features can help you best meet
your customers’ needs. In this book, you will find coverage of the newest
features as well as ways of merging those features into the management of
an Oracle database. The emphasis throughout is on managing the database’s

capabilities in an effective and efficient manner to deliver a quality product. The end result
will be a database that is dependable, robust, secure, and extensible.

Several components are critical to this goal, and all of them are covered in depth after
we introduce the Oracle Architecture, Oracle 11g upgrade issues, and tablespace planning
in Part I. A well-designed logical and physical database architecture will improve performance
and ease administration by properly distributing database objects. You’ll see appropriate
monitoring, security, and tuning strategies for stand-alone and networked databases in Part
II of this book. Backup and recovery strategies are provided to help ensure the database’s
recoverability. Each section focuses on both the features and the proper planning and
management techniques for each area.

High availability is covered in all of its flavors: Real Application Clusters (RAC), Recovery
Manager (RMAN), and Oracle Data Guard, to name a few of the topics covered in-depth in
Part III of this book.

Networking issues and the management of distributed and client/server databases are
thoroughly covered. Oracle Net, networking configurations, materialized views, location
transparency, and everything else you need to successfully implement a distributed or
client/server database are described in detail in Part IV of this book. You’ll also find
real-world examples for every major configuration.

In addition to the commands needed to perform DBA activities, you will also see the
Oracle Enterprise Manager web pages from which you can perform similar functions. By
following the techniques in this book, your systems can be designed and implemented so
well that tuning efforts will be minimal. Administering the database will become easier as
the users get a better product, while the database works—and works well.

W

xxi

This page intentionally left blank

PART
I

Database Architecture

This page intentionally left blank

CHAPTER
1

Getting Started with the
Oracle Architecture

3

4 Oracle Database 11g DBA Handbook

racle Database 11g is an evolutionary step from the previous release of Oracle 10g;
Oracle 10g was, in turn, a truly revolutionary step from Oracle9i in terms of its “set
it and forget it” features. Oracle 11g continues the tradition of feature enhancement
by making memory management more automated, adding several new advisors,
and significantly improving availability and failover capabilities. Part I of this book

covers the basics of the Oracle architecture and lays the foundation for deploying a successful
Oracle infrastructure by giving practical advice for a new installation or upgrading from a previous
release of Oracle. To provide a good foundation for the Oracle 11g software, we cover server
hardware and operating system configuration issues in the relevant sections.

In Part II of this book, we will cover several areas relevant to the day-to-day maintenance and
operation of an Oracle 11g database. The first chapter in Part II discusses the requirements that a
DBA needs to gather long before you mount the install CD on your server. Successive chapters deal
with ways the DBA can manage disk space, CPU usage, and adjust Oracle parameters to optimize
the server’s resources, using a variety of tools at the DBA’s disposal for monitoring database
performance. Transaction management is greatly simplified by Automated Undo Management
(AUM), an Oracle Database feature introduced in Oracle9i and enhanced in Oracle 10g and
Oracle 11g.

Part III of this book focuses on the high availability aspects of Oracle 11g. This includes using
Oracle’s Recovery Manager (RMAN) to perform and automate database backups and recovery,
along with other features, such as Oracle Data Guard, to provide a reliable and easy way to
recover from a database failure. Last, but certainly not least, we will show how Oracle 11g Real
Application Clusters (RAC) can at the same time provide extreme scalability and transparent
failover capabilities to a database environment. Even if you don’t use Oracle 11g’s RAC features,
the standby features make Oracle 11g almost as available as a clustered solution; being able to
easily switch between standby and primary databases as well as query a physical standby database
provides a robust high-availability solution until you are ready to implement a RAC database.

In Part IV of this book, we will cover a variety of issues revolving around Networked Oracle.
Not only will we cover how Oracle Net can be configured in an N-tier environment, but also
how we manage large and distributed databases that may reside in neighboring cities or around
the world.

In this chapter, we cover the basics of Oracle Database 11g, highlighting many of the features
we will cover in the rest of the book as well as the basics of installing Oracle 11g using Oracle
Universal Installer (OUI) and the Database Configuration Assistant (DBCA). We will take a tour
of the elements that compose an instance of Oracle 11g, ranging from memory structures to disk
structures, initialization parameters, tables, indexes, and PL/SQL. Each of these elements plays a
large role in making Oracle 11g a highly scalable, available, and secure environment.

An Overview of Databases and Instances
Although the terms “database” and “instance” are often used interchangeably, they are quite
different. They are very distinct entities in an Oracle datacenter, as you shall see in the following
sections.

Databases
A database is a collection of data on disk in one or more files on a database server that collects
and maintains related information. The database consists of various physical and logical
structures, the table being the most important logical structure in the database. A table consists

O

Chapter 1: Getting Started with the Oracle Architecture 5

of rows and columns containing related data. At a minimum, a database must have at least tables
to store useful information. Figure 1-1 shows a sample table containing four rows and three
columns. The data in each row of the table is related: Each row contains information about a
particular employee in the company.

In addition, a database provides a level of security to prevent unauthorized access to the data.
Oracle Database 11g provides many mechanisms to facilitate the security necessary to keep
confidential data confidential. Oracle Security and access control are covered in more detail in
Chapter 9.

Files composing a database fall into two broad categories: database files and non-database
files. The distinction lies in what kind of data is stored in each. Database files contain data and
metadata; non-database files contain initialization parameters, logging information, and so forth.
Database files are critical to the ongoing operation of the database on a moment-by-moment
basis. Each of these physical storage structures is discussed later, in the section titled “Oracle
Physical Storage Structures.”

Instances
The main components of a typical enterprise server are one or more CPUs, disk space, and
memory. Whereas the Oracle database is stored on a server’s disk, an Oracle instance exists
in the server’s memory. An Oracle instance is composed of a large block of memory allocated
in an area called the System Global Area (SGA), along with a number of background processes
that interact between the SGA and the database files on disk.

In an Oracle Real Application Cluster (RAC), more than one instance will use the same
database. Although the instances that share the database can be on the same server, most likely
the instances will be on separate servers that are connected by a high-speed interconnect and
access a database that resides on a specialized RAID-enabled disk subsystem. More details on
how a RAC installation is configured are provided in Chapter 10.

FIGURE 1-1 Sample database table

6 Oracle Database 11g DBA Handbook

Oracle Logical Storage Structures
The datafiles in an Oracle database are grouped together into one or more tablespaces. Within
each tablespace, the logical database structures, such as tables and indexes, are segments that are
further subdivided into extents and blocks. This logical subdivision of storage allows Oracle to
have more efficient control over disk space usage. Figure 1-2 shows the relationship between the
logical storage structures in a database.

Tablespaces
An Oracle tablespace consists of one or more datafiles; a datafile can be a part of one and only
one tablespace. For an installation of Oracle 11g, a minimum of two tablespaces are created: the
SYSTEM tablespace and the SYSAUX tablespace; a default installation of Oracle 11g creates six
tablespaces (see the appendix “Installation and Configuration” for sample Oracle 11g installations).

Oracle 11g allows you to create a special kind of tablespace called a bigfile tablespace, which
can be as large as 128TB (terabytes). Using bigfiles makes tablespace management completely
transparent to the DBA; in other words, the DBA can manage the tablespace as a unit without
worrying about the size and structure of the underlying datafiles.

Using Oracle Managed Files (OMF) can make tablespace datafile management even easier.
With OMF, the DBA specifies one or more locations in the file system where datafiles, control
files, and redo log files will reside, and Oracle automatically handles the naming and management
of these files. We discuss OMF in more detail in Chapter 4.

If a tablespace is temporary, the tablespace itself is permanent; only the segments saved in
the tablespace are temporary. A temporary tablespace can be used for sorting operations and for
tables that exist only for the duration of the user’s session. Dedicating a tablespace for these kinds

FIGURE 1-2 Logical storage structures

Chapter 1: Getting Started with the Oracle Architecture 7

of operations helps to reduce the I/O contention between temporary segments and permanent
segments stored in another tablespace, such as tables.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, extent management is recorded in data dictionary tables. Therefore, even if all
application tables are in the USERS tablespace, the SYSTEM tablespace will still be accessed for
managing DML on application tables. Because all users and applications must use the SYSTEM
tablespace for extent management, this creates a potential bottleneck for write-intensive applications.
In a locally managed tablespace, Oracle maintains a bitmap in each datafile of the tablespace to
track space availability. Only quotas are managed in the data dictionary, dramatically reducing
the contention for data dictionary tables.

As of Oracle9i, if the SYSTEM tablespace is locally managed, then all other tablespaces must
be locally managed if both read and write operations are to be performed on them. Dictionary-
managed tablespaces must be read-only in databases with a locally managed SYSTEM tablespace.

Blocks
A database block is the smallest unit of storage in the Oracle database. The size of a block is a
specific number of bytes of storage within a given tablespace within the database.

A block is usually a multiple of the operating system block size to facilitate efficient disk I/O.
The default block size is specified by the Oracle initialization parameter DB_BLOCK_SIZE. As many
as four other block sizes may be defined for other tablespaces in the database, although the blocks
in the SYSTEM, SYSAUX, and any temporary tablespaces must be of the size DB_BLOCK_SIZE.

Extents
The extent is the next level of logical grouping in the database. An extent consists of one or more
database blocks. When you enlarge a database object, the space added to the object is allocated
as an extent.

Segments
The next level of logical grouping in a database is the segment. A segment is a group of extents
that form a database object that Oracle treats as a unit, such as a table or index. As a result, this is
typically the smallest unit of storage that an end user of the database will deal with. Four types of
segments are found in an Oracle database: data segments, index segments, temporary segments,
and rollback segments.

Data Segment
Every table in the database resides in a single data segment, consisting of one or more extents;
Oracle allocates more than one segment for a table if it is a partitioned table or a clustered table .
I discuss partitioned and clustered tables later in this chapter. Data segments include LOB (large
object) segments that store LOB data referenced by a LOB locator column in a table segment (if
the LOB is not stored inline in the table).

Index Segment
Each index is stored in its own index segment. As with partitioned tables, each partition of a
partitioned index is stored in its own segment. Included in this category are LOB index segments;
a table’s non-LOB columns, a table’s LOB columns, and the LOBs’ associated indexes can all
reside in their own tablespace to improve performance.

8 Oracle Database 11g DBA Handbook

Temporary Segment
When a user’s SQL statement needs disk space to complete an operation, such as a sorting
operation that cannot fit in memory, Oracle allocates a temporary segment. Temporary segments
exist only for the duration of the SQL statement.

Rollback Segment
As of Oracle 10g, rollback segments only exist in the SYSTEM tablespace, and typically the DBA
does not need to maintain the SYSTEM rollback segment. In previous Oracle releases, a rollback
segment was created to save the previous values of a database DML operation in case the
transaction was rolled back, and to maintain the “before” image data to provide read-consistent
views of table data for other users accessing the table. Rollback segments were also used during
database recovery for rolling back uncommitted transactions that were active when the database
instance crashed or terminated unexpectedly.

Automatic Undo Management handles the automatic allocation and management of rollback
segments within an undo tablespace. Within an undo tablespace, the undo segments are structured
similarly to rollback segments, except that the details of how these segments are managed is under
control of Oracle, instead of being managed (often inefficiently) by the DBA. Automatic undo
segments were available staring with Oracle9i, but manually managed rollback segments are
still available in Oracle 10g. However, this functionality is deprecated as of Oracle 10g, and will
no longer be available in future releases. In Oracle 11g, Automatic Undo Management is enabled
by default; in addition, a PL/SQL procedure is provided to help you size the UNDO tablespace.
I discuss Automatic Undo Management in detail in Chapter 7.

Oracle Logical Database Structures
In this section, we will cover the highlights of all major logical database structures, starting with
tables and indexes. Next, we discuss the variety of datatypes we can use to define the columns of
a table. When we create a table with columns, we can place restrictions, or constraints, on the
columns of the table.

One of the many reasons we use a relational database management system (RDBMS) to
manage our data is to leverage the security and auditing features of the Oracle database. We will
review the ways we can segregate access to the database by user or by the object being accessed.

We’ll also touch upon many other logical structures that can be defined by either the DBA or
the user, including synonyms, links to external files, and links to other databases.

Tables
A table is the basic unit of storage in an Oracle database. Without any tables, a database has
no value to an enterprise. Regardless of the type of table, data in a table is stored in rows and
columns, similar to how data is stored in a spreadsheet. But that is where the similarity ends.
The robustness of a database table due to the surrounding reliability, integrity, and scalability
of the Oracle database makes a spreadsheet a poor second choice when deciding on a place
to store critical information.

In this section, we will review the many different types of tables in the Oracle database and
how they can satisfy most every data-storage need for an organization. You can find more details
on how to choose between these types of tables for a particular application, and how to manage
them, in Chapter 5 and Chapter 8.

Chapter 1: Getting Started with the Oracle Architecture 9

Relational Tables
A relational table is the most common type of table in a database. A relational table is heap-
organized; in other words, the rows in the table are stored in no particular order. In the create
table command, you can specify the clause organization heap to define a heap-organized table,
but because this is the default, the clause can be omitted.

Each row of a table contains one or more columns; each column has a datatype and a length.
As of Oracle version 8, a column may also contain a user-defined object type, a nested table, or a
VARRAY. In addition, a table can be defined as an object table. We will review object tables and
objects later in this section.

The built-in Oracle datatypes are presented in Table 1-1.
Oracle also supports ANSI-compatible datatypes; the mapping between the ANSI datatypes

and Oracle datatypes is provided in Table 1-2.

Oracle Built-in Datatype Description

VARCHAR2 (size) [BYTE | CHAR] A variable-length character string with a maximum length of 4000 bytes,
minimum of 1 byte. CHAR indicates that character semantics are used to
size the string; BYTE indicates that byte semantics are used.

NVARCHAR2(size) A variable-length character string with a maximum length of 4000 bytes.

NUMBER(p,s) A number with a precision (p) and scale (s). The precision ranges from 1
to 38, and the scale can be from –84 to 127.

LONG A variable-length character data with a length up to 2GB (231–1).

DATE Date values from January 1st, 4712 B.C. to December 31st, 9999 A.D.

BINARY_FLOAT A 32-bit floating point number.

BINARY_DOUBLE A 64-bit floating point number.

TIMESTAMP (fractional_seconds) Year, month, day, hour, minute, second, and fractional seconds. Value
of fractional_seconds can range from 0 to 9; in other words, up to one
billionth of a second precision. The default is 6 (one millionth).

TIMESTAMP (fractional_seconds)
WITH TIME ZONE

Contains a TIMESTAMP value in addition to a time zone displacement
value. Time zone displacement can be an offset from UTC (such as
‘-06:00’) or a region name (e.g., ‘US/Central’).

TIMESTAMP (fractional_seconds)
WITH LOCAL TIME ZONE

Similar to TIMESTAMP WITH TIMEZONE, except that (1) data is
normalized to the database time zone when it is stored and (2) when
retrieving columns with this datatype, the user sees the data in the
session’s time zone.

INTERVAL YEAR (year_precision)
TO MONTH

Stores a time period in years and months. The value of year_precision is
the number of digits in the YEAR field.

INTERVAL DAY (day_precision)
TO SECOND (fractional_seconds_
precision)

Stores a period of time as days, hours, minutes, seconds, and fractional
seconds. The value for day_precision is from 0 to 9, with a default of
2. The value of fractional_seconds_precision is similar to the fractional
seconds in a TIMESTAMP value; the range is from 0 to 9, with a default
of 6.

RAW(size) Raw binary data, with a maximum size of 2000 bytes.

TABLE 1-1 Oracle Built-in Datatypes

10 Oracle Database 11g DBA Handbook

Oracle Built-in Datatype Description

LONG RAW Raw binary data, variable length, up to 2GB in size.

ROWID A base-64 string representing the unique address of a row in its
corresponding table. This address is unique throughout the database.

UROWID [(size)] A base-64 string representing the logical address of a row in an index-
organized table. The maximum for size is 4000 bytes.

CHAR(size) [BYTE | CHAR] A fixed- length character string of length size. The minimum size is 1,
and the maximum is 2000 bytes. The BYTE and CHAR parameters are
BYTE and CHAR semantics, as in VARCHAR2.

NCHAR(size) A fixed-length character string up to 2000 bytes; the maximum size
depends on the national character set definition for the database. The
default size is 1.

CLOB A character large object containing single-byte or multibyte characters;
supports both fixed-width or variable-width character sets. The
maximum size is (4GB – 1) * DB_BLOCK_SIZE.

NCLOB Similar to CLOB, except that Unicode characters are stored from either
fixed-width and variable-width character sets. The maximum size is
(4GB – 1) * DB_BLOCK_SIZE.

BLOB A binary large object; the maximum size is (4GB – 1) * DB_BLOCK_SIZE.

BFILE A pointer to a large binary file stored outside the database. Binary files
must be accessible from the server running the Oracle instance. The
maximum size is 4GB.

TABLE 1-1 Oracle Built-in Datatypes (continued)

ANSI SQL Datatype Oracle Datatype

CHARACTER(n)
CHAR(n)

CHAR(n)

CHARACTER VARYING(n)
CHAR VARYING(n)

VARCHAR(n)

NATIONAL CHARACTER(n)
NATIONAL CHAR(n)
NCHAR(n)

NCHAR(n)

NATIONAL CHARACTER VARYING(n)
NATIONAL CHAR VARYING(n)
NCHAR VARYING(n)

NVARCHAR2(n)

NUMERIC(p,s)
DECIMAL(p,s)

NUMBER(p,s)

INTEGER
INT
SMALLINT

NUMBER(38)

FLOAT(b)
DOUBLE PRECISION
REAL

NUMBER

TABLE 1-2 ANSI-Equivalent Oracle Datatypes

Chapter 1: Getting Started with the Oracle Architecture 11

Temporary Tables
Temporary tables have been available since Oracle8i. They are temporary in the sense of the data
that is stored in the table, not in the definition of the table itself. The command create global
temporary table creates a temporary table.

As long as other users have permissions to the table itself, they may perform select statements
or Data Manipulation Language Commands (DML), such as insert, update, or delete, on a temporary
table. However, each user sees their own and only their own data in the table. When a user
truncates a temporary table, only the data that they inserted is removed from the table.

There are two different flavors of temporary data in a temporary table: temporary for the
duration of the transaction, and temporary for the duration of the session. The longevity of the
temporary data is controlled by the on commit clause; on commit delete rows removes all rows
from the temporary table when a commit or rollback is issued, and on commit preserve rows
keeps the rows in the table beyond the transaction boundary. However, when the user’s session
is terminated, all of the user’s rows in the temporary table are removed.

There are a few other things to keep in mind when using temporary tables. Although you can
create an index on a temporary table, the entries in the index are dropped along with the data
rows, as with a regular table. Also, due to the temporary nature of the data in a temporary table,
no redo information is generated for DML on temporary tables; however, undo information is
created in the undo tablespace.

Index Organized Tables
As you will find out later in the subsection on indexes, creating an index makes finding a particular
row in a table more efficient. However, this adds a bit of overhead, because the database must
maintain the data rows and the index entries for the table. What if your table does not have many
columns, and access to the table occurs primarily on a single column? In this case, an index-
organized table (IOT) might be the right solution. An IOT stores rows of a table in a B-tree index,
where each node of the B-tree index contains the keyed (indexed) column along with one or
more non-indexed columns.

The most obvious advantage of an IOT is that only one storage structure needs to be maintained
instead of two; similarly, the values for the primary key of the table are stored only once in an
IOT, versus twice in a regular table.

There are, however, a few disadvantages to using an IOT. Some tables, such as tables for
logging events, may not need a primary key, or any keys for that matter; an IOT must have a
primary key. Also, IOTs cannot be a member of a cluster. Finally, an IOT might not be the best
solution for a table if there are a large number of columns in the table and many of the columns
are frequently accessed when table rows are retrieved.

Object Tables
Since Oracle8, the Oracle Database has supported many object-oriented features in the database.
User-defined types, along with any defined methods for these object types, can make an
implementation of an object-oriented (OO) development project in Oracle seamless.

Object tables have rows that are themselves objects, or instantiations of type definitions.
Rows in an object table can be referenced by object ID (OID), in contrast to a primary key in a
relational, or regular, table; however, object tables can still have both primary and unique keys,
just as relational tables do.

12 Oracle Database 11g DBA Handbook

Let’s say, for example, that you are creating a Human Resources (HR) system from scratch, so
you have the flexibility to design the database from an entirely OO point of view. The first step is
to define an employee object, or type, by creating the type:

create type PERS_TYP as object
 (Last_Name varchar2(45),
 First_Name varchar2(30),
 Middle_Initial char(1),
 Surname varchar2(10),
 SSN varchar2(15));

In this particular case, you’re not creating any methods with the PERS_TYP object, but by
default Oracle creates a constructor method for the type that has the same name as the type itself
(in this case, PERS_TYP). To create an object table as a collection of PERS_TYP objects, you can
use the familiar create table syntax, as follows:

create table pers of pers_typ;

To add an instance of an object to the object table, you can specify the constructor method in
the insert command:

insert into pers
 values(pers_typ('Graber','Martha','E','Ms.','123-45-6789'));

As of Oracle Database 10g, you do not need the constructor if the table consists of instances
of a single object; here is the simplified syntax:

insert into pers values('Graber','Martha','E','Ms.','123-45-6789');

References to instances of the PERS_TYP object can be stored in other tables as REF objects,
and you can retrieve data from the PERS table without a direct reference to the PERS table itself.

More examples of how you can use objects to implement an object-oriented design project
can be found in Chapter 5.

External Tables
External tables were introduced in Oracle9i. In a nutshell, external tables allow a user to access
a data source, such as a text file, as if it were a table in the database. The metadata for the table
is stored within the Oracle data dictionary, but the contents of the table are stored externally.

The definition for an external table contains two parts. The first and most familiar part is the
definition of the table from the database user’s point of view. This definition looks like any typical
definition that you’d see in a create table statement.

The second part, however, is what differentiates an external table from a regular table. This
is where the mapping between the database columns and the external data source occurs—what
column(s) the data element starts in, how wide the column is, and whether the format of the
external column is character or binary. The syntax for the default type of external table, ORACLE_
LOADER, is virtually identical to that of a control file in SQL*Loader. This is one of the
advantages of external tables; the user only needs to know how to access a standard database
table to get to the external file.

There are a few drawbacks, however, to using external tables. You cannot create indexes on
an external table, and no inserts, updates, or deletes can be performed on external tables. These
drawbacks are minor when considering the advantages of using external tables for loading native
database tables, for example, in a data warehouse environment.

Chapter 1: Getting Started with the Oracle Architecture 13

Clustered Tables
If two or more tables are frequently accessed together (for example, an order table and a line item
detail table), then creating a clustered table might be a good way to boost the performance of
queries that reference those tables. In the case of an order table with an associated line-item detail
table, the order header information could be stored in the same block as the line-item detail
records, thus reducing the amount of I/O needed to retrieve the order and line-item information.

Clustered tables also reduce the amount of space needed to store the columns the two tables
have in common, also known as a cluster key value. The cluster key value is also stored in a
cluster index. The cluster index operates much like a traditional index in that it will improve
queries against the clustered tables when accessed by the cluster key value. In our example with
orders and line items, the order number is only stored once, instead of repeating for each line-
item detail row.

The advantages to clustering a table are reduced if frequent insert, update, and delete
operations occur on the table relative to the number of select statements against the table. In
addition, frequent queries against individual tables in the cluster may also reduce the benefits
of clustering the tables in the first place.

Hash Clusters
A special type of clustered table, a hash cluster, operates much like a regular clustered table,
except that instead of using a cluster index, a hash cluster uses a hashing function to store and
retrieve rows in a table. The total estimated amount of space needed for the table is allocated
when the table is created, given the number of hash keys specified during the creation of the
cluster. In our order-entry example, let’s assume that our Oracle database needs to mirror the
legacy data-entry system, which reuses order numbers on a periodic basis. Also, the order number
is always a six-digit number. We might create the cluster for orders as in the following example:

create cluster order_cluster (order_number number(6))
 size 50
 hash is order_number hashkeys 1000000;

create table cust_order (
 order_number number(6) primary key,
 order_date date,
 customer_number number)
cluster order_cluster(order_number);

Hash clusters have performance benefits when you select rows from a table using an equality
comparison, as in this example:

select order_number, order_date from cust_order
 where order_number = 196811;

Typically, this kind of query will retrieve the row with only one I/O if the number of hashkeys
is high enough and the hash is clause, containing the hashing function, produces an evenly
distributed hash key.

Sorted Hash Clusters
Sorted hash clusters are new as of Oracle 10g. They are similar to regular hash clusters in that a
hashing function is used to locate a row in a table. However, in addition, sorted hash clusters
allow rows in the table to be stored by one or more columns of the table in ascending order. This

14 Oracle Database 11g DBA Handbook

allows the data to be processed more quickly for applications that lend themselves to first in, first
out (FIFO) processing.

You create sorted hash clusters using the same syntax as regular clustered tables, with the
addition of the SORT positional parameter after the column definitions within the cluster. Here is
an example of creating a table in a sorted hash cluster:

create table order_detail (
 order_number number,
 order_timestamp timestamp sort,
 customer_number number)
cluster order_detail_cluster (
 order_number,
 order_timestamp);

Due to the FIFO nature of a sorted hash cluster, when orders are accessed by order_number
the oldest orders are retrieved first based on the value of order_timestamp.

Partitioned Tables
Partitioning a table (or index, as you will see in the next section) helps make a large table more
manageable. A table may be partitioned, or even subpartitioned, into smaller pieces. From an
application point of view, partitioning is transparent (that is, no explicit references to a particular
partition are necessary in any end-user SQL). The only effect that a user may notice is that queries
against the partitioned table using criteria in the where clause that matches the partitioning
scheme run a lot faster!

There are many advantages to partitioning from a DBA point of view. If one partition of a table
is on a corrupted disk volume, the other partitions in the table are still available for user queries
while the damaged volume is being repaired. Similarly, backups of partitions can occur over a
period of days, one partition at a time, rather than requiring a single backup of the entire table.

Partitions are one of three types: range partitioned, hash partitioned, or, as of Oracle9i, list
partitioned; as of Oracle 11g, you can also partition by parent/child relationships, application-
controlled partitioning, and many combinations of basic partition types, including list-hash, list-
list, list-range, and range-range. Each row in a partitioned table can exist in one, and only one,
partition. The partition key directs the row to the proper partition; the partition key can be a
composite key of up to 16 columns in the table. There are a few minor restrictions on the types
of tables that can be partitioned; for example, a table containing a LONG or LONG RAW column
cannot be partitioned. The LONG restriction should rarely be a problem; LOBs (CLOBs and
BLOBs, character large objects and binary large objects) are much more flexible and encompass
all the features of LONG and LONG RAW datatypes.

TIP
Oracle Corporation recommends that any table greater than 2GB in
size be seriously considered for partitioning.

No matter what type of partitioning scheme is in use, each member of a partitioned table
must have the same logical attributes, such as column names, datatypes, constraints, and so forth.
The physical attributes for each partition, however, can be different depending on its size and
location on disk. The key is that the partitioned table must be logically consistent from an
application or user point of view.

Chapter 1: Getting Started with the Oracle Architecture 15

Range Partitions A range partition is a partition whose partition key falls within a certain range.
For example, visits to the corporate e-commerce website can be assigned to a partition based on
the date of the visit, with one partition per quarter. A website visit on May 25, 2004, will be
recorded in the partition with the name FY2004Q2, whereas a website visit on December 2,
2004, will be recorded in the partition with the name FY2004Q4.

List Partitions A list partition is a partition whose partition key falls within groups of distinct
values. For example, sales by region of the country may create a partition for NY, CT, MA, and VT,
and another partition for IL, WI, IA, and MN. Any sales from elsewhere in the world may be
assigned to its own partition when the state code is missing.

Hash Partitions A hash partition assigns a row to a partition based on a hashing function,
specifying the column or columns used in the hashing function, but not explicitly assigning
the partition, only specifying how many partitions are available. Oracle will assign the row
to a partition and ensure a balanced distribution of rows in each partition.

Hash partitions are useful when there is no clear list or range-partitioning scheme given
the types of columns in the table, or when the relative sizes of the partitions change frequently,
requiring repeated manual adjustments to the partitioning scheme.

Composite Partitions Even further refinement of the partitioning process is available with
composite partitions. For example, a table may be partitioned by range, and within each range,
subpartitioned by list or by hash. New combinations in Oracle 11g include list-hash, list-list, list-
range, and range-range partitioning.

Partitioned Indexes
You can also partition indexes on a table, either matching the partition scheme of the table being
indexed (local indexes) or partitioned independently from the partition scheme of the table (global
indexes). Local partitioned indexes have the advantage of increased availability of the index when
partition operations occur; for example, archiving and dropping the partition FY2002Q4 and its
local index will not affect index availability for the other partitions in the table.

Constraints
An Oracle constraint is a rule or rules that you can define on one or more columns in a table
to help enforce a business rule. For example, a constraint can enforce the business rule that an
employee’s starting salary must be at least $25,000.00. Another example of a constraint enforcing
a business rule is to require that if a new employee is assigned a department (although they need
not be assigned to a particular department right away), the department number must be valid and
exist in the DEPT table.

Six types of data integrity rules can be applied to table columns: null rule, unique column
values, primary key values, referential integrity values, complex in-line integrity, and trigger-based
integrity. We will touch upon each of these briefly in the following sections.

All the constraints on a table are defined either when the table is created or when the table is
altered at the column level, except for triggers, which are defined according to which DML operation
you are performing on the table. Constraints may be enabled or disabled at creation or at any
point of time in the future; when a constraint is either enabled or disabled (using the keyword
enable or disable), existing data in the table may or may not have to be validated (using the
keyword validate or novalidate) against the constraint, depending on the business rules in effect.

16 Oracle Database 11g DBA Handbook

For example, a table in an automaker’s database named CAR_INFO containing new automobile
data needs a new constraint on the AIRBAG_QTY column, where the value of this column must
not be NULL and must have a value that is at least 1 for all new vehicles. However, this table
contains data for model years before air bags were required, and as a result, this column is either
0 or NULL. One solution, in this case, would be to create a constraint on the AIRBAG_QTY table
to enforce the new rule for new rows added to the table, but not to validate the constraint for
existing rows.

Here is a table created with all constraint types. Each constraint is reviewed in the following
subsections.

create table CUST_ORDER
 (Order_Number NUMBER(6) PRIMARY KEY,
 Order_Date DATE NOT NULL,
 Delivery_Date DATE,
 Warehouse_Number NUMBER DEFAULT 12,
 Customer_Number NUMBER NOT NULL,
 Order_Line_Item_Qty NUMBER CHECK (Order_Line_Item_Qty < 100),
 UPS_Tracking_Number VARCHAR2(50) UNIQUE,
 foreign key (Customer_Number) references CUSTOMER(Customer_Number));

Null Rule
The NOT NULL constraint prevents NULL values from being entered into the Order_Date or
Customer_Number column. This makes a lot of sense from a business rule point of view: Every
order must have an order date, and an order doesn’t make any sense unless a customer places it.

Note that a NULL value in a column doesn’t mean that the value is blank or zero; rather, the
value does not exist. A NULL value is not equal to anything, not even another NULL value. This
concept is important when using SQL queries against columns that may have NULL values.

Unique Column Values
The UNIQUE integrity constraint ensures that a column or group of columns (in a composite
constraint) is unique throughout the table. In the preceding example, the UPS_Tracking_Number
column will not contain duplicate values.

To enforce the constraint, Oracle will create a unique index on the UPS_Tracking_Number
column. If there is already a valid unique index on the column, Oracle will use that index to
enforce the constraint.

A column with a UNIQUE constraint may also be declared as NOT NULL. If the column is
not declared with the NOT NULL constraint, then any number of rows may contain NULL values,
as long as the remaining rows have unique values in this column.

In a composite unique constraint that allows NULLs in one or more columns, the columns
that are not NULL determine whether the constraint is being satisfied. The NULL column always
satisfies the constraint, because a NULL value is not equal to anything.

Primary Key Values
The PRIMARY KEY integrity constraint is the most common type of constraint found in a database
table. At most, only one primary key constraint can exist on a table. The column or columns that
comprise the primary key cannot have NULL values.

In the preceding example, the Order_Number column is the primary key. A unique index
is created to enforce the constraint; if a usable unique index already exists for the column, the
primary key constraint uses that index.

Chapter 1: Getting Started with the Oracle Architecture 17

Referential Integrity Values
The referential integrity or FOREIGN KEY constraint is more complicated than the others we have
covered so far because it relies on another table to restrict what values can be entered into the
column with the referential integrity constraint.

In the preceding example, a FOREIGN KEY is declared on the Customer_Number column;
any values entered into this column must also exist in the Customer_Number column of another
table (in this case, the CUSTOMER table).

As with other constraints that allow NULL values, a column with a referential integrity
constraint can be NULL without requiring that the referenced column contain a NULL value.

Furthermore, a FOREIGN KEY constraint can be self-referential. In an EMPLOYEE table whose
primary key is Employee_Number, the Manager_Number column can have a FOREIGN KEY
declared against the Employee_Number column in the same table. This allows for the creation
of a reporting hierarchy within the EMPLOYEE table itself.

Indexes should almost always be declared on a FOREIGN KEY column to improve performance;
the only exception to this rule is when the referenced primary or unique key in the parent table is
never updated or deleted.

Complex In-Line Integrity
More complex business rules may be enforced at the column level by using a CHECK constraint.
In the preceding example, the Order_Line_Item_Qty column must never exceed 99.

A CHECK constraint can use other columns in the row being inserted or updated to evaluate
the constraint. For example, a constraint on the STATE_CD column would allow NULL values
only if the COUNTRY_CD column is not USA. In addition, the constraint can use literal values
and built-in functions such as TO_CHAR or TO_DATE, as long as these functions operate on
literals or columns in the table.

Multiple CHECK constraints are allowed on a column. All the CHECK constraints must evaluate
to TRUE to allow a value to be entered in the column. For example, we could modify the preceding
CHECK constraint to ensure that Order_Line_Item_Qty is greater than 0 in addition to being less
than 100.

Trigger-Based Integrity
If the business rules are too complex to implement using unique constraints, a database trigger
can be created on a table using the create trigger command along with a block of PL/SQL code
to enforce the business rule.

Triggers are required to enforce referential integrity constraints when the referenced table
exists in a different database. Triggers are also useful for many things outside the realm of
constraint checking (auditing access to a table, for example).I cover database triggers in-depth
in Chapter 17.

Indexes
An Oracle index allows faster access to rows in a table when a small subset of the rows will be
retrieved from the table. An index stores the value of the column or columns being indexed, along
with the physical RowID of the row containing the indexed value, except for index-organized
tables (IOTs), which use the primary key as a logical RowID. Once a match is found in the index,
the RowID in the index points to the exact location of the table row: which file, which block
within the file, and which row within the block.

18 Oracle Database 11g DBA Handbook

Indexes are created on a single column or multiple columns. Index entries are stored in a
B-tree structure so that traversing the index to find the key value of the row uses very few I/O
operations. An index may serve a dual purpose in the case of a unique index: Not only will it
speed the search for the row, but it enforces a unique or primary key constraint on the indexed
column. Entries within an index are automatically updated whenever the contents of a table row
are inserted, updated, or deleted. When a table is dropped, all indexes created on the table are
also automatically dropped.

Several types of indexes are available in Oracle, each suitable for a particular type of table,
access method, or application environment. We will present the highlights and features of the
most common index types in the following subsections.

Unique Indexes
A unique index is the most common form of B-tree index. It is often used to enforce the primary
key constraint of a table. Unique indexes ensure that duplicate values will not exist in the column
or columns being indexed. A unique index may be created on a column in the EMPLOYEE table
for the Social Security Number because there should not be any duplicates in this column.
However, some employees may not have a Social Security Number, so this column would
contain a NULL value.

Non-Unique Indexes
A non-unique index helps speed access to a table without enforcing uniqueness. For example, we
can create a non-unique index on the Last_Name column of the EMPLOYEE table to speed up our
searches by last name, but we would certainly have many duplicates for any given last name.

A non-unique B-tree index is created on a column by default if no other keywords are
specified in a CREATE INDEX statement.

Reverse Key Indexes
A reverse key index is a special kind of index used typically in an OLTP (online transaction
processing) environment. In a reverse key index, all the bytes in each column’s key value of
the index are reversed. The reverse keyword specifies a reverse key index in the create index
command. Here is an example of creating a reverse key index:

create index IE_LINE_ITEM_ORDER_NUMBER
 on LINE_ITEM(Order_Number) REVERSE;

If an order number of 123459 is placed, the reverse key index stores the order number as
954321. Inserts into the table are distributed across all leaf keys in the index, reducing the
contention among several writers all doing inserts of new rows. A reverse key index also reduces
the potential for these “hot spots” in an OLTP environment if orders are queried or modified soon
after they are placed.

Function-Based Indexes
A function-based index is similar to a standard B-tree index, except that a transformation of a
column or columns, declared as an expression, is stored in the index instead of the columns
themselves.

Function-based indexes are useful in cases where names and addresses might be stored in the
database as mixed case. A regular index on a column containing the value ‘SmiTh’ would not
return any values if the search criterion was ‘Smith’. On the other hand, if the index stored the last

Chapter 1: Getting Started with the Oracle Architecture 19

names in all uppercase, all searches on last names could use uppercase. Here is an example of
creating a function-based index on the Last_Name column of the EMPLOYEE table:

create index up_name on employee(upper(Last_Name));

As a result, searches using queries such as the following will use the index we just created
instead of doing a full table scan:

select Employee_Number, Last_Name, First_Name, from employee
 where upper(Last_Name) = 'SMITH';

Bitmap Indexes
A bitmap index has a significantly different structure from a B-tree index in the leaf node of the index.
It stores one string of bits for each possible value (the cardinality) of the column being indexed. The
length of the string of bits is the same as the number of rows in the table being indexed.

In addition to saving a tremendous amount of space compared to traditional indexes, a
bitmap index can provide dramatic improvements in response time because Oracle can quickly
remove potential rows from a query containing multiple where clauses long before the table itself
needs to be accessed. Multiple bitmaps can use logical and and or operations to determine which
rows to access from the table.

Although you can use a bitmap index on any column in a table, it is most efficient when the
column being indexed has a low cardinality, or number of distinct values. For example, the
Gender column in the PERS table will either be NULL, M, or F. The bitmap index on the Gender
column will have only three bitmaps stored in the index. On the other hand, a bitmap index on
the Last_Name column will have close to the same number of bitmap strings as rows in the table
itself! The queries looking for a particular last name will most likely take less time if a full table
scan is performed instead of using an index. In this case, a traditional B-treenon-unique index
makes more sense.

A variation of bitmap indexes called bitmap join indexes creates a bitmap index on a table
column that is frequently joined with one or more other tables on the same column. This provides
tremendous benefits in a data warehouse environment where a bitmap join index is created on a
fact table and one or more dimension tables, essentially pre-joining those tables and saving CPU
and I/O resources when an actual join is performed.

NOTE
Bitmap indexes are only available in the Enterprise Edition of
Oracle 11g.

Views
Views allow users to see a customized presentation of the data in a single table or even a join
between many tables. A view is also known as a stored query—the query details underlying the
view are hidden from the user of the view. A regular view does not store any data, only the definition,
and the underlying query is run every time the view is accessed. Extensions to a regular view,
called a materialized view, allows the results of the query to be stored along with the definition
of the query to speed processing, among other benefits. Object views, like traditional views, hide
the details of the underlying table joins and allow object-oriented development and processing to
occur in the database while the underlying tables are still in a relational format.

20 Oracle Database 11g DBA Handbook

In the following subsections, I’ll review the basics of the types of views a typical database
user, developer, or DBA will create and use on a regular basis.

Regular Views
A regular view, or more commonly referred to as a view, is not allocated any storage; only its
definition, a query, is stored in the data dictionary. The tables in the query underlying the view
are called base tables; each base table in a view can be further defined as a view.

The advantages of a view are many. Views hide data complexity—a senior analyst can define
a view containing the EMPLOYEE, DEPARTMENT, and SALARY tables to make it easier for upper
management to retrieve information about employee salaries by using a select statement against
what appears to be a table but is actually a view containing a query that joins the EMPLOYEE,
DEPARTMENT, and SALARY tables.

Views can also be used to enforce security. A view on the EMPLOYEE table called EMP_INFO
may contain all columns except for salary, and the view can be defined as read only to prevent
updates to the table:

create view EMP_INFO as
 select Employee_Number, Last_Name,
 First_Name, Middle_Initial, Surname
from EMPLOYEE
with READ ONLY;

Without the read only clause, it is possible to update or add rows to a view, even to a view
containing multiple tables. There are some constructs in a view that prevent it from being
updatable, such as having a distinct operator, an aggregate function, or a group by clause.

When Oracle processes a query containing a view, it substitutes the underlying query
definition in the user’s select statement and processes the resulting query as if the view did not
exist. As a result, the benefits of any existing indexes on the base tables are not lost when a view
is used.

Materialized Views
In some ways, a materialized view is very similar to a regular view: The definition of the view is
stored in the data dictionary, and the view hides the details of the underlying base query from the
user. That is where the similarities end. A materialized view also allocates space in a database
segment to hold the result set from the execution of the base query.

You can use a materialized view to replicate a read-only copy of table to another database,
with the same column definitions and data as the base table. This is the simplest implementation
of a materialized view. To enhance the response time when a materialized view needs to be
refreshed, a materialized view log can be created to refresh the materialized view. Otherwise, a
full refresh is required when a refresh is required—the results of the base query must be run in
their entirety to refresh the materialized view. The materialized view log facilitates incremental
updates of the materialized views.

In a data warehouse environment, materialized views can store aggregated data from a group
by rollup or a group by cube query. If the appropriate initialization parameter values are set, such
as QUERY_REWRITE_ENABLED, and the query itself allows for query rewrites (with the query
rewrite clause), then any query that appears to do the same kind of aggregation as the materialized
view will automatically use the materialized view instead of running the original query.

Regardless of the type of materialized view, it can be refreshed automatically when a committed
transaction occurs in the base table, or it can be refreshed on demand.

Chapter 1: Getting Started with the Oracle Architecture 21

Materialized views have many similarities to indexes, in that they are directly tied to a table
and take up space, they must be refreshed when the base tables are updated, their existence is
virtually transparent to the user, and they can aid in optimizing queries by using an alternate
access path to return the results of a query.

More details on how to use materialized views in a distributed environment can be found in
Chapter 17.

Object Views
Object-oriented (OO) application development environments are becoming increasingly prevalent,
and the Oracle 10g database fully supports the implementation of objects and methods natively in
the database. However, a migration from a purely relational database environment to a purely
OO database environment is not an easy transition to make; few organizations have the time and
resources to build a new system from the ground up. Oracle 10g makes the transition easier with
object views. Object views allow the object-oriented applications to see the data as a collection
of objects that have attributes and methods, while the legacy systems can still run batch jobs
against the INVENTORY table. Object views can simulate abstract datatypes, object identifiers
(OIDs), and references that a purely OO database environment would provide.

As with regular views, you can use instead of triggers in the view definition to allow DML
against the view by running a block of PL/SQL code instead of the actual DML statement supplied
by the user or application.

Users and Schemas
Access to the database is granted to a database account known as a user. A user may exist in the
database without owning any objects. However, if the user creates and owns objects in the database,
those objects are part of a schema that has the same name as the database user. A schema can own
any type of object in the database: tables, indexes, sequences, views, and so forth. The schema
owner or DBA can grant access to these objects to other database users. The user always has full
privileges and control over the objects in the user’s schema.

When a user is created by the DBA (or by any other user with the create user system privilege),
a number of other characteristics can be assigned to the user, such as which tablespaces are
available to the user for creating objects, and whether the password is pre-expired.

You can authenticate users in the database with three methods: database authentication,
operating system authentication, and network authentication. With database authentication, the
encrypted password for the user is stored in the database. In contrast, operating system authentication
makes an assumption that a user who is already authenticated by an operating system connection
has the same privileges as a user with the same or similar name (depending on the value of the
OS_AUTHENT_PREFIX initialization parameter). Network authentication uses solutions based
on Public Key Infrastructure (PKI). These network authentication methods require Oracle 11g
Enterprise Edition with the Oracle Advanced Security option.

Profiles
Database resources are not unlimited; therefore, a DBA must manage and allocate resources
among all database users. Some examples of database resources are CPU time, concurrent
sessions, logical reads, and connect time.

A database profile is a named set of resource limits that you can assigned to a user. After Oracle
is installed, the DEFAULT profile exists and is assigned to any user not explicitly assigned a profile.
The DBA can add new profiles or change the DEFAULT profile to suit the needs of the enterprise.
The initial values for the DEFAULT profile allow for unlimited use of all database resources.

22 Oracle Database 11g DBA Handbook

Sequences
An Oracle sequence assigns sequential numbers, guaranteed to be unique unless the sequence
is re-created or reset. It produces a series of unique numbers in a multi-user environment without
the overhead of disk locking or any special I/O calls, other than what is involved in loading the
sequence into the shared pool.

Sequences can generate numbers up to 38 digits in length; the series of numbers can be
ascending or descending, the interval can be any user-specified value, and Oracle can cache
blocks of numbers from a sequence in memory for even faster performance.

The numbers from sequences are guaranteed to be unique, but not necessarily sequential.
If a block of numbers is cached, and the instance is restarted, or a transaction that uses a number
from a sequence is rolled back, the next call to retrieve a number from the sequence will not
return the number that was not used in the original reference to the sequence.

Synonyms
An Oracle synonym is simply an alias to a database object, to simplify references to database
objects and to hide the details of the source of the database objects. Synonyms can be assigned
to tables, views, materialized views, sequences, procedures, functions, and packages. Like views,
a synonym allocates no space in the database, other than its definition in the data dictionary.

Synonyms can be either public or private. A private synonym is defined in the schema of
a user and is available only to the user. A public synonym is usually created by a DBA and is
automatically available for use by any database user.

TIP
After creating a public synonym, make sure the users of the synonym
have the correct privileges to the object referenced by the synonym.

When referencing a database object, Oracle first checks whether the object exists in the user’s
schema. If no such object exists, Oracle checks for a private synonym. If there is no private synonym,
Oracle checks for a public synonym. If there is no public synonym, Oracle returns an error.

PL/SQL
Oracle PL/SQL is Oracle’s procedural language extension to SQL. PL/SQL is useful when the
standard DML and select statements cannot produce the desired results in an easy fashion
because of the lack of the procedural elements found in a traditional third-generation language
such as C++ and Ada. As of Oracle9i, the SQL processing engine is shared between SQL and PL/
SQL, which means that all new features added to SQL are automatically available to PL/SQL.

In the next few sections, I’ll take a whirlwind tour of the benefits of using Oracle PL/SQL.

Procedures/Functions
PL/SQL procedures and functions are examples of PL/SQL named blocks. A PL/SQL block is a
sequence of PL/SQL statements treated as a unit for the purposes of execution, and it contains up
to three sections: a variable declaration section, an executable section, and an exception section.

The difference between a procedure and function is that a function will return a single value
to a calling program such as a SQL select statement. A procedure, on the other hand, does not
return a value, only a status code. However, procedures may have one or many variables that
can be set and returned as part of the argument list to the procedure.

Chapter 1: Getting Started with the Oracle Architecture 23

Procedures and functions have many advantages in a database environment. Procedures are
compiled and stored in the data dictionary once; when more than one user needs to call the
procedure, it is already compiled, and only one copy of the stored procedure exists in the shared
pool. In addition, network traffic is reduced, even if the procedural features of PL/SQL are not
used. One PL/SQL call uses up much less network bandwidth than several SQL select and insert
statements sent separately over the network, not to mention the reparsing that occurs for each
statement sent over the network.

Packages
PL/SQL packages group together related functions and procedures, along with common variables
and cursors. Packages consist of two parts: a package specification and a package body. In the
package specification, the methods and attributes of the package are exposed; the implementation
of the methods along with any private methods and attributes are hidden in the package body.
Using a package instead of a standalone procedure or function allows the embedded procedure
or function to be changed without invalidating any objects that refer to elements of the package
specification, thus avoiding recompilation of the objects that reference the package.

Triggers
Triggers are a specialized type of a PL/SQL or Java block of code that is executed, or triggered,
when a specified event occurs. The types of events can be DML statements on a table or view, DDL
statements, and even database events such as startup or shutdown. The specified trigger can be
refined to execute on a particular event for a particular user as part of an auditing strategy.

Triggers are extremely useful in a distributed environment to simulate a foreign key relationship
between tables that do not exist in the same database. They are also very useful in implementing
complex integrity rules that cannot be defined using the built-in Oracle constraint types.

More information on how triggers can be used in a robust distributed environment can be
found in Chapter 17.

External File Access
In addition to external tables, there are a number of other ways Oracle can access external files:

From SQL*Plus, either by accessing an external script containing other SQL commands
to be run or by sending the output from a SQL*Plus spool command to a file in the
operating system’s file system.

Text information can be read or written from a PL/SQL procedure using the UTL_FILE
built-in package; similarly, dbms_output calls within a PL/SQL procedure can generate
text messages and diagnostics that can be captured by another application and saved to
a text file.

External data can be referenced by the BFILE datatype. A BFILE datatype is a pointer to
an external binary file. Before BFILEs can be used in a database, a directory alias needs
to be created with the create directory command that specifies a prefix containing the
full directory path where the BFILE target is stored.

DBMS_PIPE can communicate with any 3GL language that Oracle supports, such as
C++, Ada, Java, or COBOL, and exchange information.

UTL_MAIL, a new package in Oracle 10g, allows a PL/SQL application to send e-mails
without knowing how to use the underlying SMTP protocol stack.

■

■

■

■

■

24 Oracle Database 11g DBA Handbook

When using an external file as a data source, for either input or output, a number of cautions
are in order. The following should be carefully considered before you use an external data source:

The database data and the external data may be frequently out of synch when one of the
data sources changes without synchronizing with the other.

It is important to make sure that the backups of the two data sources occur at nearly the
same time to ensure that the recovery of one data source will keep the two data sources
in synch.

Script files may contain passwords; many organizations forbid the plain-text representation
of any user account in a script file. In this situation, operating system validation may be a
good alternative for user authentication.

You should review the security of files located in a directory that is referenced by each
DIRECTORY object. Extreme security measures on database objects are mitigated by lax
security on referenced operating system files.

Database Links and Remote Databases
Database links allow an Oracle database to reference objects stored outside of the local database.
The command create database link creates the path to a remote database, which in turn allows
access to objects in the remote database. A database link wraps together the name of the remote
database, a method for connecting to the remote database, and a username/password
combination to authenticate the connection to the remote database. In some ways, a database
link is similar to a database synonym: A database link can be public or private, and it provides
a convenient shorthand way to access another set of resources. The main difference is that the
resource is outside of the database instead of in the same database, and therefore requires more
information to resolve the reference. The other difference is that a synonym is a reference to a
specific object, whereas a database link is a defined path used to access any number of objects
in a remote database.

For links to work between databases in a distributed environment, the global database name
of each database in the domain must be different. Therefore, it is important to assign the initialization
parameters DB_NAME and DB_DOMAIN correctly.

To make using database links even easier, you can assign a synonym to a database link to
make the table access even more transparent; the user does not know if the synonym accesses an
object locally or on a distributed database. The object can move to a different remote database,
or to the local database, and the synonym name can remain the same, making access to the
object transparent to users.

How database links to remote databases are leveraged in a distributed environment is covered
further in Chapter 17.

Oracle Physical Storage Structures
The Oracle database uses a number of physical storage structures on disk to hold and manage the
data from user transactions. Some of these storage structures, such as the datafiles, redo log files,
and archived redo log files, hold actual user data; other structures, such as control files, maintain
the state of the database objects, and text-based alert and trace files contain logging information
for both routine events and error conditions in the database. Figure 1-3 shows the relationship

■

■

■

■

Chapter 1: Getting Started with the Oracle Architecture 25

between these physical structures and the logical storage structures we reviewed in the earlier
section “Oracle Logical Database Structures.”

Datafiles
Every Oracle database must contain at least one datafile. One Oracle datafile corresponds to one
physical operating system file on disk. Each datafile in an Oracle database is a member of one
and only one tablespace; a tablespace, however, can consist of many datafiles. (A BIGFILE
tablespace consists of exactly one datafile.)

An Oracle datafile may automatically expand when it runs out of space, if the DBA created
the datafile with the AUTOEXTEND parameter. The DBA can also limit the amount of expansion
for a given datafile by using the MAXSIZE parameter. In any case, the size of the datafile is
ultimately limited by the disk volume on which it resides.

FIGURE 1-3 Oracle physical storage structures

26 Oracle Database 11g DBA Handbook

TIP
The DBA often has to decide whether to allocate one datafile that
can autoextend indefinitely or to allocate many smaller datafiles with
a limit to how much each can extend. Although the performance of
each solution is likely very similar, it is probably a better idea to stick
with more datafiles that are each less than 2GB in size. It is a lot easier
to move around relatively smaller files, and some file systems may
limit the size of an individual file to 2GB anyway. Also, if you need to
temporarily move all the datafiles for a tablespace to another server,
it is often easier to find several volumes, each with enough space to
hold one of the datafiles, rather than one volume with enough space
to hold a single datafile that is 25GB.

The datafile is the ultimate resting place for all data in the database. Frequently accessed
blocks in a datafile are cached in memory; similarly, new data blocks are not immediately written
out to the datafile but rather are written to the datafile depending on when the database writer
process is active. Before a user’s transaction is considered complete, however, the transaction’s
changes are written to the redo log files.

Redo Log Files
Whenever data is added, removed, or changed in a table, index, or other Oracle object, an entry
is written to the current redo log file. Every Oracle database must have at least two redo log files,
because Oracle reuses redo log files in a circular fashion. When one redo log file is filled with
redo log entries, the current log file is marked as ACTIVE, if it is still needed for instance recovery,
or INACTIVE, if it is not needed for instance recovery; the next log file in the sequence is reused
from the beginning of the file and is marked as CURRENT.

Ideally, the information in a redo log file is never used. However, when a power failure
occurs, or some other server failure causes the Oracle instance to fail, the new or updated data
blocks in the database buffer cache may not yet have been written to the datafiles. When the
Oracle instance is restarted, the entries in the redo log file are applied to the database datafiles
in a roll forward operation, to restore the state of the database up to the point where the failure
occurred.

To be able to recover from the loss of one redo log file within a redo log group, multiple
copies of a redo log file can exist on different physical disks. Later in this chapter, you will
see how redo log files, archived log files, and control files can be multiplexed to ensure the
availability and data integrity of the Oracle database.

Control Files
Every Oracle database has at least one control file that maintains the metadata of the database
(in other words, data about the physical structure of the database itself). Among other things, it
contains the name of the database, when the database was created, and the names and locations
of all datafiles and redo log files. In addition, the control file maintains information used by
Recovery Manager (RMAN), such as the persistent RMAN settings and the types of backups
that have been performed on the database. RMAN is covered in depth in Chapter 12. Whenever
any changes are made to the structure of the database, the information about the changes is
immediately reflected in the control file.

Chapter 1: Getting Started with the Oracle Architecture 27

Because the control file is so critical to the operation of the database, it can also be multiplexed.
However, no matter how many copies of the control file are associated with an instance, only one
of the control files is designated as primary for purposes of retrieving database metadata.

The alter database backup controlfile to trace command is another way to back up the
control file. It produces a SQL script that you can use to re-create the database control file in
case all multiplexed binary versions of the control file are lost due to a catastrophic failure.

This trace file can also be used, for example, to re-create a control file if the database needs
to be renamed, or to change various database limits that could not otherwise be changed without
re-creating the entire database.

Archived Log Files
An Oracle database can operate in one of two modes: archivelog or noarchivelog mode. When
the database is in noarchivelog mode, the circular reuse of the redo log files (also known as the
online redo log files) means that redo entries (the contents of previous transactions) are no longer
available in case of a failure to a disk drive or another media-related failure. Operating in
noarchivelog mode does protect the integrity of the database in the event of an instance failure
or system crash, because all transactions that are committed but not yet written to the datafiles
are available in the online redo log files.

In contrast, archivelog mode sends a filled redo log file to one or more specified destinations
and can be available to reconstruct the database at any given point in time in the event that a
database media failure occurs. For example, if the disk drive containing the datafiles crashes,
the contents of the database can be recovered to a point in time before the crash, given a recent
backup of the datafiles and the redo log files that were generated since the backup occurred.

The use of multiple archived log destinations for filled redo log files is critical for one of
Oracle’s high-availability features known as Oracle Data Guard, formerly known as Oracle
Standby Database. Oracle Data Guard is covered in detail in Chapter 13.

Initialization Parameter Files
When a database instance starts, the memory for the Oracle instance is allocated, and one of
two types of initialization parameter files is opened: either a text-based file called init<SID>.ora
(known generically as init.ora or a PFILE) or a server parameter file (otherwise known as an
SPFILE). The instance first looks for an SPFILE in the default location for the operating system
($ORACLE_HOME/dbs on Unix, for example) as either spfile<SID>.ora or spfile.ora. If neither
of these files exists, the instance looks for a PFILE with the name init<SID>.ora. Alternatively, the
startup command can explicitly specify a PFILE to use for startup.

Initialization parameter files, regardless of the format, specify file locations for trace files,
control files, filled redo log files, and so forth. They also set limits on the sizes of the various
structures in the System Global Area (SGA) as well as how many users can connect to the
database simultaneously.

Until Oracle9i, using the init.ora file was the only way to specify initialization parameters
for the instance. Although it is easy to edit with a text editor, it has some drawbacks. If a dynamic
system parameter is changed at the command line with the alter system command, the DBA must
remember to change the init.ora file so that the new parameter value will be in effect the next
time the instance is restarted.

An SPFILE makes parameter management easier and more effective for the DBA. If an SPFILE
is in use for the running instance, any alter system command that changes an initialization

28 Oracle Database 11g DBA Handbook

parameter can change the initialization parameter automatically in the SPFILE, change it only for
the running instance, or both. No editing of the SPFILE is necessary, or even possible without
corrupting the SPFILE itself.

Although you cannot mirror a parameter file or SPFILE per se, you can back up an SPFILE to an
init.ora file, and both the init.ora and the SPFILE for the Oracle instance should be backed up using
conventional operating system commands or using Recovery Manager in the case of an SPFILE.

When the DBCA is used to create a database, an SPFILE is created by default.

Alert and Trace Log Files
When things go wrong, Oracle can and often does write messages to the alert log and, in the case
of background processes or user sessions, trace log files.

The alert log file, located in the directory specified by the initialization parameter
BACKGROUND_DUMP_DEST, contains both routine status messages as well as error conditions.
When the database is started up or shut down, a message is recorded in the alert log, along with
a list of initialization parameters that are different from their default values. In addition, any alter
database or alter system commands issued by the DBA are recorded. Operations involving
tablespaces and their datafiles are recorded here, too, such as adding a tablespace, dropping a
tablespace, and adding a datafile to a tablespace. Error conditions, such as tablespaces running
out of space, corrupted redo logs, and so forth, are also recorded here.

The trace files for the Oracle instance background processes are also located in
BACKGROUND_DUMP_DEST. For example, the trace files for PMON and SMON contain
an entry when an error occurs or when SMON needs to perform instance recovery; the trace
files for QMON contain informational messages when it spawns a new process.

Trace files are also created for individual user sessions or connections to the database. These
trace files are located in the directory specified by the initialization parameter USER_DUMP_
DEST. Trace files for user processes are created in two situations: The first is when some type of
error occurs in a user session because of a privilege problem, running out of space, and so forth.
In the second situation, a trace file can be created explicitly with the command alter session set
sql_trace=true. Trace information is generated for each SQL statement that the user executes,
which can be helpful when tuning a user’s SQL statement.

The alert log file can be deleted or renamed at any time; it is re-created the next time an alert
log message is generated. The DBA will often set up a daily batch job (either through an operating
system mechanism or using Oracle Enterprise Manager’s scheduler) to rename and archive the
alert log on a daily basis.

Backup Files
Backup files can originate from a number of sources, such as operating system copy commands
or Oracle Recovery Manager (RMAN). If the DBA performs a “cold” backup (see the section titled
“Backup/Recovery Overview” for more details on backup types), the backup files are simply operating
system copies of the datafiles, redo log files, control files, archived redo log files, and so forth.

In addition to bit-for-bit image copies of datafiles (the default in RMAN), RMAN can generate
full and incremental backups of datafiles, control files, archived redo log files, and SPFILEs that
are in a special format, called backupsets, only readable by RMAN. RMAN backupset backups
are generally smaller than the original datafiles because RMAN does not back up unused blocks.

Chapter 1: Getting Started with the Oracle Architecture 29

Oracle Managed Files
Oracle Managed Files (OMF), introduced in Oracle version 9i, makes the DBA’s job easier by
automating the creation and removal of the datafiles that make up the logical structures in the
database.

Without OMF, a DBA might drop a tablespace and forget to remove the underlying operating
system files. This makes inefficient use of disk resources, and it unnecessarily increases backup
time for datafiles that are no longer needed by the database.

OMF is well suited for small databases with a low number of users and a part-time DBA,
where optimal configuration of a production database is not necessary.

Password Files
An Oracle password file is a file within the Oracle administrative or software directory structure
on disk used to authenticate Oracle system administrators for tasks such as creating a database
or starting up and shutting down the database. The privileges granted through this file are the
SYSDBA and SYSOPER privileges. Authenticating any other type of user is done within the
database itself; because the database may be shut down or not mounted, another form of
administrator authentication is necessary in these cases.

The Oracle command-line utility orapwd creates a password file if one does not exist or is
damaged. Because of the extremely high privileges granted via this file, it should be stored in a
secure directory location that is not available to anyone except for DBAs and operating system
administrators. Once this file is created, the initialization parameter REMOTE_LOGIN_
PASSWORDFILE should be set to EXCLUSIVE to allow users other than SYS to use the password file.

TIP
Create at least one user other than SYS or SYSTEM who has DBA
privileges for daily administrative tasks. If there is more than one DBA
administering a database, each DBA should have their own account
with DBA privileges.

Alternatively, authentication for the SYSDBA and SYSOPER privileges can be done with OS
authentication; in this case, a password file does not have to be created, and the initialization
parameter REMOTE_LOGIN_PASSWORDFILE is set to NONE.

Multiplexing Database Files
To minimize the possibility of losing a control file or a redo log file, multiplexing of database files
reduces or eliminates data-loss problems caused by media failures. Multiplexing can be somewhat
automated by using an Automatic Storage Management (ASM) instance, available starting in
Oracle 10g. For a more budget-conscious enterprise, control files and redo log files can be
multiplexed manually.

Automatic Storage Management
Using Automatic Storage Management is a multiplexing solution that automates the layout of
datafiles, control files, and redo log files by distributing them across all available disks. When
new disks are added to the ASM cluster, the database files are automatically redistributed across

30 Oracle Database 11g DBA Handbook

all disk volumes for optimal performance. The multiplexing features of an ASM cluster minimize
the possibility of data loss and are generally more effective than a manual scheme that places
critical files and backups on different physical drives.

Manual Multiplexing
Without a RAID or ASM solution, you can still provide some safeguards for your critical database
files by setting some initialization parameters and providing an additional location for control
files, redo log files, and archived redo log files.

Control Files
Control files can be multiplexed immediately when the database is created, or they can be
multiplexed later with a few extra steps to manually copy them to multiple destinations. You
can multiplex up to eight copies of a control file.

Whether you multiplex the control files when the database is created or you multiplex them
later, the initialization parameter value for CONTROL_FILES is the same.

If you want to add another multiplexed location, you need to edit the initialization parameter
file and add another location to the CONTROL_FILES parameter. If you are using an SPFILE
instead of an init.ora file, then use a command similar to the following to change the CONTROL_
FILES parameter:

alter system
 set control_files = '/u01/oracle/whse2/ctrlwhse1.ctl,
 /u02/oracle/whse2/ctrlwhse2.ctl,
 /u03/oracle/whse2/ctrlwhse3.ctl'
scope=spfile;

The other possible values for SCOPE in the alter system command are MEMORY and BOTH.
Specifying either one of these for SCOPE returns an error, because the CONTROL_FILES
parameter cannot be changed for the running instance, only for the next restart of the instance.
Therefore, only the SPFILE is changed.

In either case, the next step is to shut down the database. Copy the control file to the new
destinations, as specified in CONTROL_FILES, and restart the database. You can always verify
the names and locations of the control files by looking in one of the data dictionary views:

select value from v$spparameter where name='control_files';

This query will return one row for each multiplexed copy of the control file. In addition, the
view V$CONTROLFILE contains one row for each copy of the control file along with its status.

Redo Log Files
Redo log files are multiplexed by changing a set of redo log files into a redo log file group. In a
default Oracle installation, a set of three redo log files is created. As you learned in the previous
section on redo log files, after each log file is filled, it starts filling the next in sequence. After the
third is filled, the first one is reused. To change the set of three redo log files to a group, we can
add one or more identical files as a companion to each of the existing redo log files. After the
groups are created, the redo log entries are concurrently written to the group of redo log files.
When the group of redo log files is filled, it begins to write redo entries to the next group.
Figure 1-4 shows how a set of four redo log files can be multiplexed with four groups, each
group containing three members.

Chapter 1: Getting Started with the Oracle Architecture 31

Adding a member to a redo log group is very straightforward. In the alter database command,
we specify the name of the new file and the group to add it to. The new file is created with the
same size as the other members in the group:

alter database
 add logfile member '/u05/oracle/dc2/log_3d.dbf'
 to group 3;

If the redo log files are filling up faster than they can be archived, one possible solution is to
add another redo log group. Here is an example of how to add a fifth redo log group to the set of
redo log groups in Figure 1-4:

alter database
 add logfile group 5
 ('/u02/oracle/dc2/log_3a.dbf',
 '/u03/oracle/dc2/log_3b.dbf',
 '/u04/oracle/dc2/log_3c.dbf') size 250m;

All members of a redo log group must be the same size. However, the log file sizes between
groups may be different. In addition, redo log groups may have a different number of members. In
the preceding example, we started with four redo log groups, added an extra member to redo log
group 3 (for a total of four members), and added a fifth redo log group with three members.

As of Oracle 10g, you can use the Redo Logfile Sizing Advisor to assist in determining the
optimal size for redo log files to avoid excessive I/O activity or bottlenecks. See Chapter 8 for
more information on how to use the Redo Logfile Sizing Advisor.

FIGURE 1-4 Multiplexing redo log files

32 Oracle Database 11g DBA Handbook

Archived Redo Log Files
If the database is in archivelog mode, Oracle copies redo log files to a specified location before
they can be reused in the redo log switch cycle.

Oracle Memory Structures
Oracle uses the server’s physical memory to hold many things for an Oracle instance: the Oracle
executable code itself, session information, individual processes associated with the database,
and information shared between processes (such as locks on database objects). In addition,
the memory structures contain user and data dictionary SQL statements, along with cached
information that is eventually permanently stored on disk, such as data blocks from database
segments and information about completed transactions in the database. The data area allocated
for an Oracle instance is called the System Global Area (SGA). The Oracle executables reside in
the software code area. In addition, an area called the Program Global Area (PGA) is private to
each server and background process; one PGA is allocated for each process. Figure 1-5 shows the
relationships between these Oracle memory structures.

System Global Area
The System Global Area is a group of shared memory structures for an Oracle instance, shared by
the users of the database instance. When an Oracle instance is started, memory is allocated for the

FIGURE 1-5 Oracle logical memory structures

Chapter 1: Getting Started with the Oracle Architecture 33

SGA based on the values specified in the initialization parameter file or hard-coded in the Oracle
software. Many of the parameters that control the size of the various parts of the SGA are dynamic;
however, if the parameter SGA_MAX_SIZE is specified, the total size of all SGA areas must not
exceed the value of SGA_MAX_SIZE. If SGA_MAX_SIZE is not specified, but the parameter SGA_
TARGET is specified, Oracle automatically adjusts the sizes of the SGA components so that the total
amount of memory allocated is equal to SGA_TARGET. SGA_TARGET is a dynamic parameter; it
can be changed while the instance is running. The parameter MEMORY_TARGET, new to Oracle
11g, balances all memory available to Oracle between the SGA and the Program Global Area
(discussed later in this chapter) to optimize performance.

Memory in the SGA is allocated in units of granules. A granule can be either 4MB or 16MB,
depending on the total size of the SGA. If the SGA is less than or equal to 128MB, a granule is
4MB; otherwise, it is 16MB.

In the next few subsections, we will cover the highlights of how Oracle uses each section in
the SGA. You can find more information on how to adjust the initialization parameters associated
with these areas in Chapter 8.

Buffer Caches
The database buffer cache holds blocks of data from disk that have been recently read to satisfy
a select statement or that contain modified blocks that have been changed or added from a DML
statement. As of Oracle9i, the memory area in the SGA that holds these data blocks is dynamic.
This is a good thing, considering that there may be tablespaces in the database with block sizes
other than the default block size; tablespaces with up to five different block sizes (one block size
for the default, and up to four others) require their own buffer cache. As the processing and
transactional needs change during the day or during the week, the values of DB_CACHE_SIZE
and DB_nK_CACHE_SIZE can be dynamically changed without restarting the instance to enhance
performance for a tablespace with a given block size.

Oracle can use two additional caches with the same block size as the default (DB_CACHE_
SIZE) block size: the KEEP buffer pool and the RECYCLE buffer pool. As of Oracle9i, both of these
pools allocate memory independently of other caches in the SGA.

When a table is created, you can specify the pool where the table’s data blocks will reside by
using the BUFFER_POOL KEEP or BUFFER_POOL_RECYCLE clause in the STORAGE clause. For
tables that you use frequently throughout the day, it would be advantageous to place this table
into the KEEP buffer pool to minimize the I/O needed to retrieve blocks in the table.

Shared Pool
The shared pool contains two major subcaches: the library cache and the data dictionary cache.
The shared pool is sized by the SHARED_POOL_SIZE initialization parameter. This is another
dynamic parameter that can be resized as long as the total SGA size is less than SGA_MAX_SIZE
or SGA_TARGET.

Library Cache The library cache holds information about SQL and PL/SQL statements that are
run against the database. In the library cache, because it is shared by all users, many different
database users can potentially share the same SQL statement.

Along with the SQL statement itself, the execution plan and parse tree of the SQL statement
are stored in the library cache. The second time an identical SQL statement is run, by the same
user or a different user, the execution plan and parse tree are already computed, improving the
execution time of the query or DML statement.

34 Oracle Database 11g DBA Handbook

If the library cache is sized too small, the execution plans and parse trees are flushed out of
the cache, requiring frequent reloads of SQL statements into the library cache. See Chapter 8 for
ways to monitor the efficiency of the library cache.

Data Dictionary Cache The data dictionary is a collection of database tables, owned by the
SYS and SYSTEM schemas, that contain the metadata about the database, its structures, and the
privileges and roles of database users. The data dictionary cache holds a subset of the columns
from data dictionary tables after first being read into the buffer cache. Data blocks from tables
in the data dictionary are used continually to assist in processing user queries and other DML
commands.

If the data dictionary cache is too small, requests for information from the data dictionary will
cause extra I/O to occur; these I/O-bound data dictionary requests are called recursive calls and
should be avoided by sizing the data dictionary cache correctly.

Redo Log Buffer
The redo log buffer holds the most recent changes to the data blocks in the datafiles. When the
redo log buffer is one-third full, or every three seconds, Oracle writes redo log records to the redo
log files. As of Oracle Database 10g, the LGWR process will write the redo log records to the redo
log files when 1MB of redo is stored in the redo log buffer. The entries in the redo log buffer, once
written to the redo log files, are critical to database recovery if the instance crashes before the
changed data blocks are written from the buffer cache to the datafiles. A user’s committed
transaction is not considered complete until the redo log entries have been successfully written
to the redo log files.

Large Pool
The large pool is an optional area of the SGA. It is used for transactions that interact with more
than one database, message buffers for processes performing parallel queries, and RMAN parallel
backup and restore operations. As the name implies, the large pool makes available large blocks
of memory for operations that need to allocate large blocks of memory at a time.

The initialization parameter LARGE_POOL_SIZE controls the size of the large pool and is a
dynamic parameter as of Oracle9i release 2.

Java Pool
The Java pool is used by the Oracle JVM (Java Virtual Machine) for all Java code and data within
a user session. Storing Java code and data in the Java pool is analogous to SQL and PL/SQL code
cached in the shared pool.

Streams Pool
New to Oracle 10g, the streams pool is sized by using the initialization parameter STREAMS_
POOL_SIZE. The streams pool holds data and control structures to support the Oracle Streams
feature of Oracle Enterprise Edition. Oracle Streams manages the sharing of data and events
in a distributed environment. If the initialization parameter STREAMS_POOL_SIZE is uninitialized
or set to zero, the memory used for Streams operations is allocated from the shared pool and
may use up to 10 percent of the shared pool. For more information on Oracle Streams, see
Chapter 17.

Chapter 1: Getting Started with the Oracle Architecture 35

Program Global Area
The Program Global Area is an area of memory allocated and private for one process. The
configuration of the PGA depends on the connection configuration of the Oracle database:
either shared server or dedicated.

In a shared server configuration, multiple users share a connection to the database, minimizing
memory usage on the server, but potentially affecting response time for user requests. In a shared
server environment, the SGA holds the session information for a user instead of the PGA. Shared
server environments are ideal for a large number of simultaneous connections to the database
with infrequent or short-lived requests.

In a dedicated server environment, each user process gets its own connection to the database;
the PGA contains the session memory for this configuration.

The PGA also includes a sort area. The sort area is used whenever a user request requires a
sort, bitmap merge, or hash join operation.

As of Oracle9i, the PGA_AGGREGATE_TARGET parameter, in conjunction with the
WORKAREA_SIZE_POLICY initialization parameter, can ease system administration by allowing
the DBA to choose a total size for all work areas and let Oracle manage and allocate the memory
between all user processes. As I mentioned earlier in this chapter, the parameter MEMORY_
TARGET manages the PGA and SGA memory as a whole to optimize performance.

Software Code Area
Software code areas store the Oracle executable files that are running as part of an Oracle instance.
These code areas are static in nature and only change when a new release of the software is installed.
Typically, the Oracle software code areas are located in a privileged memory area separate from
other user programs.

Oracle software code is strictly read-only and can be installed either shared or non-shared.
Installing Oracle software code as sharable saves memory when multiple Oracle instances are
running on the same server at the same software release level.

Background Processes
When an Oracle instance starts, multiple background processes start. A background process is
a block of executable code designed to perform a specific task. Figure 1-6 shows the relationship
between the background processes, the database, and the Oracle SGA. In contrast to a
foreground process, such as a SQL*Plus session or a web browser, a background process
works behind the scenes. Together, the SGA and the background processes compose an
Oracle instance.

SMON
SMON is the System Monitor process. In the case of a system crash or instance failure, due to a
power outage or CPU failure, the SMON process performs crash recovery by applying the entries
in the online redo log files to the datafiles. In addition, temporary segments in all tablespaces are
purged during system restart.

One of SMON’s routine tasks is to coalesce the free space in tablespaces on a regular basis if
the tablespace is dictionary managed.

36 Oracle Database 11g DBA Handbook

PMON
If a user connection is dropped, or a user process otherwise fails, PMON, also known as the
Process Monitor, does the cleanup work. It cleans up the database buffer cache along with any
other resources that the user connection was using. For example, a user session may be updating
some rows in a table, placing a lock on one or more of the rows. A thunderstorm knocks out the
power at the user’s desk, and the SQL*Plus session disappears when the workstation is powered
off. Within moments, PMON will detect that the connection no longer exists and perform the
following tasks:

Roll back the transaction that was in progress when the power went out.

Mark the transaction’s blocks as available in the buffer cache.

■

■

FIGURE 1-6 Oracle background processes

Chapter 1: Getting Started with the Oracle Architecture 37

Remove the locks on the affected rows in the table.

Remove the process ID of the disconnected process from the list of active processes.

PMON will also interact with the listeners by providing information about the status of the
instance for incoming connection requests.

DBWn
The database writer process, known as DBWR in older versions of Oracle, writes new or changed
data blocks (known as dirty blocks) in the buffer cache to the datafiles. Using an LRU algorithm,
DBWn writes the oldest, least active blocks first. As a result, the most commonly requested
blocks, even if they are dirty blocks, are in memory.

Up to 20 DBWn processes can be started, DBW0 through DBW9 and DBWa through DBWj.
The number of DBWn processes is controlled by the DB_WRITER_PROCESSES parameter.

LGWR
LGWR, or Log Writer, is in charge of redo log buffer management. LGWR is one of the most
active processes in an instance with heavy DML activity. A transaction is not considered complete
until LGWR successfully writes the redo information, including the commit record, to the redo log
files. In addition, the dirty buffers in the buffer cache cannot be written to the datafiles by DBWn
until LGWR has written the redo information.

If the redo log files are grouped, and one of the multiplexed redo log files in a group is
damaged, LGWR writes to the remaining members of the group and records an error in the alert
log file. If all members of a group are unusable, the LGWR process fails and the entire instance
hangs until the problem can be corrected.

ARCn
If the database is in ARCHIVELOG mode, then the archiver process, or ARCn, copies redo logs to
one or more destination directories, devices, or network locations whenever a redo log fills up
and redo information starts to fill the next redo log in sequence. Optimally, the archive process
finishes before the filled redo log is needed again; otherwise, serious performance problems
occur—users cannot complete their transactions until the entries are written to the redo log files,
and the redo log file is not ready to accept new entries because it is still being written to the
archive location. There are at least three potential solutions to this problem: make the redo log
files larger, increase the number of redo log groups, and increase the number of ARCn processes.
Up to ten ARCn processes can be started for each instance by increasing the value of the LOG_
ARCHIVE_MAX_PROCESSES initialization parameter.

CKPT
The checkpoint process, or CKPT, helps to reduce the amount of time required for instance recovery.
During a checkpoint, CKPT updates the header of the control file and the datafiles to reflect the
last successful SCN (System Change Number). A checkpoint occurs automatically every time a redo
log file switch occurs. The DBWn processes routinely write dirty buffers to advance the checkpoint
from where instance recovery can begin, thus reducing the Mean Time to Recovery (MTTR).

RECO
The RECO, or recoverer process, handles failures of distributed transactions (that is, transactions
that include changes to tables in more than one database). If a table in the CCTR database is
changed along with a table in the WHSE database, and the network connection between the
databases fails before the table in the WHSE database can be updated, RECO will roll back the
failed transaction.

■

■

38 Oracle Database 11g DBA Handbook

Backup/Recovery Overview
Oracle supports many different forms of backup and recovery. Some of them can be managed at
the user level, such as export and import; most of them are strictly DBA-centric, such as online or
offline backups and using operating system commands or the RMAN utility.

Details for configuring and using these backup and recovery methods can be found in
Chapter 11 and also in Chapter 12.

Export/Import
The export command is a standalone utility on all Oracle hardware and software platforms, and
it’s started by running the command exp at the operating system command-line prompt or through
the Oracle Enterprise Manager console in a GUI environment. Export is considered a logical
backup, because the underlying storage characteristics of the tables are not recorded, only the
table metadata, user privileges, and table data. Depending on the task at hand, and whether you
have DBA privileges or not, the exp command can either export all tables in the database, all the
tables of one or more users, or a specific set of tables.

For restoring from a database export, the import command, started by running the command
imp, takes a binary format file created by export and imports it into the database with the
assumption that the users in the exported database tables exist in the database where the import
command is performed.

One advantage to using export and import is that a database power user may be able to manage
their own backups and recoveries, especially in a development environment. Also, a binary file
generated by export is typically readable across Oracle versions, making a transfer of a small set
of tables from an older version to a newer version of Oracle fairly straightforward.

Export and import are inherently “point in time” backups and therefore are not the most
robust backup and recovery solutions if the data is volatile.

In Oracle 10g, Oracle Data Pump takes import and export operations to a new performance
level. Exports to an external data source can be up to two times faster, and an import operation
can be up to 45 times faster because Data Pump Import uses direct path loading, unlike traditional
import. In addition, an export from the source database can be simultaneously imported into the
target database without an intermediate dump file, saving time and administrative effort. Oracle
Data Pump is implemented using the DBMS_DATAPUMP package with the expdb and impdb
commands and includes numerous other manageability features, such as fine-grained object
selection. More information on Oracle Data Pump is provided in Chapter 17.

Offline Backups
One of the ways to make a physical backup of the database is to perform an offline backup. To
perform an offline backup, the database is shut down and all database-related files, including
datafiles, control files, SPFILEs, password files, and so forth, are copied to a second location.
Once the copy operation is complete, the database instance can be started.

Offline backups are similar to export backups because they are point-in-time backups and
therefore of less value if up-to-the minute recovery of the database is required and the database
is not in archivelog mode. Another downside to offline backups is the amount of downtime
necessary to perform the backup; any multinational company that needs 24/7 database access
will most likely not do offline backups very often.

Chapter 1: Getting Started with the Oracle Architecture 39

Online Backups
If a database is in archivelog mode, it is possible to do online backups of the database. The
database can be open and available to users even while the backup is in process. The procedure
for doing online backups is as easy as placing a tablespace into a backup state by using the alter
tablespace users begin backup command, backing up the datafiles in the tablespace with operating
system commands, and then taking the tablespace out of the backup state with the alter tablespace
users end backup command.

RMAN
The backup tool Recovery Manager, known more commonly as RMAN, has been around since
Oracle8. RMAN provides many advantages over other forms of backup. It can perform incremental
backups of only changed data blocks in between full database backups while the database remains
online throughout the backup.

RMAN keeps track of the backups via one of two methods: through the control file of the
database being backed up, or through a recovery catalog stored in another database. Using the
target database’s control file for RMAN is easy, but it’s not the best solution for a robust enterprise
backup methodology. Although a recovery catalog requires another database to store the metadata
for the target database along with a record of all backups, it is well worth it when all the control
files in the target database are lost due to a catastrophic failure. In addition, a recovery catalog
retains historical backup information that may be overwritten in the target database’s control file
if the value of CONTROL_FILE_RECORD_KEEP_TIME is set too low.

RMAN is discussed in detail in Chapter 12.

Security Capabilities
In the next few sections, I’ll give a brief overview of the different ways that the Oracle 11g
Database controls and enforces security in a database. Account security based on user and
schema objects was covered in the section on database objects; the other security topics are
covered here.

An in-depth look at these and other security capabilities within Oracle is covered in Chapter 9.

Privileges and Roles
In an Oracle database, privileges control access to both the actions a user can perform and the
objects in the database. Privileges that control access to actions in the database are called system
privileges, whereas privileges that control access to data and other objects are called object
privileges.

To make assignment and management of privileges easier for the DBA, a database role groups
privileges together. To put it another way, a role is a named group of privileges. In addition, a role
can itself have roles assigned to it.

Privileges and roles are granted and revoked with the grant and revoke commands. The user
group PUBLIC is neither a user nor a role, nor can it be dropped; however, when privileges are
granted to PUBLIC, they are granted to every user of the database, both present and future.

40 Oracle Database 11g DBA Handbook

System Privileges
System privileges grant the right to perform a specific type of action in the database, such as
creating users, altering tablespaces, or dropping any view. Here is an example of granting a
system privilege:

grant DROP ANY TABLE to SCOTT WITH ADMIN OPTION;

The user SCOTT can drop anyone’s table in any schema. The with grant option clause allows
SCOTT to grant his newly granted privilege to other users.

Object Privileges
Object privileges are granted on a specific object in the database. The most common object
privileges are SELECT, UPDATE, DELETE, and INSERT for tables, EXECUTE for a PL/SQL stored
object, and INDEX for granting index-creation privileges on a table. In the following example,
the user RJB can perform any DML on the JOBS table owned by the HR schema:

grant SELECT, UPDATE, INSERT, DELETE on HR.JOBS to RJB;

Auditing
To audit access to objects in the database by users, you can set up an audit trail on a specified
object or action by using the audit command. Both SQL statements and access to a particular
database object can be audited; the success or failure of the action (or both) can be recorded in
the audit trail table, SYS.AUD$, or in an O/S file if specified by the AUDIT_TRAIL initialization
parameter with a value of OS.

For each audited operation, Oracle creates an audit record with the username, the type of
operation that was performed, the object involved, and a timestamp. Various data dictionary
views, such as DBA_AUDIT_TRAIL and DBA_FGA_AUDIT_TRAIL, make interpreting the results
from the raw audit trail table SYS.AUD$ easier.

CAUTION
Excessive auditing on database objects can have an adverse effect
on performance. Start out with basic auditing on key privileges and
objects, and expand the auditing when the basic auditing has revealed
a potential problem.

Fine-grained Auditing
The fine-grained auditing capability that was introduced in Oracle9i and enhanced in both
Oracle 10g and Oracle 11g takes auditing one step further: Standard auditing can detect when a
select statement was executed on an EMPLOYEE table; fine-grained auditing will record an audit
record containing specific columns accessed in the EMPLOYEE table, such as the SALARY column.

Chapter 1: Getting Started with the Oracle Architecture 41

Fine-grained auditing is implemented using the DBMS_FGA package along with the data
dictionary view DBA_FGA_AUDIT_TRAIL. The data dictionary view DBA_COMMON_AUDIT_
TRAIL combines standard audit records in DBA_AUDIT_TRAIL with fine-grained audit records.

Virtual Private Database
The Virtual Private Database feature of Oracle, first introduced in Oracle8i, couples fine-grained
access control with a secure application context. The security policies are attached to the data,
and not to the application; this ensures that security rules are enforced regardless of how the data
is accessed.

For example, a medical application context may return a predicate based on the patient
identification number accessing the data; the returned predicate will be used in a WHERE clause
to ensure that the data retrieved from the table is only the data associated with the patient.

Label Security
Oracle Label Security provides a “VPD Out-of-the-Box” solution to restrict access to rows in any
table based on the label of the user requesting the access and the label on the row of the table
itself. Oracle Label Security administrators do not need any special programming skills to assign
security policy labels to users and rows in the table.

This highly granular approach to data security can, for example, allow a DBA at an Application
Service Provider (ASP) to create only one instance of an accounts receivable application and to
use Label Security to restrict rows in each table to an individual company’s accounts receivable
information.

Real Application Clusters
Oracle’s Real Application Clusters (RAC) feature, known in previous Oracle versions as the
Oracle Parallel Server option, allows more than one instance, on separate servers, to access
the same database files.

A RAC installation can provide extreme high availability for both planned and unplanned
outages. One instance can be restarted with new initialization parameters while the other instance
is still servicing requests against the database. If one of the hardware servers crashes due to a fault
of some type, the Oracle instance on the other server will continue to process transactions, even
from users who were connected to the crashed server, transparently and with minimal downtime.

RAC, however, is not a software-only solution: The hardware that implements RAC has special
requirements. The shared database should be on a RAID-enabled disk subsystem to ensure that
each component of the storage system is fault tolerant. In addition, RAC requires a high-speed
interconnect, or a private network, between the nodes in the cluster to support messaging and
transfer of blocks from one instance to another using the Cache Fusion mechanism.

The diagram in Figure 1-7 shows a two-node RAC installation. How to set up and configure
Real Application Clusters is discussed in depth in Chapter 10.

42 Oracle Database 11g DBA Handbook

Oracle Streams
As a component of Oracle Enterprise Edition, Oracle Streams is the higher-level component of
the Oracle infrastructure that complements Real Application Clusters. Oracle Streams allows the
smooth flow and sharing of both data and events within the same database or from one database
to another. It is another key piece in Oracle’s long list of high-availability solutions, tying together
and enhancing Oracle’s message queuing, data replication, and event management functions.
More information on how to implement Oracle Streams can be found in Chapter 17.

Oracle Enterprise Manager
Oracle Enterprise Manager (OEM) is a valuable set of tools that facilitates the comprehensive
management of all components of an Oracle infrastructure, including Oracle database instances,
Oracle application servers, and web servers. If a management agent exists for a third-party
application, then OEM can manage the third-party application in the same framework as any
Oracle-supplied target.

OEM is fully web-enabled via Netscape or Internet Explorer, and as a result any operating
system platform that supports Netscape or IE can be used to launch the OEM console.

One of the key decisions to make when using OEM with Oracle Grid Control is the location
to store the management repository. The OEM management repository is stored in a database
separate from the nodes or services being managed or monitored. The metadata from the nodes
and services is centralized and facilitates the administration of these nodes. The management
repository database should be backed up often and separately from the databases being managed.

An installation of OEM provides a tremendous amount of value “out of the box.” When the
OEM installation is complete, e-mail notifications are already set up to send messages to the
SYSMAN or any other e-mail account for critical conditions, and the initial target discovery is
automatically completed.

FIGURE 1-7 A two-node Real Application Clusters (RAC) configuration

Chapter 1: Getting Started with the Oracle Architecture 43

Oracle Initialization Parameters
An Oracle database uses initialization parameters to configure memory settings, disk locations,
and so forth. There are two ways to store initialization parameters: using an editable text file and
using a server-side binary file. Regardless of the method used to store the initialization parameters,
there is a defined set of basic initialization parameters (as of Oracle 10g) that every DBA should
be familiar with when creating a new database.

As of Oracle 10g, initialization parameters fall into two broad categories: basic initialization
parameters and advanced initialization parameters. As Oracle becomes more and more self-managing,
the number of parameters that a DBA must be familiar with and adjust on a daily basis is reduced.

Basic Initialization Parameters
The list of Oracle 10g basic initialization parameters appears in Table 1-3 along with a brief
description of each. In the sections that follow, we will give some further explanation and advice
regarding how some of these parameters should be set, depending on the hardware and software
environment, the types of applications, and the number of users in the database.

Initialization Parameter Description

CLUSTER_DATABASE Enables this node to be a member of a cluster.

COMPATIBLE Allows a new database version to be installed while ensuring
compatibility with the release specified by this parameter.

CONTROL_FILES Specifies the location of the control files for this instance.

DB_BLOCK_SIZE Specifies the size of Oracle blocks. This block size is used for the
SYSTEM, SYSAUX, and temporary tablespaces at database creation.

DB_CREATE_FILE_DEST The default location for OMF datafiles. Also specifies the location of
control files and redo log files if DB_CREATE_ONLINE_LOG_DEST_
n is not set.

DB_CREATE_ONLINE_LOG_DEST_n The default location for OMF control files and online redo log files.

DB_DOMAIN The logical domain name where the database resides in a distributed
database system (for example, us.oracle.com).

DB_NAME A database identifier of up to eight characters. Prepended to the
DB_DOMAIN value for a fully qualified name (for example, marketing.
us.oracle.com).

DB_RECOVERY_FILE_DEST The default location for the recovery area. Must be set along with
DB_RECOVERY_FILE_DEST_SIZE.

DB_RECOVERY_FILE_DEST_SIZE The maximum size, in bytes, for the files used for recovery in the
recovery area location.

DB_UNIQUE_NAME A globally unique name for the database. This distinguishes
databases that have the same DB_NAME within the same DB_
DOMAIN.

INSTANCE_NUMBER In a RAC installation, the instance number of this node in the cluster.

TABLE 1-3 Basic Initialization Parameters

44 Oracle Database 11g DBA Handbook

Initialization Parameter Description

JOB_QUEUE_PROCESSES The maximum number of processes allowed for executing jobs,
ranging from 0 to 1000.

LDAP_DIRECTORY_SYSAUTH Enables or disables directory-based authorization for users with the
SYSDBA and SYSOPER roles.

LOG_ARCHIVE_DEST_n For ARCHIVELOG mode, up to ten locations for sending archived
log files.

LOG_ARCHIVE_DEST_STATE_n Sets the availability of the corresponding LOG_ARCHIVE_DEST_n
sites.

NLS_LANGUAGE Specifies the default language of the database, including messages,
day and month names, and sorting rules (for example, ‘AMERICAN’).

NLS_TERRITORY The territory name used for day and week numbering (for example,
‘SWEDEN’, ‘TURKEY’, or ‘AMERICA’).

OPEN_CURSORS The maximum number of open cursors per session.

PGA_AGGREGATE_TARGET The total memory to allocate for all server processes in this instance.

PROCESSES The maximum number of operating system processes that can
connect to Oracle simultaneously. SESSIONS and TRANSACTIONS
are derived from this value.

REMOTE_LISTENER A network name resolving to an Oracle Net remote listener.

REMOTE_LOGIN_PASSWORDFILE Specifies how Oracle uses password files. Required for RAC.

ROLLBACK_SEGMENTS Names of private rollback segments to bring online, if undo
management is not used for transaction rollback.

SESSIONS The maximum number of sessions, and therefore simultaneous users,
in the instance. Defaults to 1.1*PROCESSES + 5.

SGA_TARGET Specifies the total size of all SGA components; this parameter
automatically determines DB_CACHE_SIZE, SHARED_POOL_SIZE,
LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_POOL_SIZE.

SHARED_SERVERS The number of shared server processes to allocate when an instance
is started.

STAR_TRANSFORMATION_ENABLED Controls query optimization when start queries are executed.

UNDO_MANAGEMENT Specifies whether undo management is automatic (AUTO) or
manual (MANUAL). If MANUAL is specified, rollback segments are
used for undo management.

UNDO_TABLESPACE The tablespace to use when UNDO_MANAGEMENT is set to AUTO.

TABLE 1-3 Basic Initialization Parameters (continued)

Some of these parameters will be revisited in the appendix, where we will set the initial
parameters for the SGA, file locations, and other limits.

COMPATIBLE
The COMPATIBLE parameter allows a newer version of Oracle to be installed while restricting the
feature set of the new version as if an older version of Oracle was installed. This is a good way to
move forward with a database upgrade while remaining compatible with an application that may
fail when it runs with the new version of the software. The COMPATIBLE parameter can then be

Chapter 1: Getting Started with the Oracle Architecture 45

bumped up as the applications are reworked or rewritten to work with the new version of the
database.

The downside of using this parameter is that none of the new applications for the database
can take advantage of new features until the COMPATIBLE parameter is set to the same value as
the current release.

DB_NAME
DB_NAME specifies the local portion of the database name. It can be up to eight characters and
must begin with an alphanumeric character. Once set, it can only be changed with the Oracle
DBNEWID utility (nid); the DB_NAME is recorded in each datafile, redo log file, and control file
in the database. At database startup, the value of this parameter must match the value of DB_
NAME recorded in the control file.

DB_DOMAIN
DB_DOMAIN specifies the name of the network domain where the database will reside. The
combination of DB_NAME and DB_DOMAIN must be unique within a distributed database
system.

DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE
When database recovery operations occur, either due to an instance failure or a media failure,
it is convenient to have a flash recovery area to store and manage files related to a recovery or
backup operation. Starting with Oracle 10g, the parameter DB_RECOVERY_FILE_DEST can be a
directory location on the local server, a network directory location, or an ASM (Automatic Storage
Management) disk area. The parameter DB_RECOVERY_FILE_DEST_SIZE places a limit on how
much space is allowed for the recovery or backup files.

These parameters are optional, but if they are specified, Recovery Manager (RMAN) can
automatically manage the files needed for backup and recovery operations. The size of this
recovery area should be large enough to hold two copies of all datafiles, incremental RMAN
backups, online redo logs, archived log files not yet backed up to tape, the SPFILE, and the
control file.

CONTROL_FILES
The CONTROL_FILES parameter is not required when you create a database. If it is not specified,
Oracle creates one control file in a default location, or if OMF is configured, in the location
specified by either DB_CREATE_FILE_DEST or DB_CREATE_ONLINE_LOG_DEST_n and a
secondary location specified by DB_RECOVERY_FILE DEST. Once the database is created, the
CONTROL_FILES parameter reflects the names of the control file locations if you are using an
SPFILE; if you are using a text initialization parameter file, you must add the location to this file
manually.

However, it is strongly recommended that multiple copies of the control file be created on
separate physical volumes. Control files are so critical to the database integrity and are so small
that at least three multiplexed copies of the control file should be created on separate physical
disks. In addition, the command alter database backup controlfile to trace should be executed
to create a text-format copy of the control file in the event of a major disaster.

The following example specifies three locations for copies of the control file:

CONTROL_FILES = (/u01/oracle10g/test/control01.ctl,
 /u03/oracle10g/test/control02.ctl,
 /u07/oracle10g/test/control03.ctl)

46 Oracle Database 11g DBA Handbook

DB_BLOCK_SIZE
The parameter DB_BLOCK_SIZE specifies the size of the default Oracle block in the database. At
database creation, the SYSTEM, TEMP, and SYSAUX tablespaces are created with this block size.
Ideally, this parameter is the same as or a multiple of the operating system block size for I/O
efficiency.

Before Oracle9i, you might specify a smaller block size (4KB or 8KB) for OLTP systems and
a larger block size (up to 32KB) for DSS (decision support system) databases. However, now that
tablespaces with up to five block sizes can coexist in the same database, a smaller value for DB_
BLOCK_SIZE is fine. However, 8KB is probably preferable as a minimum for any database, unless
it has been rigorously proven in the target environment that a 4KB block size will not cause
performance issues.

SGA_TARGET
Another way that Oracle 10g can facilitate a “set it and forget it” database is by the ability to
specify a total amount of memory for all SGA components. If SGA_TARGET is specified, the
parameters DB_CACHE_SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_
SIZE, and JAVA_POOL_SIZE are automatically sized by Automatic Shared Memory Management
(ASMM). If any of these four parameters are manually sized when SGA_TARGET is also set,
ASMM uses the manually sized parameters as minimums.

Once the instance starts, the automatically sized parameters can by dynamically increased or
decreased, as long as the parameter SGA_MAX_SIZE is not exceeded. The parameter SGA_MAX_
SIZE specifies a hard upper limit for the entire SGA, and it cannot be exceeded or changed until
the instance is restarted.

Regardless of how the SGA is sized, be sure that enough free physical memory is available in
the server to hold the components of the SGA and all background processes; otherwise, excessive
paging will occur and performance will suffer.

MEMORY_TARGET
Even though MEMORY_TARGET is not a “basic” parameter according to the Oracle documentation,
it can greatly simplify instance memory management. This parameter specifies the Oracle system-
wide usable memory; Oracle in turn reallocates memory between, for example, the SGA and PGA
to optimize performances.

DB_CACHE_SIZE and DB_nK_CACHE_SIZE
The parameter DB_CACHE_SIZE specifies the size of the area in the SGA to hold blocks of the
default size, including those from the SYSTEM, TEMP, and SYSAUX tablespaces. Up to four other
caches can be defined if there are tablespaces with block sizes other than the SYSTEM and
SYSAUX tablespaces. The value of n can be 2, 4, 8, 16, or 32; if the value of n is the same as the
default block size, the corresponding DB_nK_CACHE_SIZE parameter is illegal. Although this
parameter is not one of the basic initialization parameters, it becomes very basic when you
transport a tablespace from another database with a block size other than DB_BLOCK_SIZE!

There are distinct advantages to a database containing multiple block sizes. The tablespace
handling OLTP applications can have a smaller block size, and the tablespace with the data
warehouse table can have a larger block size. However, be careful when allocating memory for
each of these cache sizes so as not to allocate too much memory for one at the expense of
another. As of Oracle9i, Oracle’s Buffer Cache Advisory feature monitors the cache usage for each
cache size in the view V$DB_CACHE_ADVICE to assist the DBA in sizing these memory areas.
More information on how to use the Buffer Cache Advisory feature can be found in Chapter 8.

Chapter 1: Getting Started with the Oracle Architecture 47

SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE,
and JAVA_POOL_SIZE
The parameters SHARED_POOL_SIZE, LARGE_POOL_SIZE, STREAMS_POOL_SIZE, and JAVA_
POOL_SIZE, which size the shared pool, large pool, streams pool, and Java pool, respectively,
are automatically sized by Oracle if the SGA_TARGET initialization parameter is specified. More
information on manually tuning these areas can be found in Chapter 8.

PROCESSES
The value for the PROCESSES initialization parameter represents the total number of processes
that can simultaneously connect to the database. This includes both the background processes
and the user processes; a good starting point for the PROCESSES parameter would be 15 for the
background processes plus the number of expected maximum concurrent users; for a smaller
database, 50 is a good starting point, because there is little or no overhead associated with
making PROCESSES too big.

UNDO_MANAGEMENT and UNDO_TABLESPACE
Automatic Undo Management (AUM), introduced in Oracle9i, eliminates or at least greatly reduces
the headaches in trying to allocate the right number and size of rollback segments to handle the
undo information for transactions. Instead, a single undo tablespace is specified for all undo
operations (except for a SYSTEM rollback segment), and all undo management is handled
automatically when the UNDO_MANAGEMENT parameter is set to AUTO.

The remaining task for the DBA is sizing the undo tablespace. Data dictionary views such as
V$UNDOSTAT and the Undo Advisor can help the DBA adjust the size of the undo tablespace.
Multiple undo tablespaces may be created; for example, a smaller undo tablespace is online
during the day to handle relatively small transaction volumes, and a larger undo tablespace
is brought online overnight to handle batch jobs and long-running queries that load the data
warehouse and need transactional consistency. Only one undo tablespace may be active at
any given time.

As of Oracle 11g, AUM is enabled by default. In addition, new PL/SQL procedures are
available to supplement the information you get from the Undo Advisor and V$UNDOSTAT.

Advanced Initialization Parameters
The advanced initialization parameters include the balance of the initialization parameters not
listed here, for a total of 283 of them in Release 1 of Oracle Database 11g. Most of these can be
automatically set and tuned by the Oracle instance when the basic initialization parameters are
set. We will review some of these in the appendix (“Installation and Configuration”).

This page intentionally left blank

CHAPTER
2

Upgrading to Oracle
Database 11g

49

50 Oracle Database 11g DBA Handbook

f you have previously installed an earlier version of the Oracle database server,
you can upgrade your database to Oracle Database 11g. Multiple upgrade paths
are supported; the right choice for you will depend on factors such as your current
Oracle software version and your database size. In this chapter, you will see
descriptions of these methods along with guidelines for their use.

If you have not used a version of Oracle prior to Oracle Database 11g, you can skip this chapter
for now. However, you will likely need to refer to it when you upgrade from Oracle Database 11g to
a later version or when you migrate data from a different database into your database.

Prior to beginning the upgrade, you should read the Oracle Database 11g Installation Guide for
your operating system. A successful installation is dependent on a properly configured environment—
including operating system patch levels and system parameter settings. Plan to get the installation
and upgrade right the first time rather than attempting to restart a partially successful installation.
Configure the system to support both the installation of the Oracle software and the creation of a
usable starter database.

This chapter assumes that your installation of the Oracle Database 11g software (see Chapter
1 and the appendix titled “Installation and Configuration”) completed successfully and that you
have an Oracle database that uses an earlier version of the Oracle software on the same server.
Note that whether you are installing from scratch or upgrading a previous version of the Oracle
Database, there are distinct advantages to installing the Oracle Database 11g software and
creating the database in separate steps. When installing from scratch, you have greater control
over initialization parameters, database file locations, memory allocation, and so forth when
you create the database in a separate step; when upgrading from a previous release, installing
the software first provides you with the Oracle Pre-Upgrade Information Tool that you use against
the existing database to alert you to any potential compatibility problems when you upgrade to
Oracle Database 11g. To upgrade that database, you have four options:

Use the Database Upgrade Assistant (DBUA) to guide and perform the upgrade in
place. The old database will become an Oracle 11g database during this process.
DBUA supports both Oracle Real Application Clusters (RAC) and Automatic Storage
Management (ASM); you can launch DBUA as part of the installation process or as a
standalone tool after installation. Oracle strongly recommend using DBUA for Oracle
Database major releases or patch release upgrades.

Perform a manual upgrade of the database. The old database will become an Oracle
11g database during this process. While you have very precise control over every step
of the process, this method is more susceptible to error if you miss a step or forget a
prerequisite step.

Use the Export and Import (or Oracle Data Pump) utilities to move data from an earlier
version of Oracle to the Oracle 11g database. Two separate databases will be used—the
old database as the source for the export and the new database as the target for the import.
If you are upgrading from Oracle Database 10g, you will use Oracle Data Pump to move
your data from the old database to the new database.

Copy data from an earlier version of Oracle to an Oracle 11g database. Two separate
databases will be used—the old database as the source for the copy and the new database
as the target for the copy. This method is the most straightforward because your migration
consists primarily of create table as select SQL statements referencing the old and new

■

■

■

■

I

Chapter 2: Upgrading to Oracle Database 11g 51

databases; however, unless your database has very few tables and you aren’t concerned
with using existing SQL tuning sets, statistics, and so forth, Oracle does not recommend
this method for production databases.

Upgrading a database in place—via either the Database Upgrade Assistant or the manual
upgrade path—is called a direct upgrade. Because a direct upgrade does not involve creating a
second database for the one being upgraded, it may complete faster and require less disk space
than an indirect upgrade.

NOTE
Direct upgrade of the database to version 11 is only supported if your
present database is using one of these releases of Oracle: 9.2.0.4,
10.1.0.2, or 10.2.0.1. If you are using any other release, you will
first have to upgrade the database to one of those releases or you
will need to use a different upgrade option. Oracle 8.0.6 is only
supported for some versions (generally 64-bit), so be sure to check
the online certification matrixes at Oracle’s Metalink site or in the
Oracle Database Upgrade Guide.

NOTE
Plan your upgrades carefully; you may need to allow time for multiple
incremental upgrades (such as from 8.1.7 to 8.1.7.4 to 9.2.0.8) prior
to upgrading to Oracle Database 11g.

Choosing an Upgrade Method
As described in the previous section, two direct upgrade and two indirect upgrade paths are
available. In this section, you will see a more detailed description of the options, followed by
usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either to an Export dump file on
the file system, across a database link, or via a Data Pump export. For very large databases, the
time required to completely re-create the database via the indirect methods may exclude them
as viable options.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. These recommendations may include the sizing of files and the specifications
for the new SYSAUX tablespace if you are upgrading from a version previous to 10g. After you
accept the recommendations, DBUA performs the upgrade in the background while a progress
panel is displayed. DBUA is very similar in approach to the Database Configuration Assistant
(DBCA). As discussed in Chapter 1 and the appendix, DBCA is a graphical interface to the steps
and parameters required to make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds
to the level of risk in the upgrade because you must perform the steps in the proper order.

52 Oracle Database 11g DBA Handbook

You can use the original Export and Import (or Oracle Data Pump Export/Import starting with
Oracle Database 10g) as an indirect method for upgrading a database. In this method, you export
the data from the old version of the database and then import it into a database that uses the new
version of the Oracle software. This process may require disk space for multiple copies of the
data—in the source database, in the Export dump file, and in the target database. In exchange for
these costs, this method gives you great flexibility in choosing which data will be migrated. You
can select specific tablespaces, schemas, tables, and rows to be exported.

In the Export/Import and Data Pump methods, the original database is not upgraded; its data
is extracted and moved, and the database can then either be deleted or be run in parallel with the
new database until testing of the new database has been completed. In the process of performing
the export/import, you are selecting and reinserting each row of the database. If the database is
very large, the import process may take a long time, impacting your ability to provide the upgraded
database to your users in a timely fashion. See Chapter 12 for details on the Export/Import and
Data Pump utilities.

NOTE
Depending on the version of the source database, you will need to
use a specific version of the Export and Import utilities. See the section
“Export and Import Versions to Use” later in this chapter.

In the data-copying method, you issue a series of create table as select . . . or insert into . . .
select commands that cross database links (see Chapter 16) to retrieve the source data. The tables
are created in the Oracle 11g database based on queries of data from a separate source database.
This method allows you to bring over data incrementally and to limit the rows and columns
migrated. However, you will need to be careful that the copied data maintains all the necessary
relationships among tables as well as any indexes or constraints. As with the Export/Import method,
this method may require a significant amount of time for large databases.

NOTE
If you are changing the operating platform at the same time, you can
use transportable tablespaces to move the data from the old database
to the new database. For very large databases, this method may be
faster than the other data-copying methods. See Chapter 17 for the
details on transportable tablespaces.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
smaller databases may use an indirect method.

Before Upgrading
Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

Chapter 2: Upgrading to Oracle Database 11g 53

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance of
specific database operations or the overall performance of the database under a significant user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so any missing components (such as operating system patches) can
be identified and the time required for the upgrade can be measured.

Oracle Database 11g includes the Pre-Upgrade Information Tool called utlu111i.sql. This tool
is included in the installation files in the directory $ORACLE_HOME/rdbms/admin. Copy this script
to a location accessible by the old database, connect to the old database with SYSDBA privileges,
and run this tool from a SQL*Plus session similar to the following:

SQL> spool upgrade_11g_info.txt
SQL> @utlu111i.sql
SQL> spool off

Review the file upgrade_11g_info.txt for adjustments you should make before performing the
actual upgrade; these adjustments include increasing the size of tablespaces, removing obsolete
initialization parameters, and revoking obsolete roles such as CONNECT. As of Oracle Database 11g,
the CONNECT role only contains the CREATE SESSION privilege. You need to grant permissions
to users with the CONNECT role before upgrading. Here is a query you can use to identify users
granted the CONNECT role:

SELECT grantee FROM dba_role_privs
 WHERE granted_role = 'CONNECT' and grantee NOT IN (
 'SYS', 'OUTLN', 'SYSTEM', 'CTXSYS', 'DBSNMP',
 'LOGSTDBY_ADMINISTRATOR', 'ORDSYS',
 'ORDPLUGINS', 'OEM_MONITOR', 'WKSYS', 'WKPROXY',
 'WK_TEST', 'WKUSER', 'MDSYS', 'LBACSYS', 'DMSYS',
 'WMSYS', 'OLAPDBA', 'OLAPSVR', 'OLAP_USER',
 'OLAPSYS', 'EXFSYS', 'SYSMAN', 'MDDATA',
 'SI_INFORMTN_SCHEMA', 'XDB', 'ODM');

Prior to performing a direct upgrade, you should analyze the data dictionary tables. During
the upgrade process to Oracle 11g, the data dictionary will be analyzed if it has not been
analyzed already, so performing this step in advance will aid the performance of the upgrade. For
an Oracle version 10g database, you can use this procedure invocation to gather dictionary stats:

EXEC DBMS_STATS.GATHER_DICTIONARY_STATS;

Using the Database Upgrade Assistant
You can start the Database Upgrade Assistant (DBUA) via the

dbua

command (in Unix environments) or by selecting Database Upgrade Assistant from the Oracle
Configuration and Migration Tools menu option (in Windows environments). If you are using a
Unix environment, you will need to enable an X Window display prior to starting DBUA.

54 Oracle Database 11g DBA Handbook

When started, DBUA will display a Welcome screen. At the next screen, select the database
you want to upgrade from the list of available databases. You can upgrade only one database at
a time.

After you make your selection, the upgrade process begins. DBUA will perform pre-upgrade
checks (such as for obsolete initialization parameters or files that are too small). DBUA will then
create the SYSAUX tablespace, a standard tablespace in all Oracle 10g and 11g databases. You
can override Oracle’s defaults for the location and size parameters for the datafiles used by the
SYSAUX tablespace.

DBUA will then prompt you to recompile invalid PL/SQL objects following the upgrade. If
you do not recompile these objects after the upgrade, the first user of these objects will be forced
to wait while Oracle performs a run-time recompilation.

DBUA will then prompt you to back up the database as part of the upgrade process. If you
have already backed up the database prior to starting DBUA, you may elect to skip this step. If
you choose to have DBUA back up the database, it will shut down the database and perform an
offline backup of the datafiles to the directory location you specify. DBUA will also create a batch
file in that directory to automate the restoration of those files to their earlier locations.

The next step is to choose whether to enable Oracle Enterprise Manager (OEM) to manage the
database. If you enable the Oracle Management Agent, the upgraded database will automatically
be available via OEM.

You will then be asked to finalize the security configuration for the upgraded database. As
with the database-creation process, you can specify passwords for each privileged account or
you can set a single password to apply to all the OEM user accounts.

Finally, you will be prompted for details on the flash recovery area location (see Chapter 14),
the archive log setting, and the network configuration. A final summary screen displays your choices
for the upgrade, and the upgrade starts when you accept them. After the upgrade has completed,
DBUA will display the Checking Upgrade Results screen, showing the steps performed, the related
log files, and the status. The section of the screen titled Password Management allows you to
manage the passwords and the locked/unlocked status of accounts in the upgraded database.

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded
database, and reloads the file.

Performing a Manual Direct Upgrade
In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
As I mentioned earlier in this chapter, this tool is provided in a SQL script that is installed with the
Oracle Database 11g software; you will need to run it against the database to be upgraded. The
file, named utlu111i.sql, is located in the $ORACLE_HOME/rdbms/admin subdirectory under the
Oracle 11g software home directory. You should run that file in the database to be upgraded as a
SYSDBA-privileged user, spooling the results to a log file. The results will show potential problems
that should be addressed prior to the upgrade.

Chapter 2: Upgrading to Oracle Database 11g 55

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process. This ensures that if you
have any serious problems with the database upgrade, you can always get back to the state of
your old database as of when you started the upgrade process.

Once you have a backup you can restore if needed, you are ready to proceed with the upgrade
process. The process is detailed and script-based, so you should consult with the Oracle installation
and upgrade documentation for your environment and version. The steps are as follows:

 1. Copy configuration files (init.ora, spfile.ora, password file) from their old location to the
new Oracle software home directory. By default, the configuration files are found in the
/dbs subdirectory on Unix platforms and the \database directory on Windows platforms.

 2. Remove obsolete and deprecated initialization parameter from the configuration files
identified in the Pre-Upgrade Information Tool. Update any initialization parameters to
at least the minimum values specified in the Pre-Upgrade Information Tool report. Use
full pathnames in the parameter files.

 3. If you are upgrading a cluster database, set the CLUSTER_DATABASE initialization parameter
to FALSE. After the upgrade, you must set this initialization parameter back to TRUE.

 4. Shut down the instance.

 5. If you are using Windows, stop the service associated with the instance and delete the
Oracle service at the command prompt. For Oracle 8.0, use the command

NET STOP OracleServiceName
ORADIM –DELETE –SID instance_name

Next, create the new Oracle Database 11g service using the ORADIM command, as
shown here. The variables for this command are shown in the following table.

C:\> ORADIM -NEW -SID SID -INTPWD PASSWORD -MAXUSERS USERS
 -STARTMODE AUTO -PFILE ORACLE_HOME\DATABASE\INITSID.ORA

Variable Description

SID The name of the SID (instance identifier) of the database you are
upgrading.

PASSWORD The password for the new release 11.1 database instance. This is
the password for the user connected with SYSDBA privileges. If
you do not specify INTPWD, operating system authentication is
used and no password is required.

USERS The maximum number of users who can be granted SYSDBA and
SYSOPER privileges.

ORACLE_HOME The release 11.1 Oracle home directory. Ensure that you specify
the full pathname with the -PFILE option, including the drive letter
of the Oracle home directory.

 6. If your operating system is Unix or Linux, make sure the environment variables ORACLE_
HOME and PATH point to the new release 11.1 directories, ORACLE_SID is set to the
existing database’s SID, and the file /etc/oratab points to the new Oracle Database 11g
home directory. In addition, any server or client-side scripts that set ORACLE_HOME
must be changed to point to the new Oracle software home directory.

56 Oracle Database 11g DBA Handbook

 7. Log into the system as the owner of the Oracle Database 11g software.

 8. Change your directory to the $ORACLE_HOME/rdbms/admin subdirectory under the
Oracle software home directory.

 9. Connect to SQL*Plus as a user with SYSDBA privileges.

 10. Issue the startup upgrade command.

 11. Use the spool command to log the results of the following steps.

 12. Create a SYSAUX tablespace via the create tablespace command if you are upgrading
from a release prior to 10.1. You should allocate SYSAUX between 500MB and 5GB
of disk space, depending on the number of user objects. SYSAUX must be created with
the following clauses: online, permanent, read write, extent management local, and
segment space management auto. All those clauses except segment space management
auto are the defaults. See the output from the Pre-Upgrade Information Tool for suggested
sizing of the SYSAUX tablespace. Here’s an example:

create tablespace SYSAUX
 datafile '/u01/oradata/db1/sysaux01.dbf'
 size 500m reuse
 extent management local
 segment space management auto
 online;

 13. Run the script catupgrd.sql in the 11g environment. This script automatically determines
which upgrade scripts must be run, runs them, and then shuts down the database.

 14. Stop spooling (via spool off) and review the spool file for errors. Resolve any problems
identified there. Restart the database at the SQL*Plus prompt using the startup command.

 15. Run the utlu111s.sql file to upgrade Oracle components such as Oracle Text, Oracle Ultra
Search, Oracle Application Express, and the Oracle Server itself. You run it as follows:

@utlu101s.sql

 16. Oracle will then display the upgrade status of each component. The upgrade elements
should all be listed with a status of “VALID.”

 17. Run the catuppst.sql script, located in $ORACLE_HOME/rdbms/admin to perform
upgrade steps that do not require the database to be in UPGRADE mode:

@rdbms/admin/catuppst.sql

 18. Run the utlrp.sql script to recompile invalid packages:

@utlrp.sql

 19. You can then verify that all packages and classes are valid by using the following SQL:

select count(*) from dba_invalid_objects;
select distinct object_name from dba_invalid_objects;

 20. Exit SQL*Plus.

 21. Shut down the database and perform an offline backup of the database; then restart the
database. The upgrade is complete.

Chapter 2: Upgrading to Oracle Database 11g 57

NOTE
After the upgrade, you should never start your Oracle 11g database
with the software from an earlier release.

Using Export and Import
Export and Import provide you with an indirect method for the upgrade. You can create an Oracle
11g database alongside your existing database and use Export and Import to move data from the
old database to the new database. When the movement of the data is complete, you will need to
point your applications to connect to the new database instead of the old database. You will also
need to update any configuration files, version-specific scripts, and the networking configuration
files (tnsnames.ora and listener.ora) to point to the new database.

The advantage to using an Export/Import method is that the existing database is unaffected
throughout the upgrade process; however, to ensure that relational integrity remains intact and
no new transactions are left behind in the old database, you can run the old database in restricted
mode for the duration of the export and upgrade.

Export and Import Versions to Use
When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. When you create a Data Pump Export dump file, you can only import it into
the same or later versions of Data Pump Export. Export dump files are not backward compatible,
so if you ever need to revert to an earlier version of Oracle, you will need to carefully select the
version of Export and Import used. The following table shows the versions of the Export/Import
and Data Pump Export/Import executables you should use when going between versions of Oracle:

Export From Import To Use Export Utility Use Import Utility

Release 10.2 Release 11.1 Data Pump Export 10.2 Data Pump Import 11.1

Release 10.1 Release 11.1 Data Pump Export 10.1 Data Pump Import 11.1

Release 9.2 Release 11.1 Original Export 9.2 Original Import 11.1

Release 8.1.7 Release 11.1 Original Export 8.1.7 Original Import 11.1

Release 8.0.6 Release 11.1 Original Export 8.0.6 Original Import 11.1

Release 7.3.4 Release 11.1 Original Export 7.3.4 Original Import 11.1

Note that when you are exporting in order to downgrade your database release, you should use
the older version of the Export utility to minimize compatibility problems. You may still encounter
compatibility problems if the newer version of the database uses new features (such as new
datatypes) that the old version will not support.

Performing the Upgrade
Export the data from the source database using the version of the Export utility specified in
the prior section. Perform a consistent export or perform the export when the database is not
available for updates during and after the export.

58 Oracle Database 11g DBA Handbook

NOTE
If you have little free space available, you may back up and delete the
existing database at this point and then install Oracle Database 11g
software and create a target database for the import. If at all possible,
maintain the source and target databases concurrently during the
upgrade. The only benefit of having only one database on the server
at a time is that they can share the same database name.

Install the Oracle Database 11g software and create the target database. In the target database,
pre-create the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from one
database with datafiles from the other. The Import utility will attempt to execute the create tablespace
commands found in the Export dump file, and those commands will include the datafile names from
the source database. By default, those commands will fail if the files already exist (although this can
be overridden via Import’s DESTROY parameter). Pre-create the tablespaces with the proper datafile
names to avoid this problem.

NOTE
You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Import or Data Pump Import to load the data from
the Export dump file into the target database. Review the log file for information about objects
that did not import successfully. See Chapter 11 for detailed instructions on how to use Data
Pump Export and Import.

Using the Data-Copying Method
The data-copying method requires that the source database and target database coexist. This
method is most appropriate when the tables to be migrated are fairly small and few in number.
As with the Export/Import method, you must guard against transactions occurring in the source
database during and after the extraction of the data. In this method, the data is extracted via
queries across database links.

Create the target database using the Oracle Database 11g software and then pre-create the
tablespaces, users, and tables to be populated with data from the source database. Create database
links (see Chapter 16) in the target database that access accounts in the source database. Use the
insert as select command to move data from the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so that you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

To improve the performance of this method, you may consider the following options:

Disable all indexes and constraints until all the data has been loaded.

Run multiple data-copying jobs in parallel.

■

■

Chapter 2: Upgrading to Oracle Database 11g 59

Use the parallel query option to enhance the performance of individual queries and inserts.

Use the APPEND hint to enhance the performance of inserts.

As of Oracle 10g, you can use cross-platform transportable tablespaces. When transporting
tablespaces, you export and import only the metadata for the tablespace, while the datafiles are
physically moved to the new platform. For very large databases, the time required to move the
datafiles may be significantly shorter than the time required to reinsert the rows. See Chapter 17
for details on the use of transportable tablespaces; see Chapter 8 for additional advice on
performance tuning.

After Upgrading
Following the upgrade, you should double-check the configuration and parameter files related to
the database, particularly if the instance name changed in the migration process. These files include

The tnsnames.ora file

The listener.ora file

Programs that may have hard-coded instance names in them

NOTE
You will need to manually reload the modified listener.ora file if you
are not using DBUA to perform the upgrade.

You should review your database initialization parameters to make sure deprecated and
obsolete parameters have been removed; these should have been identified during the migration
process when you ran the Pre-Upgrade Information Tool utlu111i.sql. Be sure to recompile any
programs you have written that rely on the database software libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release. If you performed a full backup
before starting the upgrade, you should be able to easily revert to the old release with minimal
downtime.

■

■

■

■

■

This page intentionally left blank

CHAPTER
3

Planning and Managing
Tablespaces

61

62 Oracle Database 11g DBA Handbook

ow a DBA configures the layout of the tablespaces in a database directly affects the
performance and manageability of the database. In this chapter, we’ll review the
different types of tablespaces as well as how temporary tablespace usage can drive
the size and number of tablespaces in a database leveraging the temporary tablespace
group feature introduced in Oracle 10g.

We’ll also show how Oracle’s Optimal Flexible Architecture (OFA), supported since Oracle 7,
helps to standardize the directory structure for both Oracle executables and the database files
themselves; Oracle Database 11g further enhances OFA to complement its original role of
improving performance to enhancing security and simplifying cloning and upgrade tasks.

A default installation of Oracle provides the DBA with a good starting point, not only creating
an OFA-compliant directory structure but also segregating segments into a number of tablespaces
based on their function. We’ll review the space requirements for each of these tablespaces and
provide some tips on how to fine-tune the characteristics of these tablespaces.

At the end of the chapter, we’ll provide some guidelines to help place segments into different
tablespaces based on their type, size, and frequency of access, as well as ways to identify hotspots
in one or more tablespaces.

Tablespace Architecture
A prerequisite to competently setting up the tablespaces in your database is understanding the
different types of tablespaces and how they are used in an Oracle database. In this section, we’ll
review the different types of tablespaces and give some examples of how they are managed.

In addition, we’ll provide an overview of Oracle’s Optimal Flexible Architecture and how
it provides a framework for storing tablespace datafiles as well as Oracle executables and other
Oracle components, such as redo log files, control files, and so forth. We’ll also review the types
of tablespaces by category—SYSTEM tablespaces, the SYSAUX tablespace, temporary tablespaces,
undo tablespaces, and bigfile tablespaces—and describe their function.

Tablespace Types
The primary types of tablespaces in an Oracle database are permanent, undo, and temporary.
Permanent tablespaces contain segments that persist beyond the duration of a session or a transaction.

Although the undo tablespace may have segments that are retained beyond the end of a session
or a transaction, it provides read consistency for select statements that access tables being modified
as well as provides undo data for a number of the flashback features of the database. Primarily,
however, undo segments store the previous values of columns being updated or deleted, or to
provide an indication that the row did not exist for an insert so that if a user’s session fails before the
user issues a commit or a rollback, the updates, inserts, and deletes will be removed. Undo segments
are never directly accessible by a user session, and undo tablespaces may only have undo segments.

As the name implies, temporary tablespaces contain transient data that exists only for the
duration of the session, such as space to complete a sort operation that will not fit in memory.

Bigfile tablespaces can be used for any of these three types of tablespaces, and they simplify
tablespace management by moving the maintenance point from the datafile to the tablespace.
Bigfile tablespaces consist of one and only one datafile. There are a couple of downsides to bigfile
tablespaces, however, and I will present these later in this chapter.

Permanent
The SYSTEM and SYSAUX tablespaces are two examples of permanent tablespaces. In addition,
any segments that need to be retained by a user or an application beyond the boundaries of a
session or transaction should be stored in a permanent tablespace.

H

Chapter 3: Planning and Managing Tablespaces 63

SYSTEM Tablespace User segments should never reside in the SYSTEM tablespace, period. As of
Oracle 10g, you can specify a default permanent tablespace in addition to the ability to specify a
default temporary tablespace in Oracle9i.

If you use the Oracle Universal Installer (OUI) to create a database for you, a separate
tablespace other than SYSTEM is created for both permanent and temporary segments. If you
create a database manually, be sure to specify both a default permanent tablespace and a default
temporary tablespace, as in the sample create database command that follows.

CREATE DATABASE rjbdb
 USER SYS IDENTIFIED BY kshelt25
 USER SYSTEM IDENTIFIED BY mgrab45
 LOGFILE GROUP 1 ('/u02/oracle11g/oradata/rjbdb/redo01.log') SIZE 100M,
 GROUP 2 ('/u04/oracle11g/oradata/rjbdb/redo02.log') SIZE 100M,
 GROUP 3 ('/u06/oracle11g/oradata/rjbdb/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 MAXINSTANCES 1
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE '/u01/oracle11g/oradata/rjbdb/system01.dbf' SIZE 325M REUSE
 EXTENT MANAGEMENT LOCAL
 SYSAUX DATAFILE '/u01/oracle11g/oradata/rjbdb/sysaux01.dbf'
 SIZE 325M REUSE
 DEFAULT TABLESPACE USERS
 DATAFILE '/u03/oracle11g/oradata/rjbdb/users01.dbf'
 SIZE 50M REUSE
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/oracle11g/oradata/rjbdb/temp01.dbf'
 SIZE 20M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u02/oracle11g/oradata/rjbdb/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

As of Oracle 10g, the SYSTEM tablespace is locally managed by default; in other words,
all space usage is managed by a bitmap segment in the first part of the first datafile for the
tablespace. In a database where the SYSTEM tablespace is locally managed, the other tablespaces
in the database must also be locally managed or they must be read-only. Using locally managed
tablespaces takes some of the contention off the SYSTEM tablespace because space allocation and
deallocation operations for a tablespace do not need to use data dictionary tables. More details
on locally managed tablespaces can be found in Chapter 6.

SYSAUX Tablespace Like the SYSTEM tablespace, the SYSAUX tablespace should not have any
user segments. The contents of the SYSAUX tablespace, broken down by application, can be
reviewed using EM Database Control. You can edit the SYSAUX tablespace by clicking the
Tablespaces link under the Server tab and clicking the SYSAUX link. Figure 3-1 shows a graphical
representation of the space usage within SYSAUX.

64 Oracle Database 11g DBA Handbook

If the space usage for a particular application that resides in the SYSAUX tablespace becomes
too high or creates an I/O bottleneck through high contention with other applications that use the
SYSAUX tablespace, you can move one or more of these applications to a different tablespace.
Below the pie chart in Figure 3-1, we can click the Change Tablespace link of a SYSAUX occupant
and move it to another tablespace, as shown in Figure 3-2. An example of moving a SYSAUX
occupant to a different tablespace using the command line interface can be found in Chapter 6.

FIGURE 3-1 EM Database Control SYSAUX tablespace contents

FIGURE 3-2 Using EM Database Control to move a SYSAUX occupant

Chapter 3: Planning and Managing Tablespaces 65

The SYSAUX tablespace can be monitored just like any other tablespace; later in this chapter,
we’ll show how EM Database Control can help us to identify hotspots in a tablespace.

Undo
Multiple undo tablespaces can exist in a database, but only one undo tablespace can be active
at any given time. Undo tablespaces are used for rolling back transactions, for providing read
consistency for select statements that run concurrently with DML statements on the same table or
set of tables, and for supporting a number of Oracle Flashback features, such as Flashback Query.

The undo tablespace needs to be sized correctly to prevent “Snapshot too old” errors and to
provide enough space to support initialization parameters such as UNDO_RETENTION. More
information on how to monitor, size, and create undo tablespaces can be found in Chapter 7.

Temporary
More than one temporary tablespace can be online and active in the database, but until Oracle
10g, multiple sessions by the same user would use the same temporary tablespace because only
one default temporary tablespace could be assigned to a user. To solve this potential performance
bottleneck, Oracle supports temporary tablespace groups. A temporary tablespace group is a
synonym for a list of temporary tablespaces.

A temporary tablespace group must consist of at least one temporary tablespace; it cannot be
empty. Once a temporary tablespace group has no members, it no longer exists.

One of the big advantages of using temporary tablespace groups is to provide a single user
with multiple sessions with the ability to use a different actual temporary tablespace for each
session. In the diagram shown in Figure 3-3, the user OE has two active sessions that need
temporary space for performing sort operations.

Instead of a single temporary tablespace being assigned to a user, the temporary tablespace
group is assigned; in this example, the temporary tablespace group TEMPGRP has been assigned
to OE. However, because there are three actual temporary tablespaces within the TEMPGRP
temporary tablespace group, the first OE session may use temporary tablespace TEMP1, and the
select statement executed by the second OE session may use the other two temporary tablespaces,
TEMP2 and TEMP3, in parallel. Before Oracle 10g, both sessions would use the same temporary
tablespace, potentially causing a performance issue.

FIGURE 3-3 Temporary tablespace group TEMPGRP

66 Oracle Database 11g DBA Handbook

Creating a temporary tablespace group is very straightforward. After creating the individual
tablespaces TEMP1, TEMP2, and TEMP3, we can create a temporary tablespace group named
TEMPGRP as follows:

SQL> alter tablespace temp1 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp2 tablespace group tempgrp;
Tablespace altered.
SQL> alter tablespace temp3 tablespace group tempgrp;
Tablespace altered.

Changing the database’s default temporary tablespace to TEMPGRP uses the same command
as assigning an actual temporary tablespace as the default; temporary tablespace groups are
treated logically the same as a temporary tablespace:

SQL> alter database default temporary tablespace tempgrp;
Database altered.

To drop a tablespace group, we must first drop all its members. Dropping a member of a
tablespace group is accomplished by assigning the temporary tablespace to a group with an
empty string (in other words, removing the tablespace from the group):

SQL> alter tablespace temp3 tablespace group '';
Tablespace altered.

As you might expect, assigning a temporary tablespace group to a user is identical to
assigning a temporary tablespace to a user; this assignment can happen either when the user is
created or at some point in the future. In the following example, the new user JENWEB is assigned
the temporary tablespace TEMPGRP:

SQL> create user jenweb identified by pi4001
 2 default tablespace users
 3 temporary tablespace tempgrp;
User created.

Note that if we did not assign the tablespace during user creation, the user JENWEB would
still be assigned TEMPGRP as the temporary tablespace because it is the database default from
our previous create database example.

A couple of changes have been made to the data dictionary views in Oracle Database 10g
and Oracle Database 11g to support temporary tablespace groups. The data dictionary view
DBA_USERS still has the column TEMPORARY_TABLESPACE, as in previous versions of Oracle,
but this column may now contain either the name of the temporary tablespace assigned to the
user, or the name of a temporary tablespace group.

SQL> select username, default_tablespace, temporary_tablespace
 2 from dba_users where username = 'JENWEB';

USERNAME DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
-------------------- ------------------ --------------------
JENWEB USERS TEMPGRP

1 row selected.

Chapter 3: Planning and Managing Tablespaces 67

The new data dictionary view DBA_TABLESPACE_GROUPS shows the members of each
temporary tablespace group:

SQL> select group_name, tablespace_name from dba_tablespace_groups;

GROUP_NAME TABLESPACE_NAME
---------------------------- ----------------------------
TEMPGRP TEMP1
TEMPGRP TEMP2
TEMPGRP TEMP3

3 rows selected.

As with most every other feature of Oracle that can be accomplished with the command
line, assigning members to temporary tablespace groups or removing members from temporary
tablespace groups can be performed using EM Database Control. In Figure 3-4, we can add or
remove members from a temporary tablespace group.

Bigfile
A bigfile tablespace eases database administration because it consists of only one datafile. The single
datafile can be up to 128TB (terabytes) in size if the tablespace block size is 32KB. Many of the
commands previously available only for maintaining datafiles can now be used at the tablespace
level if the tablespace is a bigfile tablespace. Chapter 6 reviews how bigfile tablespaces are created
and maintained.

FIGURE 3-4 Using EM Database Control to edit temporary tablespace groups

68 Oracle Database 11g DBA Handbook

The maintenance convenience of bigfile tablepsaces can be offset by some potential
disadvantages. Because a bigfile tablespace is a single datafile, a full backup of a single large
datafile will take significantly longer than a full backup of several smaller datafiles (with the same
total size as the single bigfile tablespace) because Oracle only uses one slave process per datafile
and therefore cannot back up different parts of a bigfile tablespace using parallel processes. If
your bigfile tablespaces are read-only or only changed blocks are backed up on a regular basis,
the backup issue may not be critical in your environment.

Optimal Flexible Architecture
Oracle’s Optimal Flexible Architecture (OFA) provides guidelines to ease the maintenance of the
Oracle software and database files as well as improve the performance of the database by placing
the database files such that I/O bottlenecks are minimized.

Although using OFA is not strictly enforced when you’re installing or maintaining an Oracle
environment, using OFA makes it easy for someone to understand how your database is organized
on disk, preventing that phone call in the middle of the night during the week you’re on vacation!

OFA is slightly different depending on the type of storage options you use—either an Automatic
Storage Management (ASM) environment or a standard operating system file system that may or
may not be using a third-party logical volume manager or RAID-enabled disk subsystem.

Non-ASM Environment
In a non-ASM environment on a Unix server, at least three file systems on separate physical
devices are required to implement OFA recommendations. Starting at the top, the recommended
format for a mount point is /<string const><numeric key>, where <string const> can be one or
several letters and <numeric key> is either two or three digits. For example, on one system we
may have mount points /u01, /u02, /u03, and /u04, with room to expand to an additional 96
mount points without changing the file-naming convention. Figure 3-5 shows a typical Unix file
system layout with an OFA-compliant Oracle directory structure.

There are two instances on this server: an ASM instance to manage disk groups and a standard
RDBMS instance (dw).

Software Executables The software executables for each distinct product name reside in the
directory /<string const><numeric key>/<directory type>/<product owner>, where <string const>
and <numeric key> are defined previously, <directory type> implies the type of files installed in
this directory, and <product owner> is the name of the user that owns and installs
the files in this directory. For example, /u01/app/oracle would contain application-related files
(executables) installed by the user oracle on the server. The directory /u01/app/apache would
contain the executables for the middleware web server installed from a previous version of Oracle.

As of Oracle 10g, the OFA standard makes it easy for the DBA to install multiple versions of
the database and client software within the same high-level directory. The OFA-compliant Oracle
home path, corresponding to the environment variable ORACLE_HOME, contains a suffix that
corresponds to the type and incarnation of the installation. For example, one installation of
Oracle 11g, two different installations of Oracle 10g, and one installation of Oracle9i may reside
in the following three directories:

/u01/app/oracle/product/9.2.0.1
/u01/app/oracle/product/10.1.0/db_1
/u01/app/oracle/product/10.1.0/db_2
/u01/app/oracle/product/11.1.0/db_1

Chapter 3: Planning and Managing Tablespaces 69

At the same time, the Oracle client executables and configuration may be stored in the same
parent directory as the database executables:

/u01/app/oracle/product/10.1.0/client_1

Some installation directories will never have more than one instance for a given product; for
example, Oracle Cluster Ready Services (CRS) will be installed in the following directory given
the previous installations:

/u01/app/oracle/product/11.1.0/crs

Because CRS can only be installed once on a system, it does not have an incrementing
numeric suffix.

Database Files Any non-ASM Oracle datafiles reside in /<mount point>/oradata/<database
name>, where <mount point> is one of the mount points we discussed earlier, and <database
name> is the value of the initialization parameter DB_NAME. For example, /u02/oradata/rac0 and
/u03/oradata/rac0 would contain the non-ASM control files, redo log files, and datafiles for the
instance rac0, whereas /u05/oradata/dev1 would contain the same files for the dev1 instance on
the same server. The naming convention for the different file types under the oradata directory are
detailed in Table 3-1.

FIGURE 3-5 OFA-compliant Unix directory structure

70 Oracle Database 11g DBA Handbook

Although Oracle tablespace names can be as long as 30 characters, it is advisable to keep
the tablespace names eight characters or less in a Unix environment. Because portable Unix
filenames are restricted to 14 characters, and the suffix of an OFA datafile name is <n>.dbf, where
n is two digits, a total of six characters are needed for the suffix in the file system. This leaves
eight characters for the tablespace name itself.

Only control files, redo log files, and datafiles associated with the database <database name>
should be stored in the directory /<mount point>/oradata/<database name>. For the database ord
managed without ASM, the datafile names are as follows:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- -----------------------------------
 1 /u05/oradata/ord/system01.dbf
 2 /u05/oradata/ord/undotbs01.dbf
 3 /u05/oradata/ord/sysaux01.dbf
 4 /u05/oradata/ord/users01.dbf
 5 /u09/oradata/ord/example01.dbf
 6 /u09/oradata/ord/oe_trans01.dbf
 7 /u05/oradata/ord/users02.dbf
 8 /u06/oradata/ord/logmnr_rep01.dbf
 9 /u09/oradata/ord/big_users.dbf
 10 /u08/oradata/ord/idx01.dbf
 11 /u08/oradata/ord/idx02.dbf
 12 /u08/oradata/ord/idx03.dbf
 13 /u08/oradata/ord/idx04.dbf
 14 /u08/oradata/ord/idx05.dbf
 15 /u08/oradata/ord/idx06.dbf
 16 /u08/oradata/ord/idx07.dbf
 17 /u08/oradata/ord/idx08.dbf
17 rows selected.

Other than file numbers 8 and 9, all the datafiles in the ord database are OFA compliant and
are spread out over four different mount points. The tablespace name in file number 8 is too long,
and file number 9 does not have a numeric two-digit counter to represent new datafiles for the
same tablespace.

File Type Filename Format Variables

Control files control.ctl None.

Redo log files redo<n>.log n is a two-digit number.

Datafiles <tn>.dbf t is an Oracle tablespace name, and n is a
two-digit number.

TABLE 3-1 OFA-Compliant Control File, Redo Log File, and Datafile Naming Conventions

Chapter 3: Planning and Managing Tablespaces 71

ASM Environment
In an ASM environment, the executables are stored in the directory structure presented previously;
however, if you browsed the directory /u02/oradata in Figure 3-5, you would see no files. All the
control files, redo log files, and datafiles for the instance dw are managed by the ASM instance
+ASM on this server.

The actual datafile names are not needed for most administrative functions because ASM files are
all Oracle Managed Files (OMF). This eases the overall administrative effort required for the database.
Within the ASM storage structure, an OFA-like syntax is used to subdivide the file types even further:

SQL> select file#, name from v$datafile;

 FILE# NAME
---------- --
 1 +DATA/dw/datafile/system.256.622426913
 2 +DATA/dw/datafile/sysaux.257.622426915
 3 +DATA/dw/datafile/undotbs1.258.622426919
 4 +DATA/dw/datafile/users.259.622426921
 5 +DATA/dw/datafile/example.265.622427181
5 rows selected.

SQL> select name from v$controlfile;

NAME
--
+DATA/dw/controlfile/current.260.622427059
+RECOV/dw/controlfile/current.256.622427123
2 rows selected.

SQL> select member from v$logfile;

MEMBER
--
+DATA/dw/onlinelog/group_3.263.622427143
+RECOV/dw/onlinelog/group_3.259.622427145
+DATA/dw/onlinelog/group_2.262.622427135
+RECOV/dw/onlinelog/group_2.258.622427137
+DATA/dw/onlinelog/group_1.261.622427127
+RECOV/dw/onlinelog/group_1.257.622427131
6 rows selected.

Within the disk groups +DATA and +RECOV, we see that each of the database file types, such
as datafiles, control files, and online log files, has its own directory. Fully qualified ASM filenames
have the format

+<group>/<dbname>/<file type>/<tag>.<file>.<incarnation>

where <group> is the disk group name, <dbname> is the database to which the file belongs,
<file type> is the Oracle file type, <tag> is information specific to the file type, and the pair
<file>.<incarnation> ensures uniqueness within the disk group.

Automatic Storage Management is covered in Chapter 6.

72 Oracle Database 11g DBA Handbook

Oracle Installation Tablespaces
Table 3-2 lists the tablespaces created with a standard Oracle installation using the Oracle
Universal Installer (OUI); the EXAMPLE tablespace is optional; it is installed if you specify that
you want the sample schemas created during the installation dialogue.

SYSTEM
As mentioned previously in this chapter, no user segments should ever be stored in the SYSTEM
tablespace. The new clause default tablespace in the create database command helps to prevent
this occurrence by automatically assigning a permanent tablespace for all users that have not
explicitly been assigned a permanent tablespace. An Oracle installation performed using the
Oracle Universal Installer will automatically assign the USERS tablespace as the default
permanent tablespace.

The SYSTEM tablespace will grow more quickly the more you use procedural objects such as
functions, procedures, triggers, and so forth, because these objects must reside in the data dictionary.
This also applies to abstract datatypes and Oracle’s other object-oriented features.

SYSAUX
As with the SYSTEM tablespace, user segments should never be stored in the SYSAUX tablespace.
If one particular occupant of the SYSAUX tablespace takes up too much of the available space or
significantly affects the performance of other applications that use the SYSAUX tablespace, you
should consider moving the occupant to another tablespace.

TEMP
Instead of one very large temporary tablespace, consider using several smaller temporary
tablespaces and creating a temporary tablespace group to hold them. As you found out earlier
in this chapter, this can improve the response time for applications that create many sessions
with the same username.

Tablespace Type Segment Space Management Approx. Initial Allocated
Size (MB)

SYSTEM Permanent Manual 680

SYSAUX Permanent Auto 585

TEMP Temporary Manual 20

UNDOTBS1 Permanent Manual 115

USERS Permanent Auto 16

EXAMPLE Permanent Auto 100

TABLE 3-2 Standard Oracle Installation Tablespaces

Chapter 3: Planning and Managing Tablespaces 73

UNDOTBS1
Even though a database may have more than one undo tablespace, only one undo tablespace can
be active at any given time. If more space is needed for an undo tablespace, and AUTOEXTEND is
not enabled, another datafile can be added. One undo tablespace must be available for each node
in a Real Application Clusters (RAC) environment because each instance manages its own undo.

USERS
The USERS tablespace is intended for miscellaneous segments created by each database user, and
it’s not appropriate for any production applications. A separate tablespace should be created for
each application and segment type; later in this chapter we’ll present some additional criteria you
can use to decide when to segregate segments into their own tablespace.

EXAMPLE
In a production environment, the EXAMPLE tablespace should be dropped; it takes up 100MB of
disk space and has examples of all types of Oracle segments and data structures. A separate database
should be created for training purposes with these sample schemas; for an existing training database,
the sample schemas can be installed into the tablespace of your choice by using the scripts in
$ORACLE_HOME/demo/schema.

Segment Segregation
As a general rule of thumb, you want to divide segments into different tablespaces based on their
type, size, and frequency of access. Furthermore, each of these tablespaces would benefit from
being on its own disk group or disk device; in practice, however, most shops will not have the
luxury of storing each tablespace on its own device. The following bulleted points identify some of
the conditions you might use to determine how segments should be segregated among tablespaces.
They are not prioritized here because the priority depends on your particular environment. Using
Automatic Storage Management (ASM) eliminates many of the contention issues listed with no
additional effort by the DBA. ASM is discussed in detail in Chapter 4.

Big segments and small segments should be in separate tablespaces.

Table segments and their corresponding index segments should be in separate
tablespaces.

A separate tablespace should be used for each application.

Segments with low usage and segments with high usage should be in different
tablespaces.

Static segments should be separated from high DML segments.

Read-only tables should be in their own tablespace.

Staging tables for a data warehouse should be in their own tablespace.

■

■

■

■

■

■

■

74 Oracle Database 11g DBA Handbook

Tablespaces should be created with the appropriate block size, depending on whether
segments are accessed row by row or in full table scans.

Materialized views should be in a separate tablespace from the base table.

For partitioned tables and indexes, each partition should be in its own tablespace.

Using EM Database Control, you can identify overall contention on any tablespace by
identifying hotspots, either at the file level or at the object level. We’ll cover performance
tuning, including resolving I/O contention issues, in Chapter 8.

■

■

■

CHAPTER
4

Physical Database Layouts
and Storage Management

75

76 Oracle Database 11g DBA Handbook

n Chapter 3, we talked about the logical components of the database, tablespaces,
and how to not only create the right number and types of tablespaces but also to
place table and index segments in the appropriate tablespace, based on their usage
patterns and function. In this chapter, I’ll focus more on the physical aspects of a
database, the datafiles, and where to store them to maximize I/O throughput and

overall database performance.

The assumption throughout this chapter is that you are using locally managed tablespaces
with automatic segment space management. In addition to reducing the load on the SYSTEM
tablespace by using bitmaps stored in the tablespace itself instead of freelists stored in the table
or index header blocks, automatic segment space management (autoallocated or uniform) makes
more efficient use of the space in the tablespace. As of Oracle 10g, the SYSTEM tablespace is
created as locally managed. As a result, this requires all read-write tablespaces to also be locally
managed.

In the first part of this chapter, I’ll review some of the common problems and solutions when
using traditional disk space management using a file system on a database server. In the second
half of the chapter, I’ll present an overview of Automatic Storage Management (ASM), a built-in
logical volume manager that eases administration, enhances performance, and improves availability.

Traditional Disk Space Storage
In lieu of using a third-party logical volume or Oracle’s Automatic Storage Management
(discussed later in this chapter), you must be able to manage the physical datafiles in your
database to ensure a high level of performance, availability, and recoverability. In general, this
means spreading out your datafiles to different physical disks. In addition to ensuring availability
by keeping mirrored copies of redo log files and control files on different disks, I/O performance
is improved when users access tables that reside in tablespaces on multiple physical disks instead
of one physical disk. Identifying an I/O bottleneck or a storage deficiency on a particular disk
volume is only half the battle; once the bottleneck is identified, you need to have the tools and
knowledge to move datafiles to different disks. If a datafile has too much space or not enough
space, resizing an existing datafile is a common task.

In this section, I’ll discuss a number of different ways to resize tablespaces, whether they are
smallfile or bigfile tablespaces. In addition, I’ll cover the most common ways to move datafiles,
online redo log files, and control files to different disks.

Resizing Tablespaces and Datafiles
In an ideal database, all tablespaces and the objects within them are created at their optimal
sizes. Resizing a tablespace proactively or setting up a tablespace to automatically extend can
potentially avoid a performance hit when the tablespace expands or an application failure occurs
if the datafile(s) within the tablespace cannot extend. More details on how to monitor space usage
can be found in Chapter 6.

The procedures and methods available for resizing a tablespace are slightly different, depending
on whether the tablespace is a smallfile or a bigfile tablespace. A smallfile tablespace, the only
type of tablespace available before Oracle 10g, can consist of multiple datafiles. A bigfile tablespace,
in contrast, can only consist of one datafile, but the datafile can be much larger than a datafile in

I

Chapter 4: Physical Database Layouts and Storage Management 77

a smallfile tablespace: A bigfile tablespace with 64K blocks can have a datafile as large as 128TB.
In addition, bigfile tablespaces must be locally managed.

Resizing a Smallfile Tablespace Using ALTER DATABASE
In the following examples, we attempt to resize the USERS tablespace, which contains one
datafile, starting out at 5MB. First, we make it 15MB, then realize it’s too big, and shrink it down
to 10MB. Then, we attempt to shrink it too much. Finally, we try to increase its size too much.

SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 15m;
 Database altered.
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 10m;
 Database altered.
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 1m;
alter database
*
ERROR at line 1:
ORA-03297: file contains used data beyond requested RESIZE value
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 100t;
alter database
*
ERROR at line 1:
ORA-00740: datafile size of (13421772800) blocks exceeds maximum file size
SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf' resize 50g;
alter database
*
ERROR at line 1:
ORA-01144: File size (6553600 blocks) exceeds maximum of 4194303 blocks

If the resize request cannot be supported by the free space available, or there is data beyond
the requested decreased size, or an Oracle file size limit is exceeded, Oracle returns an error.

To avoid manual resizing of tablespaces reactively, we can instead be proactive and use the
autoextend, next, and maxsize clauses when modifying or creating a datafile. Table 4-1 lists the
space-related clauses for modifying or creating datafiles in the alter datafile and alter tablespace
commands.

In the following example, we set autoextend to ON for the datafile /u01/app/oracle/oradata/
rmanrep/users01.dbf, specify that each extension of the datafile is 20MB, and specify that the total
size of the datafile cannot exceed 1GB:

SQL> alter database
 2 datafile '/u01/app/oracle/oradata/rmanrep/users01.dbf'
 3 autoextend on
 4 next 20m
 5 maxsize 1g;
Database altered.

78 Oracle Database 11g DBA Handbook

If the disk volume containing the datafile does not have the disk space available for the
expansion of the datafile, we must either move the datafile to another disk volume or create a
second datafile for the tablespace on another disk volume. In this example, we’re going to add a
second datafile to the USERS tablespace on a different disk volume with an initial size of 50MB,
allowing for the automatic extension of the datafile, with each extension 10MB and a maximum
datafile size of 200MB:

SQL> alter tablespace users
 2 add datafile '/u03/oradata/users02.dbf'

3 size 50m
 4 autoextend on
 5 next 10m
 6 maxsize 200m;
Tablespace altered.

Notice that when we modify an existing datafile in a tablespace, we use the alter database
command, whereas when we add a datafile to a tablespace, we use the alter tablespace command.
As you will see shortly, using a bigfile tablespace simplifies these types of operations.

Resizing a Smallfile Tablespace Using EM Database Control
Using EM Database Control, we can use either of the methods described in the preceding section:
increase the size and turn on autoextend for the tablespace’s single datafile, or add a second datafile.

Resizing a Datafile in a Smallfile Tablespace To resize a datafile in EM Database Control, click
the Server tab from the database instance home page, then click Tablespaces under the Storage

Clause Description

autoextend When this clause is set to ON, the datafile will be allowed to expand.
When it’s set to OFF, no expansion is allowed, and the other clauses are
set to zero.

next <size> The size, in bytes, of the next amount of disk space to allocate for the
datafile when expansion is required; the <size> value can be qualified
with K, M, G, or T to specify the size in kilobytes, megabytes, gigabytes,
or terabytes, respectively.

maxsize <size> When this clause is set to unlimited, the size of the datafile is unlimited
within Oracle, up to 128TB for a bigfile tablespace, and 128GB for a
smallfile tablespace with 32K blocks (otherwise limited by the file system
containing the datafile). Otherwise, maxsize is set to the maximum
number of bytes in the datafile, using the same qualifiers used in the next
clause: K, M, G, or T.

TABLE 4-1 Datafile Extension Clauses

Chapter 4: Physical Database Layouts and Storage Management 79

heading. In Figure 4-1, you have selected the XPORT tablespace; it is over 85 percent full, so you
decide to expand its size using a second datafile. This tablespace was originally created using this
command:

create tablespace xport datafile '/u02/oradata/xport.dbf' size 150m;

Rather than let the tablespace’s datafile autoextend, we will change the current size of the
datafile to 200MB from 150MB.

By clicking the Edit button, you can see the characteristics of the XPORT tablespace, as
shown in Figure 4-2. It is locally managed, permanent, and not a bigfile tablespace (i.e., it is a
smallfile tablespace). At the bottom of the page is the single datafile for the XPORT tablespace, /
u02/oradata/xport.dbf.

FIGURE 4-1 Using EM Database Control to edit tablespace characteristics

80 Oracle Database 11g DBA Handbook

With the only datafile in the XPORT tablespace selected, click the Edit button or click the
datafile name itself, and you will see the Edit Tablespace: Edit Datafile page, shown in Figure 4-3,
where you can change the size of the datafile. On this page, change the file size from 150MB to
200MB and click Continue.

In Figure 4-4, you are back to the Edit Tablespace page. At this point, you can make the changes
to the datafile by clicking Apply, cancel the changes by clicking Revert, or show the SQL to be
executed by clicking Show SQL.

Before committing the changes, it is often beneficial to review the SQL commands about to
be executed by clicking the Show SQL button—it is a good way to brush up on your SQL command
syntax! Here is the command that will be executed when you click Apply:

ALTER DATABASE DATAFILE '/u02/oradata/xport.dbf' RESIZE 200M

When you click Apply, Oracle changes the size of the datafile. The Edit Tablespace: XPORT
page reflects the successful operation and the new size of the datafile, as you can see in Figure 4-5.

FIGURE 4-2 Tablespace characteristics

Chapter 4: Physical Database Layouts and Storage Management 81

FIGURE 4-3 Editing a tablespace’s datafile

FIGURE 4-4 Confirming datafile changes

82 Oracle Database 11g DBA Handbook

Adding a Datafile to a Smallfile Tablespace Adding a datafile to a smallfile tablespace is just as
easy as resizing a datafile using EM Database Control. In our preceding example, we expanded
the datafile for the XPORT tablespace to 200MB. Because the file system (/u02) containing the
datafile for the XPORT tablespace is now at capacity, you will have to turn off AUTOEXTEND on
the existing datafile and then create a new datafile on a different file system. In Figure 4-6, you
turn off AUTOEXTEND for the existing datafile by unchecking the check box in the Storage
section. Here is the SQL command that is executed for this operation when you click Continue
and then Apply:

ALTER DATABASE
 DATAFILE '/u02/oradata/xport.dbf'
 AUTOEXTEND OFF;

On the Tablespaces page in earlier Figure 4-1, select the radio button next to the XPORT
tablespace, and click on the Edit button. You will see the page in Figure 4-7.

Click the Add button in Figure 4-7 and you will see the page in Figure 4-8.

FIGURE 4-5 Datafile resizing results

Chapter 4: Physical Database Layouts and Storage Management 83

FIGURE 4-6 Editing a tablespace’s datafile characteristics

FIGURE 4-7 Editing the XPORT tablespace

84 Oracle Database 11g DBA Handbook

On the page in Figure 4-8, specify the filename and directory location for the new datafile.
Because you know that the /u04 file system has at least 100MB free, you specify /u04/oradata as
the directory and xport2.dbf as the filename, although the filename itself need not contain the
tablespace name. In addition, you set the file size to 100MB and do not click the check box for
AUTOEXTEND.

After clicking Continue and then Apply, you see the Update Message and the new size of the
XPORT tablespace’s datafiles, as shown in Figure 4-9.

Dropping a Datafile from a Tablespace
In previous versions of Oracle, dropping a datafile from a tablespace was problematic; there was
not a single command you could issue to drop a datafile unless you dropped the entire tablespace.
You only had three alternatives:

Live with it.

Shrink it and turn off AUTOEXTEND.

Create a new tablespace, move all the objects to the new tablespace, and drop the
original tablespace.

■

■

■

FIGURE 4-8 Adding a datafile to the XPORT tablespace

Chapter 4: Physical Database Layouts and Storage Management 85

Although creating a new tablespace was the most ideal from a maintenance and metadata
point of view, performing the steps involved was error-prone and involved some amount of
downtime for the tablespace, impacting availability.

Using EM Database Control, you can drop a datafile and minimize downtime, and let EM
Database Control generate the scripts for you. Following our previous example when we
expanded the XPORT tablespace by adding a datafile, I’ll step through an example of how you
can remove the datafile by reorganizing the tablespace. On the Tablespace page, select the
tablespace to be reorganized (XPORT in this case), choose Reorganize in the Actions drop-down
box, and then click Go, as shown in Figure 4-10.

In Figure 4-11, on the Reorganize Objects page, you confirm that you are reorganizing the
XPORT tablespace and then click Next.

FIGURE 4-9 Viewing XPORT tablespace after adding a datafile

86 Oracle Database 11g DBA Handbook

FIGURE 4-10 Tablespace: Reorganize

FIGURE 4-11 Reorganize Objects: Objects

Chapter 4: Physical Database Layouts and Storage Management 87

The next page, as you can see in Figure 4-12, is where you set some of the parameters for the
reorganization, such as whether speed of the reorganization or the availability of the tablespace
is more important for this reorganization. In addition, you can leverage the tablespace rename
feature instead of using a scratch tablespace for a working area, potentially saving disk space
or the amount of time it will take for the reorganization. Other parameters on this page include
specifying parallel execution, index rebuilds without logging, and what level of statistics gathering
is required after the reorganization is complete.

Figure 4-13 shows the status of the script creation. The time it takes to generate the script is
roughly proportional to the number of objects in the tablespace.

A summary screen is presented with any warnings or errors encountered during script
generation, as you can see in Figure 4-14 on the Impact Report.

FIGURE 4-12 Reorganize Objects: Options

88 Oracle Database 11g DBA Handbook

FIGURE 4-13 Processing: Generating Reorganization Script

FIGURE 4-14 Reorganize Objects: Impact Report

After clicking Next, you see the Schedule page, as shown in Figure 4-15. In this scenario, go
ahead and specify host credentials for the server, but we will not submit the job at the end of the
wizard because we need to make one edit to the script.

Clicking Next, we arrive at the Review page in Figure 4-16. An excerpt of the generated script
is presented in the text box. Instead of submitting the job, you will click Save Full Script to make
one minor change to the script before you run it.

In Figure 4-17, you specify the location where you want to save the script.

Chapter 4: Physical Database Layouts and Storage Management 89

FIGURE 4-15 Reorganize Objects: Schedule

FIGURE 4-16 Reorganize Objects: Review

90 Oracle Database 11g DBA Handbook

When you edit the full script, locate the execute immediate command where the tablespace
is created:

EXECUTE IMMEDIATE 'CREATE SMALLFILE TABLESPACE "XPORT_REORG0"
 DATAFILE '/u02/oradata/xport_reorg0.dbf' SIZE 200M REUSE,

''/u04/oradata/xport2_reorg0.dbf'' SIZE 100M REUSE
 LOGGING EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO';

Because we want to drop a datafile, we want to remove the highlighted datafile clause in the
script and then either change the location of the second datafile or re-create the first datafile with
a larger size. In this example, you modify the create tablespace command to not only create the
new tablespace with a larger size, but also place the new tablespace on a different disk volume:

EXECUTE IMMEDIATE 'CREATE SMALLFILE TABLESPACE "XPORT_REORG0"
DATAFILE ''/u04/oradata/xport.dbf''

 SIZE 300M REUSE
 LOGGING EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO';

Once the script has been edited, run the script in SQL*Plus using an account with DBA
privileges. The output of the script looks like this:

SQL> @reorg1.sql
-- Target database: dw.world
-- Script generated at: 08-JUL-2007 23:38
Starting reorganization
Executing as user: RJB
CREATE SMALLFILE TABLESPACE "XPORT_REORG0" DATAFILE
'/u04/oradata/xport_reorg0.dbf' SIZE 300M REUSE LOGGING EXTENT MANAGEMENT
LOCAL SEGMENT SPACE MANAGEMENT AUTO

FIGURE 4-17 Review: Save Full Script

Chapter 4: Physical Database Layouts and Storage Management 91

ALTER TABLE "SYS"."OBJ_FILL" MOVE TABLESPACE "XPORT_REORG0"
DROP TABLESPACE "XPORT" INCLUDING CONTENTS AND DATAFILES CASCADE CONSTRAINTS
ALTER TABLESPACE "XPORT_REORG0" RENAME TO "XPORT"
Completed Reorganization. Starting cleanup phase.
Starting cleanup of recovery tables
Completed cleanup of recovery tables
Starting cleanup of generated procedures
Completed cleanup of generated procedures
Script execution complete
SQL>

You can avoid using reorganization scripts in many cases if you use bigfile tablespaces
because they consist of only one datafile. We will discuss bigfile tablespace reorganization
in the next section.

Resizing a Bigfile Tablespace Using ALTER TABLESPACE
A bigfile tablespace consists of one and only one datafile. Although you will learn more about
bigfile tablespaces in Chapter 6, we will present a few details about how a bigfile tablespace can
be resized. Most of the parameters available for changing the characteristics of a tablespace’s
datafile—such as the maximum size, whether it can extend at all, and the size of the extents—are
now modifiable at the tablespace level. Let’s start with a bigfile tablespace created as follows:

create bigfile tablespace dmarts
 datafile '/u05/oradata/dmarts.dbf' size 750m
 autoextend on next 100m maxsize unlimited
 extent management local
 segment space management auto;

Operations that are valid only at the datafile level with smallfile tablespaces can be used with
bigfile tablespaces at the tablespace level:

SQL> alter tablespace dmarts resize 1g;
Tablespace altered.

Although using alter database with the datafile specification for the DMARTS tablespace will
work, the advantage of the alter tablespace syntax is obvious: You don’t have to or need to know
where the datafile is stored. As you might suspect, trying to change datafile parameters at the
tablespace level with smallfile tablespaces is not allowed:

SQL> alter tablespace users resize 500m;
alter tablespace users resize 500m
*
ERROR at line 1:
ORA-32773: operation not supported for smallfile tablespace USERS

If a bigfile tablespace runs out of space because its single datafile cannot extend on the disk,
you need to relocate the datafile to another volume, as we will discuss in the next section,
“Moving Datafiles.” Using Automatic Storage Management (ASM), presented later in this chapter,
can potentially eliminate the need to manually move datafiles at all: Instead of moving the
datafile, you can add another disk volume to the ASM storage group.

92 Oracle Database 11g DBA Handbook

Moving Datafiles
To better manage the size of a datafile or improve the overall I/O performance of the database, it
may be necessary to move one or more datafiles in a tablespace to a different location. There are
three methods for relocating the datafiles: using alter database, using alter tablespace, and via
EM Database Control, although EM Database Control does not provide all the commands
necessary to relocate the datafile.

The alter tablespace method works for datafiles in all tablespaces except for SYSTEM, SYSAUX,
the online undo tablespace, and the temporary tablespace. The alter database method works for
datafiles in all tablespaces because the instance is shut down when the move operation occurs.

Moving Datafiles with ALTER DATABASE
The steps for moving one or more datafiles with alter database are as follows:

 1. Connect to the database as SYSDBA and shut down the instance.

 2. Use operating system commands to move the datafile(s).

 3. Open the database in MOUNT mode.

 4. Use alter database to change the references to the datafile in the database.

 5. Open the database in OPEN mode.

 6. Perform an incremental or full backup of the database that includes the control file.

In the following example, we will show you how to move the datafile of the XPORT
tablespace from the file system /u04 to the file system /u06. First, you connect to the database
with SYSDBA privileges using the following command:

sqlplus / as sysdba

Next, you use a query against the dynamic performance views V$DATAFILE and
V$TABLESPACE to confirm the names of the datafiles in the XPORT tablespace:

SQL> select d.name from
 2 v$datafile d join v$tablespace t using(ts#)
 3 where t.name = 'XPORT';

NAME

/u04/oradata/xport.dbf

1 row selected.

SQL>

To complete step 1, shut down the database:

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

Chapter 4: Physical Database Layouts and Storage Management 93

For step 2, you stay in SQL*Plus and use the “!” escape character to execute the operating
system command to move the datafile:

SQL> ! mv /u04/oradata/xport.dbf /u06/oradata

In step 3, you start up the database in MOUNT mode so that the control file is available
without opening the datafiles:

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.

For step 4, you change the pathname reference in the control file to point to the new location
of the datafile:

SQL> alter database rename file
 2 '/u04/oradata/xport.dbf' to
 3 '/u06/oradata/xport.dbf';
Database altered.

In step 5, you open the database to make it available to users:

SQL> alter database open;
Database altered.

Finally, in step 6, you can make a backup copy of the updated control file:

SQL> alter database backup controlfile to trace;
Database altered.
SQL>

Alternatively, you can use RMAN to perform an incremental backup that includes a backup of
the control file.

Moving Datafiles with ALTER TABLESPACE
If the datafile you want to move is part of a tablespace other than SYSTEM, SYSAUX, the active
undo tablespace, or the temporary tablespace, then it is preferable to use the alter tablespace
method to move a tablespace for one primary reason: The database, except for the tablespace
whose datafile will be moved, remains available to all users during the entire operation.

The steps for moving one or more datafiles with alter tablespace are as follows:

 1. Using an account with the ALTER TABLESPACE privilege, take the tablespace offline.

 2. Use operating system commands to move the datafile(s).

 3. Use alter tablespace to change the references to the datafile in the database.

 4. Bring the tablespace back online.

94 Oracle Database 11g DBA Handbook

In the alter database example, assume that you moved the datafile for the XPORT tablespace
to the wrong file system. In this example, you’ll move it from /u06/oradata to /u05/oradata:

SQL> alter tablespace xport offline;
Tablespace altered.

SQL> ! mv /u06/oradata/xport.dbf /u05/oradata/xport.dbf

SQL> alter tablespace xport rename datafile
 2 '/u06/oradata/xport.dbf' to '/u05/oradata/xport.dbf';
Tablespace altered.

SQL> alter tablespace xport online;
Tablespace altered.

Note how this method is much more straightforward and much less disruptive than the alter
database method. The only downtime for the XPORT tablespace is the amount of time it takes to
move the datafile from one disk volume to another.

Moving Datafiles with EM Database Control
In release 1 of Oracle Database 11g, EM Database Control does not have an explicit function for
moving a datafile, short of performing a tablespace reorganization, as demonstrated earlier in the
chapter. For moving a datafile to another volume, this is overkill.

Moving Online Redo Log Files
Although it is possible to indirectly move online redo log files by dropping entire redo log groups
and re-adding the groups in a different location, this solution will not work if there are only two
redo log file groups because a database will not open with only one redo log file group. Temporarily
adding a third group and dropping the first or second group is an option if the database must be
kept open; alternatively, the method shown here will move the redo log file(s) while the database
is shut down.

In the following example, we have three redo log file groups with two members each. One
member of each group is on the same volume as the Oracle software and should be moved to
a different volume to eliminate any contention between log file filling and accessing Oracle
software components. The method you will use here is very similar to the method used to move
datafiles with the alter database method.

SQL> select group#, member from v$logfile
 2 order by group#, member;

 GROUP# MEMBER
---------- --
 1 /u01/app/oracle/oradata/redo01.log
 1 /u05/oradata/redo01.log
 2 /u01/app/oracle/oradata/redo02.log
 2 /u05/oradata/redo02.log
 3 /u01/app/oracle/oradata/redo03.log
 3 /u05/oradata/redo03.log
6 rows selected.

Chapter 4: Physical Database Layouts and Storage Management 95

SQL> shutdown immediate;
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> ! mv /u01/app/oracle/oradata/redo0[1-3].log /u04/oradata

SQL> startup mount
ORACLE instance started.

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.

SQL> alter database rename file '/u01/app/oracle/oradata/redo01.log'
2 to '/u04/oradata/redo01.log';

Database altered.

SQL> alter database rename file '/u01/app/oracle/oradata/redo02.log'
2 to '/u04/oradata/redo02.log';

Database altered.

SQL> alter database rename file '/u01/app/oracle/oradata/redo03.log'
2 to '/u04/oradata/redo03.log';

Database altered.

SQL> alter database open;
Database altered.

SQL> select group#, member from v$logfile
 2 order by group#, member;

 GROUP# MEMBER
---------- --
 1 /u04/oradata/redo01.log
 1 /u05/oradata/redo01.log
 2 /u04/oradata/redo02.log
 2 /u05/oradata/redo02.log
 3 /u04/oradata/redo03.log
 3 /u05/oradata/redo03.log

6 rows selected.

SQL>

The I/O for the redo log files no longer contends with the Oracle software; in addition, the
redo log files are multiplexed between two different mount points, /u04 and /u05.

96 Oracle Database 11g DBA Handbook

Moving Control Files
Moving a control file when you use an initialization parameter file follows a procedure similar
to the one you used for datafiles and redo log files: Shut down the instance, move the file with
operating system commands, and restart the instance.

When you use a server parameter file (SPFILE), however, the procedure is a bit different. The
initialization file parameter CONTROL_FILES is changed using alter system … scope=spfile when
either the instance is running or it’s shut down and opened in NOMOUNT mode. Because the
CONTROL_FILES parameter is not dynamic, the instance must be shut down and restarted in
either case.

In this example, you discover that you have three copies of the control file in your database,
but they are not multiplexed on different disks. You will edit the SPFILE with the new locations,
shut down the instance so that you can move the control files to different disks, and then restart
the instance.

SQL> select name, value from v$spparameter
 2 where name = 'control_files';

NAME VALUE
--------------- --
control_files /u01/app/oracle/oradata/control01.ctl
control_files /u01/app/oracle/oradata/control02.ctl
control_files /u01/app/oracle/oradata/control03.ctl

SQL> show parameter control_files

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u01/app/oracle/oradata/contro
 l01.ctl, /u01/app/orac le/orad
 ata/control02.ctl, /u01/app/or
 acle/oradata/control03.ctl

SQL> alter system set control_files =
 2 '/u02/oradata/control01.ctl',
 3 '/u03/oradata/control02.ctl',
 4 '/u04/oradata/control03.ctl'

5 scope = spfile;

System altered.

SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL> ! mv /u01/app/oracle/oradata/control01.ctl /u02/oradata
SQL> ! mv /u01/app/oracle/oradata/control02.ctl /u03/oradata
SQL> ! mv /u01/app/oracle/oradata/control03.ctl /u04/oradata

SQL> startup
ORACLE instance started.

Chapter 4: Physical Database Layouts and Storage Management 97

Total System Global Area 422670336 bytes
Fixed Size 1299112 bytes
Variable Size 230690136 bytes
Database Buffers 184549376 bytes
Redo Buffers 6131712 bytes
Database mounted.
Database opened.
SQL> select name, value from v$spparameter
 2 where name = 'control_files';

NAME VALUE
--------------- --
control_files /u02/oradata/control01.ctl
control_files /u03/oradata/control02.ctl
control_files /u04/oradata/control03.ctl

SQL> show parameter control_files

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u02/oradata/control01.ctl, /u
 03/oradata/control02.ctl, /u04
 /oradata/control03.ctl
SQL>

The three control files have been moved to separate file systems, no longer on the volume
with the Oracle software and in a higher availability configuration (if the volume containing one
of the control files fails, two other volumes contain up-to-date control files).

NOTE
In a default installation of Oracle Database 11g using ASM disks for
tablespace storage and the flash recovery area, one copy of the control
file is created in the default tablespace ASM disk and another in the
flash recovery area.

Making one or more copies of the control file to an ASM volume is just as easy: using the
RMAN utility (described in detail in Chapter 12), restore a control file backup to an ASM disk
location, as in this example:

RMAN> restore controlfile to
 '+DATA/dw/controlfile/control_bak.ctl';

The next step is identical to adding file system–based control files as I presented earlier in
this section: change the CONTROL_FILES parameter to add the location +DATA/dw/controlfile/
control_bak.ctl in addition to the existing control file locations, and then shut down and restart
the database.

SQL> show parameter control_files

NAME TYPE VALUE
---------------- ----------- ------------------------------
control_files string /u02/oradata/control01.ctl, /u
 03/oradata/control02.ctl, /u04

98 Oracle Database 11g DBA Handbook

 /oradata/control03.ctl, +DATA/
 dw/controlfile/control_bak.ctl
SQL>

Similarly, you can use the Linux utility asmcmd to make copies of the control file from one
disk group to another, and change the CONTROL_FILES parameter to reflect the new control file
location. I present an overview of the asmcmd command later in this chapter.

Automatic Storage Management
In Chapter 3, we presented some of the file naming conventions used for ASM objects. In this
section, I’ll delve more deeply into how we can create tablespaces—and ultimately datafiles
behind the scenes—in an ASM environment with one or more disk groups.

When creating a new tablespace or other database structure, such as a control file or redo
log file, you can specify a disk group as the storage area for the database structure instead of an
operating system file. ASM takes the ease of use of Oracle-Managed Files (OMF) and combines
it with mirroring and striping features to provide a robust file system and logical volume manager
that can even support multiple nodes in an Oracle Real Application Cluster (RAC). ASM eliminates
the need to purchase a third-party logical volume manager.

ASM not only enhances performance by automatically spreading out database objects over
multiple devices, but also increases availability by allowing new disk devices to be added to the
database without shutting down the database; ASM automatically rebalances the distribution of
files with minimal intervention.

We’ll also review the ASM architecture. In addition, I’ll show how you create a special type of
Oracle instance to support ASM as well as how to start up and shut down an ASM instance. We’ll
review the new initialization parameters related to ASM and the existing initialization parameters
that have new values to support an ASM instance. Also, I’ll introduce the asmcmd command-line
utility, new to Oracle 10g Release 2, that gives you an alternate way to browse and maintain objects
in your ASM disk groups. Finally, I’ll use some raw disk devices on a Linux server to demonstrate
how disk groups are created and maintained.

ASM Architecture
ASM divides the datafiles and other database structures into extents, and it divides the extents among
all the disks in the disk group to enhance both performance and reliability. Instead of mirroring
entire disk volumes, ASM mirrors the database objects to provide the flexibility to mirror or stripe
the database objects differently depending on their type. Optionally, the objects may not be striped
at all if the underlying disk hardware is already RAID enabled, part of a storage area network (SAN),
or part of a network-attached storage (NAS) device.

Automatic rebalancing is another key feature of ASM. When an increase in disk space is
needed, additional disk devices can be added to a disk group, and ASM moves a proportional
number of files from one or more existing disks to the new disks to maintain the overall I/O
balance across all disks. This happens in the background while the database objects contained
in the disk files are still online and available to users. If the impact to the I/O subsystem is high
during a rebalance operation, the speed at which the rebalance occurs can be reduced using an
initialization parameter.

Chapter 4: Physical Database Layouts and Storage Management 99

ASM requires a special type of Oracle instance to provide the interface between a traditional
Oracle instance and the file system; the ASM software components are shipped with the Oracle
database software and are always available as a selection when you’re selecting the storage type
for the SYSTEM, SYSAUX, and other tablespaces when the database is created.

Using ASM does not, however, prevent you from mixing ASM disk groups with manual Oracle
datafile management techniques such as those I presented in Chapter 3 and earlier in this chapter.
However, the ease of use and performance of ASM makes a strong case for eventually using ASM
disk groups for all your storage needs.

Two Oracle background processes introduced in Oracle Database 10g support ASM instances:
RBAL and ORBn. RBAL coordinates the disk activity for disk groups, whereas ORBn, where n can
be a number from 0 to 9, performs the actual extent movement between disks in the disk groups.

For databases that use ASM disks, there are also two new background processes as of Oracle
Database 10g: OSMB and RBAL. OSMB performs the communication between the database and
the ASM instance, whereas RBAL performs the opening and closing of the disks in the disk group
on behalf of the database.

Creating an ASM Instance
ASM requires a dedicated Oracle instance to manage the disk groups. An ASM instance generally
has a smaller memory footprint, in the range of 60MB to 120MB, and is automatically configured
when ASM is specified as the database’s file storage option when the Oracle software is installed
and an existing ASM instance does not already exist, as you can see in the Oracle Universal
Installer screen in Figure 4-18.

FIGURE 4-18 Specifying ASM as the database file storage method

100 Oracle Database 11g DBA Handbook

As an example of disk devices used to create ASM disk groups, suppose our Linux server has
a number of raw disk devices with the capacities listed in Table 4-2.

You configure the first disk group within the Oracle Universal Installer, as shown in Figure 4-19.

Device Name Capacity

/dev/raw/raw1 12GB

/dev/raw/raw2 12GB

/dev/raw/raw3 12GB

/dev/raw/raw4 12GB

/dev/raw/raw5 4GB

/dev/raw/raw6 4GB

/dev/raw/raw7 4GB

/dev/raw/raw8 4GB

TABLE 4-2 Raw Disks for ASM Disk Groups

FIGURE 4-19 Configuring the initial ASM disk group with OUI

Chapter 4: Physical Database Layouts and Storage Management 101

The name of the first disk group is DATA, and you will be using /dev/raw/raw1 and /dev/raw/
raw2 to create the normal redundancy disk group. If an insufficient number of raw disks are
selected for the desired redundancy level, OUI generates an error message. After the database
is created, both the regular instance and the ASM instance are started.

An ASM instance has a few other unique characteristics. Although it does have an initialization
parameter file and a password file, it has no data dictionary, and therefore all connections to an
ASM instance are via SYS and SYSTEM using operating system authentication only; you can only
connect to an ASM instance with the connect / as sysdba command; any username/password in
the connect command is ignored. Disk group commands such as create diskgroup, alter diskgroup,
and drop diskgroup are only valid in an ASM instance. Finally, an ASM instance is either in a
NOMOUNT or MOUNT state; it is never in an OPEN state.

ASM Instance Components
ASM instances cannot be accessed using the variety of methods available with a traditional
database. In this section, I’ll talk about the privileges available to you that connect with SYSDBA
and SYSOPER privileges. We’ll also distinguish an ASM instance by the new and expanded
initialization parameters (introduced in Oracle Database 10g and enhanced in Oracle Database
11g) available only for an ASM instance. At the end of this section, I’ll present the procedures for
starting and stopping an ASM instance along with the dependencies between ASM instances and
the database instances they serve.

Accessing an ASM Instance
As mentioned earlier in the chapter, an ASM instance does not have a data dictionary, so access
to the instance is restricted to users who can authenticate with the operating system—in other
words, connecting as SYSDBA or SYSOPER by an operating system user in the dba group.

Users who connect to an ASM instance as SYSDBA can perform all ASM operations, such as
creating and deleting disk groups as well as adding and removing disks from disk groups.

The SYSOPER users have a much more limited set of commands available in an ASM instance.
In general, the commands available to SYSOPER users give only enough privileges to perform
routine operations for an already configured and stable ASM instance. The following list contains
the operations available as SYSOPER:

Starting up and shutting down an ASM instance

Mounting or dismounting a disk group

Altering a disk group’s disk status from ONLINE to OFFLINE, or vice versa

Rebalancing a disk group

Performing an integrity check of a disk group

Accessing the V$ASM_* dynamic performance views

ASM Initialization Parameters
A number of initialization parameters are either specific to ASM instances or have new values
within an ASM instance. An SPFILE is highly recommended instead of an initialization parameter
file for an ASM instance. For example, parameters such as ASM_DISKGROUPS will automatically
be maintained when a disk group is added or dropped, potentially freeing you from ever having
to manually change this value.

We will present the ASM-related initialization parameters in the following sections.

■

■

■

■

■

■

102 Oracle Database 11g DBA Handbook

INSTANCE_TYPE For an ASM instance, the INSTANCE_TYPE parameter has a value of ASM. The
default, for a traditional Oracle instance, is RDBMS.

DB_UNIQUE_NAME The default value for the DB_UNIQUE_NAME parameter is +ASM and is the
unique name for a group of ASM instances within a cluster or on a single node.

ASM_POWER_LIMIT To ensure that rebalancing operations do not interfere with ongoing user I/
O, the ASM_POWER_LIMIT parameter controls how fast rebalance operations occur. The values
range from 1 to 11, with 11 being the highest possible value; the default value is 1 (low I/O
overhead). Because this is a dynamic parameter, you may set this to a low value during the day
and set it higher overnight whenever a disk-rebalancing operation must occur.

ASM_DISKSTRING The ASM_DISKSTRING parameter specifies one or more strings, operating
system dependent, to limit the disk devices that can be used to create disk groups. If this value is
NULL, all disks visible to the ASM instance are potential candidates for creating disk groups. For
the examples in this chapter for our test server, the value of the ASM_DISKSTRING parameter is /
dev/raw/*:

SQL> select name, type, value from v$parameter
 2 where name = 'asm_diskstring';

NAME TYPE VALUE
--------------- ---------- -------------------------
asm_diskstring 2 /dev/raw/*

ASM_DISKGROUPS The ASM_DISKGROUPS parameter specifies a list containing the names
of the disk groups to be automatically mounted by the ASM instance at startup or by the alter
diskgroup all mount command. Even if this list is empty at instance startup, any existing disk
group can be manually mounted.

LARGE_POOL_SIZE The LARGE_POOL_SIZE parameter is useful for both regular and ASM
instances; however, this pool is used differently for an ASM instance. All internal ASM packages
are executed from this pool, so this parameter should be set to at least 12MB for a single instance
and 16MB for a RAC instance.

ASM_PREFERRED_READ_FAILURE_GROUPS The ASM_PREFERRED_READ_FAILURE_GROUPS
parameter, new to Oracle Database 11g, contains a list of the preferred failure groups for a given
database instance when using clustered ASM instances. This parameter is instance specific: each
instance can specify a failure group that is closest to the instance’s node (for example, a failure
group on the server’s local disk) to improve performance.

ASM Instance Startup and Shutdown
An ASM instance is started much like a database instance, except that the startup command
defaults to startup mount. Because there is no control file, database, or data dictionary to mount,
the ASM disk groups are mounted instead of a database. The command startup nomount starts
up the instance but does not mount any ASM disks. In addition, you can specify startup restrict to
temporarily prevent database instances from connecting to the ASM instance to mount disk groups.

Performing a shutdown command on an ASM instance performs the same shutdown command
on any database instances using the ASM instance; before the ASM instance finishes a shutdown,
it waits for all dependent databases to shut down. The only exception to this is if you use the

Chapter 4: Physical Database Layouts and Storage Management 103

shutdown abort command on the ASM instance, which eventually forces all dependent databases
to perform a shutdown abort.

For multiple ASM instances sharing disk groups, such as in a Real Application Clusters (RAC)
environment, the failure of an ASM instance does not cause the database instances to fail. Instead,
another ASM instance performs a recovery operation for the failed instance.

ASM Dynamic Performance Views
A few new dynamic performance views are associated with ASM instances. Table 4-3 contains
the common ASM-related dynamic performance views. We’ll provide further explanation, where
appropriate, later in this chapter for some of these views.

ASM Filename Formats
All ASM files are Oracle-Managed Files (OMF), so the details of the actual filename within the
disk group is not needed for most administrative functions. When an object in an ASM disk group
is dropped, the file is automatically deleted. Certain commands will expose the actual filenames,
such as alter database backup controlfile to trace, as well as some data dictionary and dynamic

View Name Used in Standard
Database?

Description

V$ASM_DISK Yes One row for each disk discovered by an ASM
instance, used by a disk group or not. For
a database instance, one row for each disk
group in use by the instance.

V$ASM_DISKGROUP Yes For an ASM instance, one row for each disk
group containing general characteristics of the
disk group.
For a database instance, one row for each disk
group in use whether mounted or not.

V$ASM_FILE No One row for each file in every mounted disk
group.

V$ASM_OPERATION No One row for each executing long-running
operation in the ASM instance.

V$ASM_TEMPLATE Yes One row for each template in each mounted
disk group in the ASM instance. For a database
instance, one row for each template for each
mounted disk group.

V$ASM_CLIENT Yes One row for each database using disk groups
managed by the ASM instance. For a database
instance, one row for the ASM instance if any
ASM files are open.

V$ASM_ALIAS No One row for every alias in every mounted disk
group.

TABLE 4-3 ASM-Related Dynamic Performance Views

104 Oracle Database 11g DBA Handbook

performance views. For example, the dynamic performance view V$DATAFILE shows the actual
filenames within each disk group. Here is an example:

SQL> select file#, name, blocks from v$datafile;

 FILE# NAME BLOCKS
---------- -- ----------
 1 +DATA/dw/datafile/system.256.627432971 89600
 2 +DATA/dw/datafile/sysaux.257.627432973 77640
 3 +DATA/dw/datafile/undotbs1.258.627432975 12800
 4 +DATA/dw/datafile/users.259.627432977 640
 5 +DATA/dw/datafile/example.265.627433157 12800
 6 /u05/oradata/dmarts.dbf 32000
 8 /u05/oradata/xport.dbf 38400

7 rows selected.

ASM filenames can be one of six different formats. In the sections that follow, I’ll give an
overview of the different formats and the context where they can be used—either as a reference
to an existing file, during a single-file creation operation, or during a multiple-file creation
operation.

Fully Qualified Names
Fully qualified ASM filenames are used only when referencing an existing file. A fully qualified
ASM filename has the format

+group/dbname/file type/tag.file.incarnation

where group is the disk group name, dbname is the database to which the file belongs, file type is
the Oracle file type, tag is information specific to the file type, and the file.incarnation pair ensures
uniqueness. Here is an example of an ASM file for the USERS tablespace:

+DATA/dw/datafile/users.259.627432977

The disk group name is +DATA, the database name is dw, it’s a datafile for the USERS
tablespace, and the file number/incarnation pair 259.627432977 ensures uniqueness if you
decide to create another ASM datafile for the USERS tablespace.

Numeric Names
Numeric names are used only when referencing an existing ASM file. This allows you to refer
to an existing ASM file by only the disk group name and the file number/incarnation pair. The
numeric name for the ASM file in the preceding section is

+DATA.259.627432977

Alias Names
An alias can be used when either referencing an existing object or creating a single ASM file.
Using the alter diskgroup add alias command, a more readable name can be created for an
existing or a new ASM file, and it’s distinguishable from a regular ASM filename because it
does not end in a dotted pair of numbers (the file number/incarnation pair), as shown here:

Chapter 4: Physical Database Layouts and Storage Management 105

SQL> alter diskgroup data
 2 add directory '+data/purch';
Diskgroup altered.

SQL> alter diskgroup data
 2 add alias '+data/purch/users.dbf'

3 for '+data/dw/datafile/users.259.627432977';
Diskgroup altered.

SQL>

Alias with Template Names
An alias with a template can only be used when creating a new ASM file. Templates provide a
shorthand for specifying a file type and a tag when creating a new ASM file. Here’s an example
of an alias using a template for a new tablespace in the +DATA disk group:

SQL> create tablespace users2 datafile '+data(datafile)';
Tablespace created.

The template datafile specifies COARSE striping, MIRROR for a normal-redundancy group,
and HIGH for a high-redundancy group; it is the default for a datafile. Because we did not fully
qualify the name, the ASM name for this diskgroup is as follows:

+DATA/dw/datafile/users2.267.627782171

I’ll talk more about ASM templates in the section “ASM File Types and Templates” later in this
chapter.

Incomplete Names
An incomplete filename format can be used either for single-file or multiple-file creation operations.
Only the disk group name is specified, and a default template is used depending on the type of
file, as shown here:

SQL> create tablespace users5 datafile '+data1';
Tablespace created.

Incomplete Names with Template
As with incomplete ASM filenames, an incomplete filename with a template can be used either
for single-file or multiple-file creation operations. Regardless of the actual file type, the template
name determines the characteristics of the file.

Even though we are creating a tablespace in the following example, the striping and mirroring
characteristics of an online log file (fine striping) are used for the new tablespace instead as the
attributes for the datafile (coarse striping):

SQL> create tablespace users6 datafile '+data1(onlinelog)';
Tablespace created.

ASM File Types and Templates
ASM supports all types of files used by the database except for operating system executables.
Table 4-4 contains the complete list of ASM file types; the ASM File Type and Tag columns are
those presented previously for ASM filenaming conventions.

106 Oracle Database 11g DBA Handbook

Oracle File Type ASM File
Type

Tag Default Template

Control files controlfile cf (control file)
or bcf (backup
control file)

CONTROLFILE

Data files datafile tablespace
name.file#

DATAFILE

Online logs online_log log_thread# ONLINELOG

Archive logs archive_log parameter ARCHIVELOG

Temp files temp tablespace
name.file#

TEMPFILE

RMAN datafile
backup piece

backupset Client specified BACKUPSET

RMAN incremental
backup piece

backupset Client specified BACKUPSET

RMAN archive log
backup piece

backupset Client specified BACKUPSET

RMAN datafile copy datafile tablespace
name.file#

DATAFILE

Initialization
parameters

init spfile PARAMETERFILE

Broker config drc drc DATAGUARDCONFIG

Flashback logs rlog thread#_log# FLASHBACK

Change tracking
bitmap

ctb bitmap CHANGETRACKING

Auto backup autobackup Client specified AUTOBACKUP

Data Pump dumpset dumpset dump DUMPSET

Cross-platform data
files

XTRANSPORT

TABLE 4-4 ASM File Types

The default ASM file templates referenced in the last column of Table 4-4 are presented in
Table 4-5.

When a new disk group is created, a set of ASM file templates copied from the default
templates in Table 4-5 is saved with the disk group; as a result, individual template characteristics
can be changed and apply only to the disk group where they reside. In other words, the DATAFILE
system template in disk group +DATA1 may have the default coarse striping, but the DATAFILE
template in disk group +DATA2 may have fine striping. You can create your own templates in
each disk group as needed.

When an ASM datafile is created with the DATAFILE template, by default the datafile is
100MB and autoextensible, and the maximum size is 32767MB (32GB).

Chapter 4: Physical Database Layouts and Storage Management 107

Administering ASM Disk Groups
Using ASM disk groups benefits you in a number of ways: I/O performance is improved, availability
is increased, and the ease with which you can add a disk to a disk group or add an entirely new
disk group enables you to manage many more databases in the same amount of time. Understanding
the components of a disk group as well as correctly configuring a disk group are important goals
for a successful DBA.

In this section, I’ll delve more deeply into the details of the structure of a disk group. Also, I’ll
review the different types of administrative tasks related to disk groups and show how disks are
assigned to failure groups, how disk groups are mirrored, and how disk groups are created,
dropped, and altered. I’ll also briefly review the EM Database Control interface to ASM; at the
command line, I’ll also give you an introduction to the asmcmd command-line utility that you
can use to browse, copy, and manage ASM objects.

Disk Group Architecture
As defined earlier in this chapter, a disk group is a collection of physical disks managed as a unit.
Every ASM disk, as part of a disk group, has an ASM disk name that is either assigned by the DBA
or automatically assigned when it is assigned to the disk group.

Files in a disk group are striped on the disks using either coarse striping or fine striping. Coarse
striping spreads files in units of 1MB each across all disks. Coarse striping is appropriate for a
system with a high degree of concurrent small I/O requests, such as an OLTP environment.
Alternatively, fine striping spreads files in units of 128KB, is appropriate for traditional data
warehouse environments or OLTP systems with low concurrency, and maximizes response
time for individual I/O requests.

System Template External
Redundancy

Normal Redundancy High Redundancy Striping

CONTROLFILE Unprotected Two-way mirroring Three-way mirroring Fine

DATAFILE Unprotected Two-way mirroring Three-way mirroring Coarse

ONLINELOG Unprotected Two-way mirroring Three-way mirroring Fine

ARCHIVELOG Unprotected Two-way mirroring Three-way mirroring Coarse

TEMPFILE Unprotected Two-way mirroring Three-way mirroring Coarse

BACKUPSET Unprotected Two-way mirroring Three-way mirroring Coarse

XTRANSPORT Unprotected Two-way mirroring Three-way mirroring Coarse

PARAMETERFILE Unprotected Two-way mirroring Three-way mirroring Coarse

DATAGUARDCONFIG Unprotected Two-way mirroring Three-way mirroring Coarse

FLASHBACK Unprotected Two-way mirroring Three-way mirroring Fine

CHANGETRACKING Unprotected Two-way mirroring Three-way mirroring Coarse

AUTOBACKUP Unprotected Two-way mirroring Three-way mirroring Coarse

DUMPSET Unprotected Two-way mirroring Three-way mirroring Coarse

TABLE 4-5 ASM File Template Defaults

108 Oracle Database 11g DBA Handbook

Disk Group Mirroring and Failure Groups
Before defining the type of mirroring within a disk group, you must group disks into failure groups.
A failure group is one or more disks within a disk group that share a common resource, such as a
disk controller, whose failure would cause the entire set of disks to be unavailable to the group. In
most cases, an ASM instance does not know the hardware and software dependencies for a given
disk. Therefore, unless you specifically assign a disk to a failure group, each disk in a disk group
is assigned to its own failure group.

Once the failure groups have been defined, you can define the mirroring for the disk group;
the number of failure groups available within a disk group can restrict the type of mirroring
available for the disk group. There are three types of mirroring available: external redundancy,
normal redundancy, and high redundancy.

External Redundancy External redundancy requires only one disk location and assumes that the
disk is not critical to the ongoing operation of the database or that the disk is managed externally
with high-availability hardware such as a RAID controller.

Normal Redundancy Normal redundancy provides two-way mirroring and requires at least two
failure groups within a disk group. Failure of one of the disks in a failure group does not cause
any downtime for the disk group or any data loss other than a slight performance hit for queries
against objects in the disk group; when all disks in the failure group are online, read performance
is typically improved because the requested data is available on more than one disk.

High Redundancy High redundancy provides three-way mirroring and requires at least three
failure groups within a disk group. The failure of disks in two out of the three failure groups is for
the most part transparent to the database users, as in normal redundancy mirroring.

Mirroring is managed at a very low level. Extents, not disks, are mirrored. In addition, each
disk will have a mixture of both primary and mirrored (secondary and tertiary) extents on each
disk. Although a slight amount of overhead is incurred for managing mirroring at the extent level,
it provides the advantage of spreading out the load from the failed disk to all other disks instead
of a single disk.

Disk Group Dynamic Rebalancing
Whenever you change the configuration of a disk group—whether you are adding or removing
a failure group or a disk within a failure group—dynamic rebalancing occurs automatically to
proportionally reallocate data from other members of the disk group to the new member of the
disk group. This rebalance occurs while the database is online and available to users; any impact
to ongoing database I/O can be controlled by adjusting the value of the initialization parameter
ASM_POWER_LIMIT to a lower value.

Not only does dynamic rebalancing free you from the tedious and often error-prone task
of identifying hot spots in a disk group, it also provides an automatic way to migrate an entire
database from a set of slower disks to a set of faster disks while the entire database remains
online. Faster disks are added as a new failure group in the existing disk group with the slower
disks and the automatic rebalance occurs. After the rebalance operations complete, the failure
groups containing the slower disks are dropped, leaving a disk group with only fast disks. To
make this operation even faster, both the add and drop operations can be initiated within the
same alter diskgroup command.

As an example, suppose you want to create a new disk group with high redundancy to hold
tablespaces for a new credit card authorization. Using the view V$ASM_DISK, you can view all

Chapter 4: Physical Database Layouts and Storage Management 109

disks discovered using the initialization parameter ASM_DISKSTRING, along with the status of
the disk (in other words, whether it is assigned to an existing disk group or is unassigned). Here
is the command:

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 0 0 /dev/raw/raw8
 0 1 /dev/raw/raw7
 0 2 /dev/raw/raw6
 0 3 /dev/raw/raw5
 2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
 2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
 1 1 DATA_0001 DATA_0001 08-JUL-07 /dev/raw/raw2
 1 0 DATA_0000 DATA_0000 08-JUL-07 /dev/raw/raw1

8 rows selected.

SQL>

Out of the eight disks available for ASM, only four of them are assigned to two disk groups,
DATA and RECOV, each in its own failure group. The disk group name can be obtained from the
view V$ASM_DISKGROUP:

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 24568 20798
 2 RECOV NORMAL 24568 24090

SQL>

Note that if you had a number of ASM disks and disk groups, you could have joined the two
views on the GROUP_NUMBER column and filtered the query result by GROUP_NUMBER. Also,
you see from V$ASM_DISKGROUP that both of the disk groups are NORMAL REDUNDANCY
groups consisting of two disks each.

Your first step is to create the disk group:

SQL> create diskgroup data2 high redundancy
 2 failgroup fg1 disk '/dev/raw/raw5' name d2a
 3 failgroup fg2 disk '/dev/raw/raw6' name d2b
 4 failgroup fg3 disk '/dev/raw/raw7' name d2c
 5 failgroup fg4 disk '/dev/raw/raw8' name d2d;

Diskgroup created.

SQL>

110 Oracle Database 11g DBA Handbook

Looking at the dynamic performance views, you see the new disk group available in V$ASM_
DISKGROUP and the failure groups in V$ASM_DISK:

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 24568 20798
 2 RECOV NORMAL 24568 24090
 3 DATA2 HIGH 16376 16221

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 3 3 D2D FG4 13-JUL-07 /dev/raw/raw8
 3 2 D2C FG3 13-JUL-07 /dev/raw/raw7
 3 1 D2B FG2 13-JUL-07 /dev/raw/raw6
 3 0 D2A FG1 13-JUL-07 /dev/raw/raw5
 2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
 2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
 1 1 DATA_0001 DATA_0001 08-JUL-07 /dev/raw/raw2
 1 0 DATA_0000 DATA_0000 08-JUL-07 /dev/raw/raw1

8 rows selected.

SQL>

However, if disk space is tight, you don’t need four members; for a high-redundancy disk
group, only three failure groups are necessary, so you drop the disk group and re-create it with
only three members:

SQL> drop diskgroup data2;

Diskgroup dropped.

If the disk group has any database objects other than disk group metadata, you have to specify
the including contents clause in the drop diskgroup command. This is an extra safeguard to make
sure that disk groups with database objects are not accidentally dropped. Here is the command:

SQL> create diskgroup data2 high redundancy
 2 failgroup fg1 disk '/dev/raw/raw5' name d2a
 3 failgroup fg2 disk '/dev/raw/raw6' name d2b
 4 failgroup fg3 disk '/dev/raw/raw7' name d2c;

Diskgroup created.

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

Chapter 4: Physical Database Layouts and Storage Management 111

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 0 3 13-JUL-07 /dev/raw/raw8
 3 2 D2C FG3 13-JUL-07 /dev/raw/raw7
 3 1 D2B FG2 13-JUL-07 /dev/raw/raw6
 3 0 D2A FG1 13-JUL-07 /dev/raw/raw5
 2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
 2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
 1 1 DATA_0001 DATA_0001 08-JUL-07 /dev/raw/raw2
 1 0 DATA_0000 DATA_0000 08-JUL-07 /dev/raw/raw1

8 rows selected.
SQL>

Now that the configuration of the new disk group has been completed, you can create a
tablespace in the new disk group from the database instance:

SQL> create tablespace users3 datafile '+DATA2';
Tablespace created.

Because ASM files are Oracle-Managed Files (OMF), you don’t need to specify any other
characteristics when you create the tablespace.

Disk Group Fast Mirror Resync
Mirroring the files in your disk groups improves performance and availability; when a failed disk
in a disk group is repaired and brought back online, however, the re-mirroring of the entire new
disk can be time consuming. There are occasions when a disk in a disk group needs be brought
offline because of a disk controller failure; the entire disk does not need remirroring, and only
the data changed during the failed disk’s downtime needs to be resynced. As a result, you can
use the ASM fast mirror resync feature introduced in Oracle Database 11g.

To implement fast mirror resync, you set the time window within which ASM will not
automatically drop the disk in the disk group when a transient planned or unplanned failure
occurs. During the transient failure, ASM keeps track of all changed data blocks so that when
the unavailable disk is brought back online, only the changed blocks need to be remirrored
instead of the entire disk.

To set a time window for the DATA disk group, you must first set the compatibility level of the
disk group to 11.1 or higher for both the RDBMS instance and the ASM instance (this only needs
to be done once for the disk group):

SQL> alter diskgroup data set attribute
 2 'compatible.asm' = '11.1.0.0.0';

Diskgroup altered.

SQL> alter diskgroup data set attribute
 2 'compatible.rdbms' = '11.1.0.0.0';

Diskgroup altered.

SQL>

112 Oracle Database 11g DBA Handbook

The only side effect to using a higher compatibility level for the RDBMS and ASM instance is
that only other instances with a version number 11.1.0.0.0 or higher can access this disk group.
Next, set the disk group attribute disk_repair_time as in this example:

SQL> alter diskgroup data set attribute
 2 'disk_repair_time' = '2.5h';

Diskgroup altered.

SQL>

The default disk repair time is 3.6 hours, which should be more than adequate for most
planned and unplanned (transient) outages. Once the disk is back online, run this command
to notify the ASM instance that the disk DATA_0001 is back online:

SQL> alter diskgroup data online disk data_0001;

Diskgroup altered.

SQL>

This command starts the background procedure to copy all changed extents on the remaining
disks in the disk group to the disk DATA_0001 that is now back online.

Altering Disk Groups
Disks can be added and dropped from a disk group; also, most characteristics of a disk group can
be altered without re-creating the disk group or impacting user transactions on objects in the disk
group.

When a disk is added to a disk group, a rebalance operation is performed in the background
after the new disk is formatted for use in the disk group. As mentioned earlier in this chapter, the
speed of the rebalance is controlled by the initialization parameter ASM_POWER_LIMIT.

Continuing with our example in the preceding section, suppose you decide to improve the
I/O characteristics of the disk group DATA by adding the last available raw disk to the disk group,
as follows:

SQL> alter diskgroup data
 2 add failgroup d1fg3 disk '/dev/raw/raw8' name d1c;

Diskgroup altered.

The command returns immediately and the formatting and rebalancing continue in the
background. You then check the status of the rebalance operation by checking the view V$ASM_
OPERATION:

SQL> select group_number, operation, state, power, actual,
 2 sofar, est_work, est_rate, est_minutes from v$asm_operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST_WORK EST_RATE EST_MINUTES
------------ ----- ---- ----- ----- ----- -------- -------- -----------
 1 REBAL RUN 1 1 3 964 60 16

Chapter 4: Physical Database Layouts and Storage Management 113

Because the estimate for completing the rebalance operation is 16 minutes, you decide to
allocate more resources to the rebalance operation and change the power limit for this particular
rebalance operation:

SQL> alter diskgroup data rebalance power 8;
Diskgroup altered.

Checking the status of the rebalance operation confirms that the estimated time to completion
has been reduced to four minutes instead of 16:

SQL> select group_number, operation, state, power, actual,
 2 sofar, est_work, est_rate, est_minutes from v$asm_operation;

GROUP_NUMBER OPERA STAT POWER ACTUA SOFAR EST_WORK EST_RATE EST_MINUTES
------------ ----- ---- ----- ----- ----- -------- -------- -----------
 1 REBAL RUN 8 8 16 605 118 4

About four minutes later, you check the status once more:

SQL> /
no rows selected

Finally, you can confirm the new disk configuration from the V$ASM_DISK and V$ASM_
DISKGROUP views:

SQL> select group_number, disk_number, name,
 2 failgroup, create_date, path from v$asm_disk;

GROUP_NUMBER DISK_NUMBER NAME FAILGROUP CREATE_DA PATH
------------ ----------- ---------- ---------- --------- ---------------
 1 2 D1C D1FG3 13-JUL-07 /dev/raw/raw8
 3 2 D2C FG3 13-JUL-07 /dev/raw/raw7
 3 1 D2B FG2 13-JUL-07 /dev/raw/raw6
 3 0 D2A FG1 13-JUL-07 /dev/raw/raw5
 2 1 RECOV_0001 RECOV_0001 08-JUL-07 /dev/raw/raw4
 2 0 RECOV_0000 RECOV_0000 08-JUL-07 /dev/raw/raw3
 1 1 DATA_0001 DATA_0001 08-JUL-07 /dev/raw/raw2
 1 0 DATA_0000 DATA_0000 08-JUL-07 /dev/raw/raw1

8 rows selected.

SQL> select group_number, name, type, total_mb, free_mb
 2 from v$asm_diskgroup;

GROUP_NUMBER NAME TYPE TOTAL_MB FREE_MB
------------ ---------- ------ ---------- ----------
 1 DATA NORMAL 28662 24814
 2 RECOV NORMAL 24568 24090
 3 DATA2 HIGH 12282 11820

SQL>

114 Oracle Database 11g DBA Handbook

Note that the disk group DATA is still normal redundancy, even though it has three failure
groups. However, the I/O performance of select statements against objects in the DATA disk group
is improved due to additional copies of extents available in the disk group.

Other disk group alter commands are listed in Table 4-6.

EM Database Control and ASM Disk Groups
The EM Database Control can also be used to administer disk groups. For a database that uses
ASM disk groups, the link Disk Groups under the Administration tab brings you to a login page for
the ASM instance shown in Figure 4-20. Remember that authentication for an ASM instance uses
operating system authentication only. Figure 4-21 shows the home page for the ASM instance.

After authentication with the ASM instance, you can perform the same operations that you
performed earlier in this chapter at the command line—mounting and dismounting disk groups,
adding disk groups, adding or deleting disk group members, and so forth. Figure 4-22 shows the ASM
administration page, whereas Figure 4-23 shows the statistics and options for the disk group DATA.

ALTER DISKGROUP Command Description

alter diskgroup ... drop disk Removes a disk from a failure group within a disk group
and performs an automatic rebalance

alter diskgroup ... drop ... add Drops a disk from a failure group and adds another disk,
all in the same command

alter diskgroup ... mount Makes a disk group available to all instances

alter diskgroup ... dismount Makes a disk group unavailable to all instances

alter diskgroup ... check all Verifies the internal consistency of the disk group

TABLE 4-6 Disk Group ALTER Commands

FIGURE 4-20 EM Database Control ASM instance login page

Chapter 4: Physical Database Layouts and Storage Management 115

FIGURE 4-21 EM Database Control ASM instance home page

FIGURE 4-22 EM Database Control ASM disk group administration page

116 Oracle Database 11g DBA Handbook

On the page in Figure 4-23 you can see that the new disk in the disk group is significantly
smaller than the other disks in the group; this may affect the performance and waste disk space
within the disk group. To remove a failure group using EM Database Control, select the member
disk’s check box and click the Remove button.

Other EM Database Control ASM–related pages show I/O response time for the disk group,
the templates defined for the disk group, the initialization parameters in effect for this ASM
instance, and more.

Using the asmcmd Command
The asmcmd utility, new to Oracle 10g Release 2, is a command-line utility that provides you an
easy way to browse and maintain objects within ASM disk groups by using a command set similar
to Linux shell commands such as ls and mkdir. The hierarchical nature of objects maintained by
the ASM instance lends itself to a command set similar to what you would use to browse and
maintain files in a Linux file system.

Before you can use asmcmd, you must ensure that the environment variables ORACLE_BASE,
ORACLE_HOME, and ORACLE_SID are set to point to the ASM instance; for the ASM instance
used in this chapter, these variables are set as follows:

ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/11.1.0/db_1
ORACLE_SID=+ASM

FIGURE 4-23 EM Database Control ASM disk group statistics

Chapter 4: Physical Database Layouts and Storage Management 117

In addition, you must be logged into the operating system as a user in the dba group, since
the asmcmd utility connects to the database with SYSDBA privileges. The operating system user
is usually oracle but can be any other user in the dba group.

You can use asmcmd one command at a time by using the format asmcmd command, or
you can start asmcmd interactively by typing just asmcmd at the Linux shell prompt. To get a
list of available commands, use help from the ASMCMD> prompt, and help command at
the ASMCMD> prompt for more details. Table 4-7 lists the asmcmd commands and a brief
description of their purpose; the asmcmd commands available only in Oracle Database 11g
are noted in the last column.

When you start asmcmd, you start out at the root node of the ASM instance’s file system;
unlike in a Linux file system, the root node is designated by a plus sign (+) instead of a leading
forward slash (/), although subsequent directory levels use a forward slash. In this example, you

asmcmd Command 11g Only Description

cd Change the directory to the specified directory.

cp Y Copy files between ASM disk groups, both in the same
instance and in remote instances.

du Recursively displays total disk space usage for the current
directory and all subdirectories.

exit Terminate asmcmd and return to the operating system
shell prompt.

find Find all occurrences of the name (using wildcards as
well), starting with the specified directory.

help List the asmcmd commands.

ls List the contents of the current directory.

lsct Lists information about current ASM client databases.

lsdg Lists all disk groups and their attributes.

lsdsk Y Lists all disks visible to this ASM instance.

md_backup Y Create metadata backup script for specified disk groups.

md_restore Y Restore disk groups from a backup.

mkalias Creates an alias for system-generated ASM filenames.

mkdir Create an ASM directory.

pwd Display the current ASM directory.

remap Y Repair a range of corrupted or damaged physical blocks
on a disk.

rm Remove ASM files or directories.

rmalias Remove an ASM alias, but not the target of the alias.

TABLE 4-7 asmcmd Command Summary

118 Oracle Database 11g DBA Handbook

start asmcmd and query the existing disk groups, along with the total disk space used within all
disk groups:

[oracle@dw ~]$ asmcmd
ASMCMD> ls –l
State Type Rebal Unbal Name
MOUNTED NORMAL N N DATA/
MOUNTED HIGH N N DATA2/
MOUNTED NORMAL N N RECOV/
ASMCMD> du
Used_MB Mirror_used_MB
 2143 4399
ASMCMD> pwd
+
ASMCMD>

As with the Linux shell ls command, you can append –l to get a more detailed listing of the
objects retrieved by the command. The ls command shows the three disk groups in the ASM
instance used throughout this chapter, +DATA, +DATA2, and +RECOV.

Note also that the du command only shows the used disk space and total disk space used
across mirrored disk groups; to get the amount of free space in each disk group, use the lsdg
command instead.

In this example, you want to find all files that have the string user in the filename:

ASMCMD> pwd
+
ASMCMD> find . user*
+DATA/DW/DATAFILE/USERS.259.627432977
+DATA/DW/DATAFILE/USERS2.267.627782171
+DATA/purch/users.dbf
+DATA2/DW/DATAFILE/USERS3.256.627786775
ASMCMD> ls -l +DATA/purch/users.dbf
Type Redund Striped Time Sys Name
 N users.dbf =>
 +DATA/DW/DATAFILE/USERS.259.627432977
ASMCMD>

Note the line with +DATA/purch/users.dbf: the find command finds all ASM objects; in this
case, it finds an alias as well as datafiles that match the pattern.

Finally, you can perform file backups to external file systems or even other ASM instances. In
this example, you use the cp command to back up the database’s SPFILE to the /tmp directory on
the host’s file system:

ASMCMD> pwd
+data/DW
ASMCMD> ls
CONTROLFILE/
DATAFILE/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/

Chapter 4: Physical Database Layouts and Storage Management 119

spfiledw.ora
ASMCMD> cp spfiledw.ora /tmp/BACKUPspfiledw.ora
source +data/DW/spfiledw.ora
target /tmp/BACKUPspfiledw.ora
copying file(s)...
file, /tmp/BACKUPspfiledw.ora, copy committed.
ASMCMD> exit
[oracle@dw ~]$ ls -l /tmp/BACKUP*
-rw-r----- 1 oracle oinstall 2560 Jul 13 09:47 /tmp/BACKUPspfiledw.ora
[oracle@dw ~]$

This example also shows how all database files for the database dw are stored within the ASM
file system. It looks like they are stored on a traditional host file system, but instead managed by
ASM, providing built-in performance and redundancy features (optimized for use with Oracle
Database 11g) making the DBA’s life a bit easier when it comes to datafile management.

This page intentionally left blank

PART
II

Database Management

This page intentionally left blank

CHAPTER
5

Developing and
Implementing
Applications

123

124 Oracle Database 11g DBA Handbook

anaging application development can be a difficult process. From a DBA’s
perspective, the best way to manage the development process is to become an
integral part of teams involved in the process. In this chapter, you will learn the
guidelines for migrating applications into databases and the technical details
needed for implementation, including the sizing of database objects.

This chapter focuses on the design and creation of applications that use the database. These
activities should be integrated with the database-planning activities described in Chapter 3 and
Chapter 4. The following chapters in this part of the book address the monitoring and tuning
activities that follow the database creation.

Implementing an application in a database by merely running a series of create table commands
fails to integrate the creation process with the other major areas (planning, monitoring, and
tuning). The DBA must be involved in the application development process in order to correctly
design the database that will support the end product. The methods described in this chapter will
also provide important information for structuring the database monitoring and tuning efforts.

The first section of this chapter addresses overall design and implementation considerations
that directly address performance. The following sections focus on implementation details such as
resource management, using stored outlines, sizing tables and indexes, quiescing the database for
maintenance activities, and managing packaged applications.

Tuning by Design: Best Practices
At least 50 percent of the time—conservatively—performance problems are designed into an
application. During the design of the application and the related database structures, the application
architects may not know all the ways in which the business will use the application data over
time. As a result, there may be some components whose performance is poor during the initial
release, whereas other problems will appear later as the business usage of the application changes
and increases.

In some cases, the fix will be relatively straightforward—changing an initialization parameter,
adding an index, or rescheduling large operations. In other cases, the problem cannot be fixed
without altering the application’s architecture. For example, an application may be designed to
heavily reuse functions for all data access—so that functions call other functions, which call
additional functions, even to perform the simplest database actions. As a result, a single database
call may result in tens of thousands of function calls and database accesses. Such an application
will usually not scale well; as more users are added to the system, the CPU burden of the number
of executions per user will slow the performance for the individual users. Tuning the individual
SQL statements executed as part of that application may yield little performance benefit; the
statements themselves may be well-tuned already. Rather, it is the sheer number of executions
that leads to the performance problem.

The following best practices may seem overly simplistic, but they are violated over and over
in database applications, and those violations directly result in performance problems. There are
always exceptions to the rules—the next change to your software or environment may allow you
to violate the rules without affecting your performance. In general, though, following these rules
will allow you to meet performance requirements as the application usage increases.

Do As Little As Possible
End users do not care, in general, if the underlying database structures are fully normalized to
Third Normal Form or if they are laid out in compliance with object-oriented standards. Users
want to perform a business process, and the database application should be a tool that helps that

M

Chapter 5: Developing and Implementing Applications 125

business process complete as quickly as possible. The focus of your design should not be the
achievement of theoretical design perfection; it should always be on the end user’s ability to do
his or her job. Therefore, you should simplify the processes involved at every step in the application.

This can be a difficult point to negotiate with application development teams. If application
development teams or enterprise architects insist on perfectly normalized data models, DBAs
should point out the number of database steps involved in even the simplest transaction. For
example, inserts for a complex transaction (such as a line item for an invoice) may involve many
code table lookups as well as multiple inserts. For a single user this may not present a problem,
but with many concurrent users this design may lead to performance issues or locking issues.
From a performance-planning perspective, inserts should involve as few tables as possible, and
queries should retrieve data that is already stored in a format that is as close as possible to the
final format requested by the users. Fully normalized databases and object-oriented designs tend
to require a high number of joins during complex queries. Although you should strive to maintain
a manageable data model, the first emphasis should be on the functionality of the application and
its ability to meet the business’s performance needs.

In Your Application Design, Strive to Eliminate Logical Reads
In the past, there was a heavy focus on eliminating physical reads—and although this is still a
good idea, no physical reads occur unless logical reads require them.

Let’s take a simple example. Select the current time from DUAL. If you select down to the
second level, the value will change 86,400 times per day. Yet there are application designers who
repeatedly perform this query, executing it millions of times per day. Such a query likely performs
few physical reads throughout the day. Therefore, if you are focused solely on tuning the physical
I/O, you would likely disregard it. However, it can significantly impact the performance of the
application. How? By using the CPU resources available. Each execution of the query will force
Oracle to perform work, using processing power to find and return the correct data. As more and
more users execute the command repeatedly, you may find that the number of logical reads used
by the query exceeds all other queries. In some cases, multiple processors on the server are
dedicated to servicing repeated small queries of this sort. If multiple users need to read the
same data, you should store it in a table or in a package variable.

NOTE
As of Oracle Database 10g, the DUAL table is an internal table, not a
physical table, and therefore does not generate consistent gets as long
as you don’t use * as the column list in a query referencing DUAL.

Consider the following real-world example. A programmer wanted to implement a pause
in a program, forcing it to wait 30 seconds between two steps. Because the performance of
the environment would not be consistent over time, the programmer coded the routine in the
following format (shown in pseudocode):

perform Step 1
select SysDate from DUAL into a StartTime variable
begin loop
 select SysDate from DUAL in a CurrentTime variable;
 Compare CurrentTime with the StartTime variable value.
 If 30 seconds have passed, exit the loop;
 Otherwise repeat the loop, calculating SysDate again.
end loop
Perform Step 2.

126 Oracle Database 11g DBA Handbook

Is this a reasonable approach? Absolutely not! It will do what the developer wanted, but at a
significant cost to the application. What’s more, there is nothing a database administrator can do
to improve its performance. In this case, the cost will not be due to I/O activity—the DUAL table
will stay in the instance’s memory area—but rather due to CPU activity. Every time this program
is run, by every user, the database will spend 30 seconds consuming as many CPU resources as
the system can support. In this particular case the select SysDate from DUAL query accounts
for over 40 percent of all the CPU time used by the application. All of that CPU time is wasted.
Tuning the database initialization parameters will not solve the problem. Tuning the individual
SQL statement will not help; the application design must be revised to eliminate the needless
execution of commands. For instance, in this case the developer could have used a sleep command
at the operating system level or within a PL/SQL program using the DBMS_LOCK.SLEEP() procedure
to enforce the same behavior without the database accesses.

For those who favor tuning based on the buffer cache hit ratio, this database has a hit ratio of
almost 100 percent due to the high number of completely unnecessary logical reads without related
physical reads. The buffer cache hit ratio compares the number of logical reads to the number of
physical reads; if 10 percent of the logical reads require physical reads, the buffer cache hit ratio
is 90 percent. Low hit ratios identify databases that perform a high number of physical reads;
extremely high hit ratios such as found in this example may identify databases that perform
an excessive number of logical reads. You must look beyond the buffer cache hit ratio to the
commands that are generating the logical reads and the physical reads.

In Your Application Design, Strive to Avoid Trips to the Database
Remember that you are tuning an application, not a query. When tuning database operations, you
may need to combine multiple queries into a single procedure so that the database can be visited
once rather than multiple times for each screen. This bundled-query approach is particularly
relevant for “thin-client” applications that rely on multiple application tiers. Look for queries that
are interrelated based on the values they return, and see if there are opportunities to transform them
into single blocks of code. The goal is not to make a monolithic query that will never complete;
the goal is to avoid doing work that does not need to be done. In this case, the constant back-
and-forth communication between the database server, the application server, and the end user’s
computer is targeted for tuning.

This problem is commonly seen on complex data-entry forms in which each field displayed
on the screen is populated via a separate query. Each of those queries is a separate trip to the
database. As with the example in the previous section, the database is forced to execute large
numbers of related queries. Even if each of those queries is tuned, the burden from the number
of commands—multiplied by the number of users—will consume the CPU resources available
on the server. Such a design may also impact the network usage, but the network is seldom the
problem—the issue is the number of times the database is accessed.

Within your packages and procedures, you should strive to eliminate unnecessary database
accesses. Store commonly needed values in local variables instead of repeatedly querying the
database. If you don’t need to make a trip to the database for information, don’t make it. That sounds
simple, but you would be amazed at how often application developers fail to consider this advice.

There is no initialization parameter that can make this change take effect. It is a design issue
and requires the active involvement of developers, designers, DBAs, and application users in the
application performance planning and tuning process.

Chapter 5: Developing and Implementing Applications 127

For Reporting Systems, Store the Data the Way the Users Will Query It
If you know the queries that will be executed—such as via parameterized reports—you should
strive to store the data so that Oracle will do as little work as possible to transform the format of
the data in your tables into the format presented to the user. This may require the creation and
maintenance of materialized views or reporting tables. That maintenance is, of course, extra work
for the database and DBA to perform—but it is performed in batch mode and does not directly
affect the end user. The end user, on the other hand, benefits from the ability to perform the query
faster. The database as a whole will perform fewer logical and physical reads because the accesses
to the base tables to populate and refresh the materialized views are performed infrequently when
compared to the end-user queries against the views.

Avoid Repeated Connections to the Database
Opening a database connection may take more time than the commands you execute within
that connection. If you need to connect to the database, keep the connection open and reuse
the connection. See Chapter 15 for more information on Oracle Net and optimizing database
connections.

One application designer took normalization to the extreme, moving all code tables into their
own database. As a result, most operations in the order-processing system repeatedly opened
database links to access the code tables, thus severely hampering the performance of the application.
Again, tuning the database initialization parameters is not going to lead to the greatest performance
benefit; the application is slow by design.

Use the Right Indexes
In an effort to eliminate physical reads, some application developers create numerous indexes
on every table. Aside from their impact on data load times, many of the indexes may never be
needed to support queries. In OLTP applications, you should not use bitmap indexes; if a column
has few distinct values, you should consider leaving it unindexed. The optimizer supports “skip-
scan” index accesses, so it may choose an index on a set of columns even if the leading column
of the index is not a limiting condition for the query.

Do It As Simply As Possible
Once you have eliminated the performance costs of unnecessary logical reads, unneeded database
trips, unmanaged connections, and inappropriate indexes, take a look at the commands that remain.

Go Atomic
You can use SQL to combine many steps into one large query. In some cases, this may benefit
your application—you can create stored procedures and reuse the code and thus reduce the
number of database trips performed. However, you can take this too far, creating large queries
that fail to complete quickly enough. These queries commonly include multiple sets of grouping
operations, inline views, and complex multirow calculations against millions of rows.

If you are performing batch operations, you may be able to break such a query into its atomic
components, creating temporary tables to store the data from each step. If you have an operation
that takes hours to complete, you almost always can find a way to break it into smaller
component parts. Divide and conquer the performance problem.

128 Oracle Database 11g DBA Handbook

For example, a batch operation may combine data from multiple tables, perform joins and
sorts, and then insert the result into a table. On a small scale, this may perform satisfactorily. On
a large scale, you may have to divide this operation into multiple steps:

 1. Create a work table. Insert rows into it from one of the source tables for the query,
selecting only those rows and columns that you care about later in the process.

 2. Create a second work table for the columns and rows from the second table.

 3. Create any needed indexes on the work tables. Note that all the steps to this point can be
parallelized—the inserts, the queries of the source tables, and the creation of the indexes.

 4. Perform the join, again parallelized. The join output may go into another work table.

 5. Perform any sorts needed. Sort as little data as possible.

 6. Insert the data into the target table.

Why go through all these steps? Because you can tune them individually, you may be able
to tune them to complete much faster individually than Oracle can complete them as a single
command. For batch operations, you should consider making the steps as simple as possible.
You will need to manage the space allocated for the work tables, but this approach can generate
significant benefits to your batch-processing performance.

Eliminate Unnecessary Sorts
As part of the example in the preceding section, the sort operation was performed last. In general,
sort operations are inappropriate for OLTP applications. Sort operations do not return any rows
to the user until the entire set of rows is sorted. Row operations, on the other hand, return rows to
the user as soon as those rows are available.

Consider the following simple test: Perform a full table scan of a large table. As soon as the
query starts to execute, the first rows are displayed. Now, perform the same full table scan but add
an order by clause on an unindexed column. No rows will be displayed until all the rows have
been sorted. Why does this happen? Because for the second query Oracle performs a SORT
ORDER BY operation on the results of the full table scan. Because it is a set operation, the set
must be completed before the next operation is performed.

Now, imagine an application in which there are many queries executed within a procedure.
Each of the queries has an order by clause. This turns into a series of nested sorts—no operation
can start until the one before it completes.

Note that union operations perform sorts. If it is appropriate for the business logic, use a union
all operation in place of a union, because a union all does not perform a sort.

NOTE
A union all operation does not eliminate duplicate rows from the
result set, so it may generate more rows—and therefore different
results—than a union.

Eliminate the Need to Query Undo Segments
When performing a query, Oracle will need to maintain a read-consistent image of the rows
queried. If a row is modified by another user, the database will need to query the undo segment
to see the row as it existed at the time your query began. Application designs that call for queries
to frequently access data that others may be changing at the same time force the database to do
more work—it has to look in multiple locations for one piece of data. Again, this is a design

Chapter 5: Developing and Implementing Applications 129

issue. DBAs may be able to configure the undo segment areas to reduce the possibility of queries
encountering “Snapshot too old” errors, but correcting the fundamental problem requires a
change to the application design.

Tell the Database What It Needs to Know
Oracle’s optimizer relies on statistics when it evaluates the thousands of possible paths to take
during the execution of a query. How you manage those statistics can significantly impact the
performance of your queries.

Keep Your Statistics Updated
How often should you gather statistics? With each major change to the data in your tables, you
should reanalyze the tables. If you have partitioned the tables, you can analyze them on a
partition-by-partition basis. As of Oracle Database 10g, you can use the Automatic Statistics
Gathering feature to automate the collection of statistics. By default, that process gathers statistics
during a maintenance window from 10 P.M to 6 A.M. each night and all day on weekends. Of
course, manual statistics gathering is still available when you have volatile tables that are being
dropped or deleted during the day, or when bulk-loaded tables increase in size by more than
10 percent.

Because the analysis job is usually a batch operation performed after hours, you can tune it
by improving sort and full table scan performance at the session level. If you are performing the
analysis manually, increase the settings for the DB_FILE_MULTIBLOCK_READ_COUNT parameter
at the session level or the PGA_AGGREGATE_TARGET parameter at the system level to gathering
the statistics. If you are not using PGA_AGGREGATE_TARGET or do not want to modify a system-
wide setting, increase SORT_AREA_SIZE (which is modifiable at the session level) instead. The
result will be enhanced performance for the sorts and full table scans the analysis performs.

CAUTION
Increasing the DB_FILE_MULTIBLOCK_READ_COUNT in a RAC
database environment can cause performance problems when too
many blocks are shipped across the interconnect.

Hint Where Needed
In most cases, the cost-based optimizer (CBO) selects the most efficient execution path for queries.
However, you may have information about a better path. You may give Oracle a hint to influence
the join operations, the overall query goal, the specific indexes used, or the parallelism of the query.

Maximize the Throughput in the Environment
In an ideal environment, there is never a need to query information outside the buffer cache; all
of the data stays in memory all of the time. Unless you are working with a very small database,
however, this is not a realistic approach. In this section, you will see guidelines for maximizing
the throughput of the environment.

Use Disk Caching
If Oracle cannot find the data it needs in the buffer cache or PGA, it performs a physical read. But
how many of the physical reads actually reach the disk? If you use disk caching, you may be able
to prevent 90 percent or more of the access requests for the most-needed blocks. If the database
buffer cache hit ratio is 90 percent, you are accessing the disks 10 percent of the time—and if the

130 Oracle Database 11g DBA Handbook

disk cache prevents 90 percent of those requests from reaching the disk, your effective hit ratio is
99 percent. Oracle’s internal statistics do not reflect this improvement; you will need to work with
your disk administrators to configure and monitor the disk cache.

Use a Larger Database Block Size
There is only one reason not to use the largest block size available in your environment for a new
database: if you cannot support a greater number of users performing updates and inserts against
a single block. Other than that, increasing the database block size should improve the performance
of almost everything in your application. Larger database block sizes help keep indexes from
splitting levels and help keep more data in memory longer. If you are experiencing buffer busy
waits during inserts, increase the settings for the freelists parameter setting at the object level (if
you are using Automatic Segment Space Management, the freelists parameter does not apply).

Design to Throughput, Not Disk Space
Take an application that is running on eight 9GB disks and move it to a single 72GB disk. Will the
application run faster or slower? In general, it will run slower because the throughput of the single
disk is unlikely to be equal to the combined throughput of the eight separate disks. Rather than
designing your disk layout based on the space available (a common method), design it based on
the throughput of the disks available. You may decide to use only part of each disk. The remaining
space on the disk will not be used by the production application unless the throughput available
for that disk improves.

Avoid the Use of the Temporary Segments
Whenever possible, perform all sorts in memory. Any operation that writes to the temporary
segments is potentially wasting resources. Oracle uses temporary segments when the SORT_
AREA_SIZE parameter (or PGA_AGGREGATE_TARGET, if it is used) does not allocate enough
memory to support the sorting requirements of operations. Sorting operations include index
creations, order by clauses, statistics gathering, group by operations, and some joins. As noted
earlier in this chapter, you should strive to sort as few rows as possible. When performing the
sorts that remain, perform them in memory.

Favor Fewer, Faster Processors
Given the choice, use a small number of fast processors in place of a larger number of slower
processors. The operating system will have fewer processing queues to manage and will generally
perform better.

Divide and Conquer Your Data
If you cannot avoid performing expensive operations on your database, you can attempt to split
the work into more manageable chunks. Often you can severely limit the number of rows acted
on by your operations, substantially improving performance.

Use Partitions
Partitions can benefit end users, DBAs, and application support personnel. For end users, there
are two potential benefits: improved query performance and improved availability for the database.
Query performance may improve because of partition elimination. The optimizer knows what
partitions may contain the data requested by a query. As a result, the partitions that will not
participate are eliminated from the query process. Because fewer logical and physical reads
are needed, the query should complete faster.

Chapter 5: Developing and Implementing Applications 131

NOTE
The Partitioning Option is an extra-cost option for the Enterprise
Edition of the database software.

The availability improves because of the benefits partitions generate for DBAs and application
support personnel. Many administrative functions can be performed on single partitions, allowing
the rest of the table to be unaffected. For example, you can truncate a single partition of a table.
You can split a partition, move it to a different tablespace, or switch it with an existing table (so
that the previously independent table is then considered a partition). You can gather statistics on
one partition at a time. All these capabilities narrow the scope of administrative functions, reducing
their impact on the availability of the database as a whole.

Use Materialized Views
You can use materialized views to divide the types of operations users perform against your tables.
When you create a materialized view, you can direct users to query the materialized view directly
or you can rely on Oracle’s query rewrite capability to redirect queries to the materialized view.
As a result, you will have two copies of the data—one that services the input of new transactional
data, and a second (the materialized view) that services queries. As a result, you can take one of
them offline for maintenance without affecting the availability of the other. Also, the materialized
view can pre-join tables and pre-generate aggregations so that user queries perform as little work
as possible.

Use Parallelism
Almost every major operation can be parallelized—including queries, inserts, object creations,
and data loads. The parallel options allow you to involve multiple processors in the execution of
a single command, effectively dividing the command into multiple smaller coordinated commands.
As a result, the command may perform better. You can specify a degree of parallelism at the object
level and can override it via hints in your queries.

Test Correctly
In most development methodologies, application testing has multiple phases, including module
testing, full system testing, and performance stress testing. Many times, the full system test and
performance stress test are not performed adequately due to time constraints as the application
nears its delivery deadline. The result is that applications are released into production without any
way to guarantee that the functionality and performance of the application as a whole will meet
the needs of the users. This is a serious and significant flaw and should not be tolerated by any
user of the application. Users do not need just one component of the application to function
properly; they need the entire application to work properly in support of a business process.
If they cannot do a day’s worth of business in a day, the application fails.

This is a key tenet regarding identifying the need for tuning: If the application slows the speed
of the business process, it should be tuned. The tests you perform must be able to determine if the
application will hinder the speed of the business process under the expected production load.

Test with Large Volumes of Data
As described earlier in this chapter, objects within the database function differently after they have
been used for some time. For example, a table’s pctfree and pctused settings may make it likely that
blocks will be only half-used or rows will be chained. Each of these scenarios causes performance
problems that will only be seen after the application has been used for some time.

132 Oracle Database 11g DBA Handbook

A further problem with data volume concerns indexes. As a B-tree index grows in size, it may
split internally—the level of entries within the index increases. As a result, you can picture the
new level as being an index within the index. The additional level in the index increases the
negative effect of the index on data load rates. You will not see this impact until after the index is
split. Applications that work acceptably for the first week or two in production only to suddenly
falter after the data volume reaches critical levels do not support the business needs. In testing,
there is no substitute for production data loaded at production rates while the tables already
contain a substantial amount of data.

Test with Many Concurrent Users
Testing with a single user does not reflect the expected production usage of most database
applications. You must be able to determine if concurrent users will encounter deadlocks, data
consistency issues, or performance problems. For example, suppose an application module uses
a work table during its processing. Rows are inserted into the table, manipulated, and then queried.
A separate application module does similar processing—and uses the same table. When executed
at the same time, the two processes attempt to use each other’s data. Unless you are testing with
multiple users executing multiple application functions simultaneously, you may not discover this
problem and the business data errors it will generate.

Testing with many concurrent users will also help to identify areas in the application where
users frequently use undo segments to complete their queries, thus impacting performance.

Test the Impact of Indexes on Your Load Times
Every insert, update, or delete of an indexed column may be slower than the same transaction
against an unindexed table. There are some exceptions—sorted data has much less of an impact,
for example—but the rule is generally true. The impact is dependent on your operating
environment, the data structures involved, and the degree to which the data is sorted.

How many rows per second can you insert in your environment? Perform a series of simple
tests. Create a table with no indexes and insert a large number of rows into it. Repeat the tests to
reduce the impact of physical reads on the timing results. Calculate the number of rows inserted
per second. In most environments you can insert tens of thousands of rows per second into the
database. Perform the same test in your other database environments so you can identify any that
are significantly different from the others.

Now consider your application. Are you able to insert rows into your tables via your application
at anywhere near the rate you just calculated? Many applications run at less than 5 percent of the
rate the environment will support. They are bogged down by unneeded indexes or the type of
code design issues described earlier in this chapter. If your application’s load rate decreases—say,
from 40 rows per second to 20 rows per second—your tuning focus should not be solely on how
that decrease occurred but also on how the application managed to get only 40 rows per second
inserted in an environment that supports thousands of rows inserted per second.

Make All Tests Repeatable
Most regulated industries have standards for tests. Their standards are so reasonable that all testing
efforts should follow them. Among the standards is that all tests must be repeatable. To be compliant
with the standards, you must be able to re-create the data set used, the exact action performed,
the exact result expected, and the exact result seen and recorded. Pre-production tests for validation
of the application must be performed on the production hardware. Moving the application to
different hardware requires retesting the application. The tester and the business users must sign
off on all tests.

Chapter 5: Developing and Implementing Applications 133

Most people, on hearing those restrictions, would agree that they are good steps to take in
any testing process. Indeed, your business users may be expecting that the people developing the
application are following such standards, even if they are not required by the industry. But are
they followed? And if not, then why not? The two commonly cited reasons for not following such
standards are time and cost. Such tests require planning, personnel resources, business user
involvement, and time for execution and documentation. Testing on production-caliber hardware
may require the purchase of additional servers. Those are the most evident costs—but what is the
business cost of failing to perform such tests? The testing requirements for validated systems in
some health industries were implemented because those systems directly impact the integrity of
critical products such as the safety of the blood supply. If your business has critical components
served by your application (and if it does not, then why are you building the application?), you
must consider the costs of insufficient, rushed testing and communicate those potential costs to
the business users. The evaluation of the risks of incorrect data or unacceptably slow performance
must involve the business users. In turn, that may lead to an extended deadline to support proper
testing.

In many cases, the rushed testing cycle occurs because a testing standard was not in place at
the start of the project. If there is a consistent, thorough, and well-documented testing standard in
place at the enterprise level when the project starts, the testing cycle will be shorter when it is
finally executed. Testers will have known long in advance that repeatable data sets will be needed.
Templates for tests will be available. If there is an issue with any test result, or if the application
needs to be retested following a change, the test can be repeated. Also, the application users
will know that the testing is robust enough to simulate the production usage of the application.
In addition, the testing environment must support automation of tasks that will be automated
in production, especially if the developers used many manual processes in the development
environment. If the system fails the tests for performance reasons, the problem may be a design
issue (as described in the previous sections) or a problem with an individual query.

Standard Deliverables
How do you know if an application is ready to be migrated to a production environment? The
application development methodology must clearly define, both in format and in level of detail,
the required deliverables for each stage of the life cycle. These should include specifications for
each of the following items:

Entity relationship diagram

Physical database diagram

Space requirements

Tuning goals for queries and transaction processing

Security requirements

Data requirements

Query execution plans

Acceptance test procedures

In the following sections, you will see descriptions of each of these items.

■

■

■

■

■

■

■

■

134 Oracle Database 11g DBA Handbook

Entity Relationship Diagram
The entity relationship (E-R) diagram illustrates the relationships that have been identified among
the entities that make up the application. E-R diagrams are critical for providing an understanding
of the goals of the system. They also help to identify interface points with other applications and
to ensure consistency in definitions across the enterprise.

Physical Database Diagram
A physical database diagram shows the physical tables generated from the entities and the columns
generated from the defined attributes in the logical model; most, if not all, data modeling tools
support the automatic translation of a logical database diagram to the physical database design. A
physical database diagramming tool is usually capable of generating the DDL necessary to create
the application’s objects.

You can use the physical database diagram to identify tables that are most likely to be
involved in transactions. You should also be able to identify which tables are commonly used
together during a data entry or query operation. You can use this information to effectively plan
the distribution of these tables (and their indexes) across the available physical devices to reduce
the amount of I/O contention encountered.

In data warehousing applications, the physical database diagram should show the aggregations
and materialized views accessed by user queries. Although they contain derived data, they are
critical components of the data access path and must be documented.

Space Requirements
The space requirements deliverable should show the initial space requirements for each database
table and index. The recommendations for the proper size of tables, clusters, and indexes are shown
in the “Sizing Database Objects” section later in this chapter.

Tuning Goals for Queries and Transaction Processing
Changes to the application design may have significant impact on the application’s performance.
Application design choices may also directly affect your ability to tune the application. Because
application design has such a great effect on the DBA’s ability to tune its performance, the DBA
must be involved in the design process.

You must identify the performance goals of a system before it goes into production. The role
of expectation in perception cannot be overemphasized. If the users have an expectation that
the system will be at least as fast as an existing system, anything less will be unacceptable. The
estimated response time for each of the most-used components of the application must be defined
and approved.

It is important during this process to establish two sets of goals: reasonable goals and “stretch”
goals. Stretch goals represent the results of concentrated efforts to go beyond the hardware and
software constraints that limit the system’s performance. Maintaining two sets of performance
goals helps to focus efforts on those goals that are truly mission-critical versus those that are
beyond the scope of the core system deliverables. In terms of the goals, you should establish
control boundaries for query and transaction performance; the application performance will be
judged to be “out of control” if the control boundaries are crossed.

Security Requirements
The development team must specify the account structure the application will use, including the
ownership of all objects in the application and the manner in which privileges will be granted.
All roles and privileges must be clearly defined. The deliverables from this section will be used to

Chapter 5: Developing and Implementing Applications 135

generate the account and privilege structure of the production application (see Chapter 9 for a full
review of Oracle’s security capabilities).

Depending on the application, you may need to specify the account usage for batch accounts
separately from that of online accounts. For example, the batch accounts may use the database’s
automatic login features, whereas the online users have to manually sign in. Your security plans
for the application must support both types of users.

Like the space requirements deliverable, security planning is an area in which the DBA’s
involvement is critical. The DBA should be able to design an implementation that meets the
application’s needs while fitting in with the enterprise database security plan.

Data Requirements
The methods for data entry and retrieval must be clearly defined. Data-entry methods must be
tested and verified while the application is in the test environment. Any special data-archiving
requirements of the application must also be documented because they will be application specific.

You must also describe the backup and recovery requirements for the application. These
requirements can then be compared to the enterprise database backup plans (see Chapter 11 for
guidelines). Any database recovery requirements that go beyond the site’s standard will require
modifying the site’s backup standard or adding a module to accommodate the application’s needs.

Query Execution Plans
Execution plans are the steps that the database will go through while executing queries. They are
generated via the explain plan or set autotrace commands, as described in Chapter 8. Recording
the execution plans for the most important queries against the database will aid in planning
the index usage and tuning goals for the application. Generating them prior to production
implementation will simplify tuning efforts and identify potential performance problems before
the application is released. Generating the explain plans for your most important queries will
also facilitate the process of performing code reviews of the application.

If you are implementing a third-party application, you may not have visibility to all the SQL
commands the application is generating. As described in Chapter 8, you can Oracle’s automated
tuning and monitoring utilities to identify the most resource-intensive queries performed between
two points in time; many of the new automated tuning features introduced in Oracle Database
10g are enhanced in Oracle Database 11g, such as the capability to store Automatic Workload
Repository (AWR) baselines in addition to automatically create SQL profiles.

Acceptance Test Procedures
Developers and users should very clearly define what functionality and performance goals must
be achieved before the application can be migrated to production. These goals will form the
foundation of the test procedures that will be executed against the application while it is in the
test environment.

The procedures should also describe how to deal with unmet goals. The procedures should
very clearly list the functional goals that must be met before the system can move forward. A
second list of non-critical functional goals should also be provided. This separation of functional
capabilities will aid in both resolving scheduling conflicts and structuring appropriate tests.

NOTE
As part of acceptance testing, all interfaces to the application should
be tested and their input and output verified.

136 Oracle Database 11g DBA Handbook

Resource Management and Stored Outlines
You can use stored outlines to migrate execution paths between databases, and you can use the
Database Resource Manager to control the allocation of system resources among database users.
Stored outlines and resource management are important components in a managed development
environment. The Database Resource Manager gives DBAs more control over the allocation of
system resources than is possible with operating system controls alone.

NOTE
As of Oracle 10g, you can use SQL profiles to further refine the
execution path selected.

Implementing the Database Resource Manager
You can use the Database Resource Manager to allocate percentages of system resources to
classes of users and jobs. For example, you could allocate 75 percent of the available CPU
resources to your online users, leaving 25 percent to your batch users. To use the Database
Resource Manager, you will need to create resource plans, resource consumer groups, and
resource plan directives.

Prior to using the Database Resource Manager commands, you must create a “pending area” for
your work. To create a pending area, use the CREATE_PENDING_AREA procedure of the DBMS_
RESOURCE_MANAGER package. When you have completed your changes, use the VALIDATE_
PENDING_AREA procedure to check the validity of the new set of plans, subplans, and directives.
You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear the changes (via
CLEAR_PENDING_AREA). The procedures that manage the pending area do not have any input
variables, so a sample creation of a pending area uses the following syntax:

execute DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();

If the pending area is not created, you will receive an error message when you try to create a
resource plan.

To create a resource plan, use the CREATE_PLAN procedure of the DBMS_RESOURCE_
MANAGER package. The syntax for the CREATE_PLAN procedure is shown in the following listing:

CREATE_PLAN
 (plan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'EMPHASIS',
 active_sess_pool_mth IN VARCHAR2 DEFAULT
'ACTIVE_SESS_POOL_ABSOLUTE',
 parallel_degree_limit_mth IN VARCHAR2 DEFAULT
 'PARALLEL_DEGREE_LIMIT_ABSOLUTE',
 queueing_mth IN VARCHAR2 DEFAULT 'FIFO_TIMEOUT')

When you create a plan, give the plan a name (in the plan variable) and a comment. By
default, the CPU allocation method will use the “emphasis” method, allocating CPU resources
based on percentage. The following example shows the creation of a plan called DEVELOPERS:

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN -
 (Plan => 'DEVELOPERS', -
 Comment => 'Developers, in Development database');

Chapter 5: Developing and Implementing Applications 137

NOTE
The hyphen (-) character is a continuation character in SQL*Plus,
allowing a single command to span multiple lines.

In order to create and manage resource plans and resource consumer groups, you must have
the ADMINISTER_RESOURCE_MANAGER system privilege enabled for your session. DBAs have
this privilege with the with admin option. To grant this privilege to non-DBAs, you must execute
the GRANT_SYSTEM_PRIVILEGE procedure of the DBMS_RESOURCE_MANAGER_PRIVS
package. The following example grants the user MARTHAG the ability to manage the Database
Resource Manager:

execute DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE -
 (grantee_name => 'MarthaG', -
 privilege_name => 'ADMINISTER_RESOURCE_MANAGER', -
 admin_option => TRUE);

You can revoke MARTHAG’s privileges via the REVOKE_SYSTEM_PRIVILEGE procedure of the
DBMS_RESOURCE_MANAGER package.

With the ADMINISTER_RESOURCE_MANAGER privilege enabled, you can create a resource
consumer group using the CREATE_CONSUMER_GROUP procedure within DBMS_RESOURCE_
MANAGER. The syntax for the CREATE_CONSUMER_GROUP procedure is shown in the
following listing:

CREATE_CONSUMER_GROUP
 (consumer_group IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_mth IN VARCHAR2 DEFAULT 'ROUND-ROBIN')

You will be assigning users to resource consumer groups, so give the groups names that are
based on the logical divisions of your users. The following example creates two groups—one for
online developers and a second for batch developers:

execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP -
 (Consumer_Group => 'Online_developers', -
 Comment => 'Online developers');

execute DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP -
 (Consumer_Group => 'Batch_developers', -
 Comment => 'Batch developers');

Once the plan and resource consumer groups are established, you need to create resource
plan directives and assign users to the resource consumer groups. To assign directives to a plan,
use the CREATE_PLAN_DIRECTIVE procedure of the DBMS_RESOURCE_MANAGER package.
The syntax for the CREATE_PLAN_DIRECTIVE procedure is shown in the following listing:

CREATE_PLAN_DIRECTIVE
 (plan IN VARCHAR2,
 group_or_subplan IN VARCHAR2,
 comment IN VARCHAR2,
 cpu_p1 IN NUMBER DEFAULT NULL,
 cpu_p2 IN NUMBER DEFAULT NULL,

138 Oracle Database 11g DBA Handbook

 cpu_p3 IN NUMBER DEFAULT NULL,
 cpu_p4 IN NUMBER DEFAULT NULL,
 cpu_p5 IN NUMBER DEFAULT NULL,
 cpu_p6 IN NUMBER DEFAULT NULL,
 cpu_p7 IN NUMBER DEFAULT NULL,
 cpu_p8 IN NUMBER DEFAULT NULL,
 active_sess_pool_p1 IN NUMBER DEFAULT UNLIMITED,
 queueing_p1 IN NUMBER DEFAULT UNLIMITED,
 parallel_degree_limit_p1 IN NUMBER DEFAULT NULL,
 switch_group IN VARCHAR2 DEFAULT NULL,
 switch_time IN NUMBER DEFAULT UNLIMITED,
 switch_estimate IN BOOLEAN DEFAULT FALSE,
 max_est_exec_time IN NUMBER DEFAULT UNLIMITED,
 undo_pool IN NUMBER DEFAULT UNLIMITED,
 max_idle_time IN NUMBER DEFAULT NULL,
 max_idle_time_blocker IN NUMBER DEFAULT NULL,
 switch_time_in_call IN NUMBER DEFAULT NULL);

The multiple CPU variables in the CREATE_PLAN_DIRECTIVE procedure support the creation
of multiple levels of CPU allocation. For example, you could allocate 75 percent of all your CPU
resources (level 1) to your online users. Of the remaining CPU resources (level 2), you could
allocate 50 percent to a second set of users. You could split the remaining 50 percent of resources
available at level 2 to multiple groups at a third level. The CREATE_PLAN_DIRECTIVE procedure
supports up to eight levels of CPU allocations.

The following example shows the creation of the plan directives for the ONLINE_DEVELOPERS
and BATCH_DEVELOPERS resource consumer groups within the DEVELOPERS resource plan:

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE -
 (Plan => 'DEVELOPERS', -
 Group_or_subplan => 'ONLINE_DEVELOPERS', -
 Comment => 'online developers', -
 Cpu_p1 => 75, -
 Cpu_p2=> 0, -
 Parallel_degree_limit_p1 => 12);

execute DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE -
 (Plan => 'DEVELOPERS', -
 Group_or_subplan => 'BATCH_DEVELOPERS', -
 Comment => 'Batch developers', -
 Cpu_p1 => 25, -
 Cpu_p2 => 0, -
 Parallel_degree_limit_p1 => 6);

In addition to allocating CPU resources, the plan directives restrict the parallelism of
operations performed by members of the resource consumer group. In the preceding example,
batch developers are limited to a degree of parallelism of 6, reducing their ability to consume
system resources. Online developers are limited to a degree of parallelism of 12.

To assign a user to a resource consumer group, use the SET_INITIAL_CONSUMER_GROUP
procedure of the DBMS_RESOURCE_MANAGER package. The syntax for the SET_INITIAL_
CONSUMER_GROUP procedure is shown in the following listing:

Chapter 5: Developing and Implementing Applications 139

SET_INITIAL_CONSUMER_GROUP
 (user IN VARCHAR2,
 consumer_group IN VARCHAR2)

If a user has never had an initial consumer group set via the SET_INITIAL_CONSUMER_GROUP
procedure, the user is automatically enrolled in the resource consumer group named DEFAULT_
CONSUMER_GROUP.

To enable the Resource Manager within your database, set the RESOURCE_MANAGER_PLAN
database initialization parameter to the name of the resource plan for the instance. Resource plans
can have subplans, so you can create tiers of resource allocations within the instance. If you do
not set a value for the RESOURCE_MANAGER_PLAN parameter, resource management is not
performed in the instance.

You can dynamically alter the instance to use a different resource allocation plan using the
RESOURCE_MANAGER_PLAN initialization parameter: for example, you could create a resource
plan for your daytime users (DAYTIME_USERS) and a second for your batch users (BATCH_
USERS). You could create a job that each day executes this command at 6:00 A.M.:

alter system set resource_manager_plan = 'DAYTIME_USERS';

Then at a set time in the evening, you could change consumer groups to benefit the batch users:

alter system set resource_manager_plan = 'BATCH_USERS';

The resource allocation plan for the instance will thus be altered without needing to shut down
and restart the instance.

When using multiple resource allocation plans in this fashion, you need to make sure you
don’t accidentally use the wrong plan at the wrong time. For example, if the database is down
during a scheduled plan change, your job that changes the plan allocation may not execute. How
will that affect your users? If you use multiple resource allocation plans, you need to consider the
impact of using the wrong plan at the wrong time. To avoid such problems, you should try to
minimize the number of resource allocation plans in use.

In addition to the examples and commands shown in this section, you can update existing
resource plans (via the UPDATE_PLAN procedure), delete resource plans (via DELETE_PLAN), and
cascade the deletion of a resource plan plus all its subplans and related resource consumer groups
(DELETE_PLAN_CASCADE). You can update and delete resource consumer groups via
the UPDATE_CONSUMER_GROUP and DELETE_CONSUMER_GROUP procedures, respectively.
Resource plan directives may be updated via UPDATE_PLAN_DIRECTIVE and deleted via
DELETE_PLAN_DIRECTIVE.

When you are modifying resource plans, resource consumer groups, and resource plan
directives, you should test the changes prior to implementing them. To test your changes, create a
pending area for your work. To create a pending area, use the CREATE_PENDING_AREA procedure
of the DBMS_RESOURCE_MANAGER package. When you have completed your changes, use the
VALIDATE_PENDING_AREA procedure to check the validity of the new set of plans, subplans,
and directives. You can then either submit the changes (via SUBMIT_PENDING_AREA) or clear
the changes (via CLEAR_PENDING_AREA). The procedures that manage the pending area do
not have any input variables, so a sample validation and submission of a pending area uses the
following syntax:

execute DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
execute DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();

140 Oracle Database 11g DBA Handbook

Switching Consumer Groups
Three of the parameters in the CREATE_PLAN_DIRECTIVE procedure allow sessions to switch
consumer groups when resource limits are met. As shown in the previous section, the parameters for
CREATE_PLAN_DIRECTIVE include SWITCH_GROUP, SWITCH_TIME, and SWITCH_ESTIMATE.

The SWITCH_TIME value is the time, in seconds, a job can run before it is switched to another
consumer group. The default SWITCH_TIME value is NULL (unlimited). You should set the
SWITCH_GROUP parameter value to the group the session will be switched to once the switch
time limit is reached. By default, SWITCH_GROUP is NULL. If you set SWITCH_GROUP to
the value ‘CANCEL_SQL’, the current call will be canceled when the switch criteria is met. If the
SWITCH_GROUP value is ‘KILL_SESSION’, the session will be killed when the switch criteria is met.

You can use the third parameter, SWITCH_ESTIMATE, to tell the database to switch the consumer
group for a database call before the operation even begins to execute. If you set SWITCH_ESTIMATE
to TRUE, Oracle will use its execution time estimate to automatically switch the consumer group
for the operation instead of waiting for it to reach the SWITCH_TIME value.

You can use the group-switching features to minimize the impact of long-running jobs within
the database. You can configure consumer groups with different levels of access to the system
resources and customize them to support fast jobs as well as long-running jobs—the ones that
reach the switch limit will be redirected to the appropriate groups before they even execute.

Implementing Stored Outlines
As you migrate from one database to another, the execution paths for your queries may change.
Your execution paths may change for several reasons:

You may have enabled different optimizer features in the different databases.

The statistics for the queried tables may differ in the databases.

The frequency with which statistics are gathered may differ among the databases.

The databases may be running different versions of the Oracle kernel.

The effects of these differences on your execution paths can be dramatic, and they can have
a negative impact on your query performance as you migrate or upgrade your application. To
minimize the impact of these differences on your query performance, you can use a feature called
a stored outline.

A stored outline stores a set of hints for a query. Those hints will be used every time the query is
executed. Using the stored hints will increase the likelihood that the query will use the same execution
path each time. Hints decrease the impact of database moves on your query performance. You can
view the outlines and related hints via the USER_OUTLINES and USER_OUTLINE_HINTS views.

To start creating hints for all queries, create custom categories of outlines and use the category
name as a value of the CREATE_STORED_OUTLINES parameter in the database initialization file,
as shown here:

CREATE_STORED_OUTLINES = development

In this example, outlines will be stored for queries within the DEVELOPMENT category.
You must have the CREATE ANY OUTLINE system privilege in order to create an outline. Use

the create outline command to create an outline for a query, as shown in the following listing:

■

■

■

■

Chapter 5: Developing and Implementing Applications 141

create outline YTD_SALES
 for category DEVELOPMENT
 on
select Year_to_Date_Sales
 from SALES
 where region = 'SOUTH'
 and period = 1;

NOTE
If you do not specify a name for your outline, the outline will be given
a system-generated name.

If you have set CREATE_STORED_OUTLINES to a category name in your initialization file,
Oracle will create stored outlines for your queries; using the create outline command gives you
more control over the outlines that are created. Unless you’re sure that you want to create stored
outlines for the entire database, set this parameter at the session level instead of the system level.

NOTE
You can create outlines for DML commands and for create table as
select commands.

Once an outline has been created, you can alter it. For example, you may need to alter the
outline to reflect significant changes in data volumes and distribution. You can use the rebuild
clause of the alter outline command to regenerate the hints used during query execution, as
shown next:

alter outline YTD_SALES rebuild;

You can also rename an outline via the rename clause of the alter outline command, as
shown here:

alter outline YTD_SALES rename to YTD_SALES_REGION;

You can change the category of an outline via the change category clause, as shown in the
following example:

alter outline YTD_SALES_REGION change category to DEFAULT;

To manage stored outlines, use the DBMS_OUTLN package, which gives you the following
capabilities:

Drop outlines that have never been used

Drop outlines within a specific category

Move outlines from one category to another

Create outlines for specific statements

Update outlines to the current version’s signature

Reset the usage flag for an outline

■

■

■

■

■

■

142 Oracle Database 11g DBA Handbook

Each of these capabilities has a corresponding procedure within DBMS_OUTLN. To drop
outlines that have never been used, execute the DROP_UNUSED procedure, as shown in the
following example:

execute DBMS_OUTLN.DROP_UNUSED;

You can clear the “used” setting of an outline via the CLEAR_USED procedure. Pass the name
of the outline as the input variable to CLEAR_USED:

execute DBMS_OUTLN.CLEAR_USED('YTD_SALES_REGION');

To drop all the outlines within a category, execute the DROP_BY_CAT procedure. The
DROP_BY_CAT procedure has the name of the category as its only input parameter. The
following example drops all the outlines within the DEVELOPMENT category:

execute DBMS_OUTLN.DROP_BY_CAT('DEVELOPMENT');

To reassign outlines from an old category to a new category, use the UPDATE_BY_CAT
procedure, as shown in the following example:

execute OUTLN_PKG.UPDATE_BY_CAT -
 (oldcat => 'DEVELOPMENT', -
 newcat => 'TEST');

To drop a specific outline, use the drop outline command.
If you have imported outlines generated in an earlier release, use the UPDATE_SIGNATURES

procedure of DBMS_OUTLN to ensure the signatures are compatible with the current release’s
computation algorithm.

Editing Stored Outlines
You can use DBMS_OUTLN_EDIT to edit the stored outlines. The procedures within DBMS_
OUTLN_EDIT are detailed in the following table:

Procedure Description

CHANGE_JOIN_POS Changes the join position for the hint identified by outline
name and hint number to the position specified. Inputs are
name, hintno, and newpos.

CREATE_EDIT_TABLES Creates outline editing tables in the user’s schema.

DROP_EDIT_TABLES Drops the outline editing tables in the user’s schema.

GENERATE_SIGNATURE Generates a signature for the specified SQL text.

REFRESH_PRIVATE_OUTLINE Refreshes the in-memory copy of the outline, synchronizing it
with the edits made.

NOTE
As of Oracle 10g, you no longer need to execute the CREATE_EDIT_
TABLES procedure because the edit tables are available as temporary
tables in the SYSTEM schema. The procedure is still available,
however, for backward compatibility.

You can use private outlines, which are seen only within your current session. Changes made
to a private outline do not affect any other users. To enable private outline editing, set the USE_

Chapter 5: Developing and Implementing Applications 143

PRIVATE_OUTLINES initialization parameter to TRUE. Use the REFRESH_PRIVATE_OUTLINE
procedure to have your changes take effect for the in-memory versions of the outlines.

Using SQL Profiles
As of Oracle 10g, you can use SQL profiles to further refine the SQL execution plans chosen by
the optimizer. SQL profiles are particularly useful when you are attempting to tune code that you
do not have direct access to (for example, within a packaged application). The SQL profile consists
of statistics that are specific to the statement, allowing the optimizer to know more about the exact
selectivity and cost of the steps in the execution plan.

SQL profiling is part of the automatic tuning capability that I will describe in Chapter 8. Once
you accept a SQL profile recommendation, it is stored in the data dictionary. As with stored outlines,
you can use a category attribute to control its usage. See Chapter 8 for further details on the use of
the automatic tools for detection and diagnosis of SQL performance issues.

Sizing Database Objects
Choosing the proper space allocation for database objects is critical. Developers should begin
estimating space requirements before the first database objects are created. Afterward, the space
requirements can be refined based on the actual usage statistics. In the following sections, you
will see the space estimation methods for tables, indexes, and clusters. You’ll also see methods
for determining the proper settings for pctfree and pctused.

NOTE
You can enable Automatic Segment Space Management when you
create a tablespace; you cannot enable this feature for existing
tablespaces. If you are using Automatic Segment Space Management,
Oracle ignores the pctused, freelists, and freelist groups parameters.

Why Size Objects?
You should size your database objects for three reasons:

To preallocate space in the database, thereby minimizing the amount of future work
required to manage objects’ space requirements

To reduce the amount of space wasted due to overallocation of space

To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all these goals by following the sizing methodology shown in the following
sections. This methodology is based on Oracle’s internal methods for allocating space to database
objects. Rather than rely on detailed calculations, the methodology relies on approximations that
will dramatically simplify the sizing process while simplifying the long-term maintainability of the
database.

The Golden Rule for Space Calculations
Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

■

■

■

144 Oracle Database 11g DBA Handbook

In the following section, you’ll see how to simplify the space-estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the default storage values for a dictionary managed tablespace or the extent sizes
for locally managed tablespaces.

NOTE
In an Oracle 10g database, you should be using locally managed
tablespaces. If you have upgraded from a prior release that used
dictionary-managed tablespaces, you should replace them with
locally managed tablespaces.

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

Oracle only allocates whole blocks, not parts of blocks.

Oracle allocates sets of blocks rather than individual blocks.

Oracle may allocate larger or smaller sets of blocks, depending on the available free
space in the tablespace.

Your goal should be to work with Oracle’s space-allocation methods instead of against them.
If you use consistent extent sizes, you can largely delegate the space allocation to Oracle even in
a dictionary-managed tablespace.

The Impact of Extent Size on Performance
There is no direct performance benefit gained by reducing the number of extents in a table. In
some situations (such as in Parallel Query environments), having multiple extents in a table can
significantly reduce I/O contention and enhance your performance. Regardless of the number of
extents in your tables, they need to be properly sized; as of Oracle Database 10g, you should rely
on automatic (system-managed) extent allocation if the objects in the tablespace are of varying
sizes. Unless you know the precise amount of space you need for each object and the number
and size of extents, use autoallocate when you create a tablespace, as in this example:

create tablespace users12
 datafile '+DATA' size 100m
 extent management local autoallocate;

The extent management local clause is the default for create tablespace; autoallocate is the
default for tablespaces with local extent management.

Oracle reads data from tables in two ways: by RowID (usually immediately following an
index access) and via full table scans. If the data is read via RowID, the number of extents in the
table is not a factor in the read performance. Oracle will read each row from its physical location
(as specified in the RowID) and retrieve the data.

If the data is read via a full table scan, the size of your extents can impact performance to a
very small degree. When reading data via a full table scan, Oracle will read multiple blocks at a
time. The number of blocks read at a time is set via the DB_FILE_MULTIBLOCK_READ_COUNT
database initialization parameter and is limited by the operating system’s I/O buffer size. For
example, if your database block size is 8KB and your operating system’s I/O buffer size is 128KB,

■

■

■

Chapter 5: Developing and Implementing Applications 145

you can read up to 16 blocks per read during a full table scan. In that case, setting DB_FILE_
MULTIBLOCK_READ_COUNT to a value higher than 16 will not affect the performance of the
full table scans.

Estimating Space Requirements for Tables
As of Oracle Database 10g, you can use the CREATE_TABLE_COST procedure of the DBMS_
SPACE package to estimate the space required by a table. The procedure determines the space
required for a table based on attributes such as the tablespace storage parameters, the tablespace
block size, the number of rows, and the average row length. The procedure is valid for both
dictionary-managed and locally managed tablespaces.

TIP
When you create a new table using Oracle Enterprise Manager DB
Control, you can click the Estimate Table Size button to estimate table
size for a given estimated row count.

There are two versions of the CREATE_TABLE_COST procedure (it is overloaded so you can
use the same procedure both ways). The first version has four input variables: tablespace_name,
avg_row_size, row_count, and pct_free. Its output variables are used_bytes and alloc_bytes.
The second version’s input variables are tablespace_name, colinfos, row_count, and pct_free;
its output variables are used_bytes and alloc_bytes. Descriptions of the variables are provided
in the following table:

Parameter Description

tablespace_name The tablespace in which the object will be created.

avg_row_size The average length of a row in the table.

colinfos The description of the columns.

row_count The anticipated number of rows in the table.

pct_free The pctfree setting for the table.

used_bytes The space used by the table’s data. This value includes the overhead due
to the pctfree setting and other block features.

alloc_bytes The space allocated to the table’s data, based on the tablespace characteristics.
This value takes the tablespace extent size settings into account.

For example, if you have an existing tablespace named USERS, you can estimate the space
required for a new table in that tablespace. In the following example, the CREATE_TABLE_COST
procedure is executed with values passed for the average row size, the row count, and the pctfree
setting. The used_bytes and alloc_bytes variables are defined and are displayed via the DBMS_
OUTPUT.PUT_LINE procedure:

declare
 calc_used_bytes NUMBER;
 calc_alloc_bytes NUMBER;
begin
 DBMS_SPACE.CREATE_TABLE_COST (
 tablespace_name => 'USERS',

146 Oracle Database 11g DBA Handbook

 avg_row_size => 100,
 row_count => 5000,
 pct_free => 10,
 used_bytes => calc_used_bytes,
 alloc_bytes => calc_alloc_bytes
);
 DBMS_OUTPUT.PUT_LINE('Used bytes: '||calc_used_bytes);
 DBMS_OUTPUT.PUT_LINE('Allocated bytes: '||calc_alloc_bytes);
end;
/

The output of this PL/SQL block will display the used and allocated bytes calculated for these
variable settings. You can easily calculate the expected space usage for multiple combinations of
space settings prior to creating the table. Here is the output from the preceding example:

Used bytes: 589824
Allocated bytes: 589824

PL/SQL procedure successfully completed.

NOTE
You must use the set serveroutput on command to enable the script’s
output to be displayed within a SQL*Plus session.

Estimating Space Requirements for Indexes
As of Oracle Database 10g, you can use the CREATE_INDEX_COST procedure of the DBMS_
SPACE package to estimate the space required by an index. The procedure determines the space
required for a table based on attributes such as the tablespace storage parameters, the tablespace
block size, the number of rows, and the average row length. The procedure is valid for both
dictionary-managed and locally managed tablespaces.

For index space estimations, the input variables include the DDL commands executed to
create the index and the name of the local plan table (if one exists). The index space estimates
rely on the statistics for the related table. You should be sure those statistics are correct before
starting the space-estimation process; otherwise, the results will be skewed.

The variables for the CREATE_INDEX_COST procedure are described in the following table:

Parameter Description

ddl The create index command

used_bytes The number of bytes used by the index’s data

alloc_bytes The number of bytes allocated for the index’s extents

plan_table The plan table to use (the default is NULL)

Because the CREATE_INDEX_COST procedure bases its results on the table’s statistics, you
cannot use this procedure until the table has been created, loaded, and analyzed. The following
example estimates the space required for a new index on the BOOKSHELF table. The tablespace
designation is part of the create index command passed to the CREATE_INDEX_COST procedure
as part of the ddl variable value.

Chapter 5: Developing and Implementing Applications 147

declare
 calc_used_bytes NUMBER;
 calc_alloc_bytes NUMBER;
begin
 DBMS_SPACE.CREATE_INDEX_COST (
 ddl => 'create index EMP_FN on EMPLOYEES '||
 '(FIRST_NAME) tablespace USERS',
 used_bytes => calc_used_bytes,
 alloc_bytes => calc_alloc_bytes
);
 DBMS_OUTPUT.PUT_LINE('Used bytes = '||calc_used_bytes);
 DBMS_OUTPUT.PUT_LINE('Allocated bytes = '||calc_alloc_bytes);
end;
/

The output of the script will show the used and allocated bytes values for the proposed index
for the employee’s first name:

Used bytes = 749
Allocated bytes = 65536

PL/SQL procedure successfully completed.

Estimating the Proper Value for pctfree
The pctfree value represents the percentage of each data block that is reserved as free space. This
space is used when a row that has already been stored in that data block grows in length, either by
updates of previously NULL fields or by updates of existing values to longer values. The size of a
row can increase (and therefore move the row within a block) during an update when a NUMBER
column increases its precision or a VARCHAR2 column increases in length.

There is no single value for pctfree that will be adequate for all tables in all databases. To simplify
space management, choose a consistent set of pctfree values:

For indexes whose key values are rarely changed: 2

For tables whose rows seldom change: 2

For tables whose rows frequently change: 10 to 30

Why maintain free space in a table or index even if the rows seldom change? Oracle needs
space within blocks to perform block maintenance functions. If there is not enough free space
available (for example, to support a large number of transaction headers during concurrent
inserts), Oracle will temporarily allocate part of the block’s pctfree area. You should choose a
pctfree value that supports this allocation of space. To reserve space for transaction headers in
insert-intensive tables, set the initrans parameter to a non-default value. In general, your pctfree
area should be large enough to hold several rows of data.

NOTE
Oracle automatically allows up to 255 concurrent update transactions
for any data block, depending on the available space in the block.

■

■

■

148 Oracle Database 11g DBA Handbook

Because pctfree is tied to the way in which updates occur in an application, determining the
adequacy of its setting is a straightforward process. The pctfree setting controls the number of
records that are stored in a block in a table. To see if pctfree has been set correctly, first determine
the number of rows in a block. You can use the DBMS_STATS package to gather statistics. If the
pctfree setting is too low, the number of chained rows will steadily increase. You can monitor the
database’s V$SYSSTAT view (or the Automatic Workload Repository) for increasing values of the
“table fetch continued row” action; these indicate the need for the database to access multiple
blocks for a single row.

NOTE
When rows are moved due to inadequate space in the pctfree area,
the move is called a row migration. Row migration will impact the
performance of your transactions.

The DBMS_STATS procedure, while powerful, does not collect statistics on chained rows. You
can still use the analyze command, which is otherwise deprecated in favor of DBMS_STATS, to
reveal chained rows, as in this example:

analyze table employees list chained rows;

NOTE
For indexes that will support a large number of inserts, pctfree may
need to be as high as 50 percent.

Reverse Key Indexes
In a reverse key index, the values are stored backward—for example, a value of 2201 is stored as
1022. If you use a standard index, consecutive values are stored near each other. In a reverse key
index, consecutive values are not stored near each other. If your queries do not commonly perform
range scans and you are concerned about I/O contention (in a RAC database environment) or
concurrency contention (buffer busy waits statistic in ADDM) in your indexes, reverse key indexes
may be a tuning solution to consider. When sizing a reverse key index, follow the same method
used to size a standard index, as shown in the prior sections of this chapter.

There is a downside to reverse key indexes, however: they need a high value for pctfree to
allow for frequent inserts, and must be rebuilt often, more often than a standard B-tree index.

Sizing Bitmap Indexes
If you create a bitmap index, Oracle will dynamically compress the bitmaps generated. The
compression of the bitmap may result in substantial storage savings. To estimate the size of a bitmap
index, estimate the size of a standard (B-tree) index on the same columns using the methods provided
in the preceding sections of this chapter. After calculating the space requirements for the B-tree
index, divide that size by 10 to determine the most likely maximum size of a bitmap index for
those columns. In general, bitmap indexes will be between 2 and 10 percent of the size of a
comparable B-tree index for a bitmap index with low cardinality. The size of the bitmap index
will depend on the variability and number of distinct values in the indexed columns; if a bitmap
index is created on a high-cardinality column, the space occupied by a bitmap index may exceed
the size of a B-tree index on the same column!

Chapter 5: Developing and Implementing Applications 149

NOTE
Bitmap indexes are only available in Oracle Enterprise Edition and
Standard Edition One.

Sizing Index-Organized Tables
An index-organized table is stored sorted by its primary key. The space requirements of an index-
organized table closely mirror those of an index on all of the table’s columns. The difference in
space estimation comes in calculating the space used per row, because an index-organized table
does not have RowIDs.

The following listing gives the calculation for the space requirement per row for an index-
organized table (note that this storage estimate is for the entire row, including its out-of-line storage):

Row length for sizing = Average row length
 + number of columns
 + number of LOB columns + 2 header
bytes

Enter this value as the row length when using the CREATE_TABLE_COST procedure for the index-
organized table.

Sizing Tables That Contain Large Objects (LOBs)
LOB data (in BLOB or CLOB datatypes) is usually stored apart from the main table. You can use
the lob clause of the create table command to specify the storage attributes for the LOB data, such
as a different tablespace. In the main table, Oracle stores a LOB locator value that points to the
LOB data. When the LOB data is stored out of line, between 36 and 86 bytes of control data
(the LOB locator) remain inline in the row piece.

Oracle does not always store the LOB data apart from the main table. In general, the LOB
data is not stored apart from the main table until the LOB data and the LOB locator value total
more than 4000 bytes. Therefore, if you will be storing short LOB values, you need to consider
their impact on the storage of your main table. If your LOB values are less than 4000 characters,
you may be able to use VARCHAR2 datatypes instead of LOB datatypes for the data storage.

To explicitly specify where the LOB will reside if its size is 4000 bytes or less, use the disable
storage in row or enable storage in row clause in the LOB storage clause of the create table
statement. If a LOB is stored inline, and its value starts out with a size less than 4000 bytes, it will
migrate to out of line. If an out of line LOB’s size becomes less than 4000 bytes, it stays out of line.

Sizing Partitions
You can create multiple partitions of a table. In a partitioned table, multiple separate physical
partitions constitute the table. For example, a SALES table may have four partitions: SALES_NORTH,
SALES_SOUTH, SALES_EAST, and SALES_WEST. You should size each of those partitions using
the table-sizing methods described earlier in this chapter. You should size the partition indexes
using the index-sizing methods shown earlier in this chapter.

Using Temporary Tables
You can create temporary tables to hold temporary data during your application processing.
The table’s data can be specific to a transaction or maintained throughout a user’s session.
When the transaction or session completes, the data is truncated from the table.

150 Oracle Database 11g DBA Handbook

To create a temporary table, use the create global temporary table command. To automatically
delete the rows at the end of the transaction, specify on commit delete rows, as shown here:

create global temporary table MY_TEMP_TABLE
(Name VARCHAR2(25),
 Street VARCHAR2(25),
 City VARCHAR2(25))
on commit delete rows;

You can then insert rows into MY_TEMP_TABLE during your application processing. When you
commit, Oracle will truncate MY_TEMP_TABLE. To keep the rows for the duration of your session,
specify on commit preserve rows instead.

From the DBA perspective, you need to know if your application developers are using this
feature. If they are, you need to account for the space required by their temporary tables during
their processing. Temporary tables are commonly used to improve processing speeds of complex
transactions, so you may need to balance the performance benefit against the space costs. You
can create indexes on temporary tables to further improve processing performance, again at the
cost of increased space usage.

NOTE
Temporary tables and their indexes do not allocate any space until
the first insert into them occurs. When they are no longer in use, their
space is deallocated. In addition, if you are using PGA_AGGREGATE
TARGET, Oracle will try to create the tables in memory and will only
write them to temporary space if necessary.

Supporting Tables Based on Abstract Datatypes
User-defined datatypes, also known as abstract datatypes, are a critical part of object-relational
database applications. Every abstract datatype has related constructor methods used by developers
to manipulate data in tables. Abstract datatypes define the structure of data—for example, an
ADDRESS_TY datatype may contain attributes for address data, along with methods for manipulating
that data. When you create the ADDRESS_TY datatype, Oracle will automatically create a constructor
method called ADDRESS_TY. The ADDRESS_TY constructor method contains parameters that
match the datatype’s attributes, facilitating inserts of new values into the datatype’s format. In
the following sections, you will see how to create tables that use abstract datatypes, along with
information on the sizing and security issues associated with that implementation.

You can create tables that use abstract datatypes for their column definitions. For example,
you could create an abstract datatype for addresses, as shown here:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER);

Once the ADDRESS_TY datatype has been created, you can use it as a datatype when
creating your tables, as shown in the following listing:

Chapter 5: Developing and Implementing Applications 151

create table CUSTOMER
(Name VARCHAR2(25),
 Address ADDRESS_TY);

When you create an abstract datatype, Oracle creates a constructor method for use during
inserts. The constructor method has the same name as the datatype, and its parameters are the
attributes of the datatype. When you insert records into the CUSTOMER table, you need to use
the ADDRESS_TY datatype’s constructor method to insert Address values, as shown here:

insert into CUSTOMER values
 ('Joe',ADDRESS_TY('My Street', 'Some City', 'ST', 10001));

In this example, the insert command calls the ADDRESS_TY constructor method in order to insert
values into the attributes of the ADDRESS_TY datatype.

The use of abstract datatypes increases the space requirements of your tables by eight bytes
for each datatype used. If a datatype contains another datatype, you should add eight bytes for
each of the datatypes.

Using Object Views
The use of abstract datatypes may increase the complexity of your development environment. When
you query the attributes of an abstract datatype, you must use a syntax different from the syntax
you use against tables that do not contain abstract datatypes. If you do not implement abstract
datatypes in all your tables, you will need to use one syntax for some of your tables and a separate
syntax for other tables—and you will need to know ahead of time which queries use abstract
datatypes.

For example, the CUSTOMER table uses the ADDRESS_TY datatype described in the previous
section:

create table CUSTOMER
(Name VARCHAR2(25),
 Address ADDRESS_TY);

The ADDRESS_TY datatype, in turn, has four attributes: Street, City, State, and Zip. If you want
to select the Street attribute value from the Address column of the CUSTOMER table, you may write
the following query:

select Address.Street from CUSTOMER;

However, this query will not work. When you query the attributes of abstract datatypes, you
must use correlation variables for the table names. Otherwise, there may be an ambiguity regarding
the object being selected. To query the Street attribute, use a correlation variable (in this case, “C”)
for the CUSTOMER table, as shown in the following example:

select C.Address.Street from CUSTOMER C;

As shown in this example, you need to use correlation variables for queries of abstract datatype
attributes even if the query only accesses one table. There are therefore two features of queries
against abstract datatype attributes: the notation used to access the attributes and the correlation
variables requirement. In order to implement abstract datatypes consistently, you may need to alter
your SQL standards to support 100-percent usage of correlation variables. Even if you use correlation

152 Oracle Database 11g DBA Handbook

variables consistently, the notation required to access attribute values may cause problems as
well, because you cannot use a similar notation on tables that do not use abstract datatypes.

Object views provide an effective compromise solution to this inconsistency. The CUSTOMER
table created in the previous examples assumes that an ADDRESS_TY datatype already exists. But
what if your tables already exist? What if you had previously created a relational database application
and are trying to implement object-relational concepts in your application without rebuilding and
re-creating the entire application? What you would need is the ability to overlay object-oriented
(OO) structures such as abstract datatypes on existing relational tables. Oracle provides object
views as a means for defining objects used by existing relational tables.

If the CUSTOMER table already exists, you could create the ADDRESS_TY datatype and use
object views to relate it to the CUSTOMER table. In the following listing, the CUSTOMER table is
created as a relational table, using only the normally provided datatypes:

create table CUSTOMER
(Name VARCHAR2(25) primary key,
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY datatype. However, for consistency, that
datatype should be applied to the CUSTOMER table as well. The following examples will use the
ADDRESS_TY datatype created in the preceding section.

To create an object view, use the create view command. Within the create view command,
specify the query that will form the basis of the view. The code for creating the CUSTOMER_OV
object view on the CUSTOMER table is shown in the following listing:

create view CUSTOMER_OV (Name, Address) as
select Name,
 ADDRESS_TY(Street, City, State, Zip)
 from CUSTOMER;

The CUSTOMER_OV view will have two columns: the Name and the Address columns (the latter
is defined by the ADDRESS_TY datatype). Note that you cannot specify object as an option within
the create view command.

Several important syntax issues are presented in this example. When a table is built on existing
abstract datatypes, you select column values from the table by referring to the names of the columns
(such as Name) instead of their constructor methods. When creating the object view, however,
you refer to the names of the constructor methods (such as ADDRESS_TY) instead. Also, you can
use where clauses in the query that forms the basis of the object view. You can therefore limit the
rows that are accessible via the object view.

If you use object views, you as the DBA will administer relational tables the same way as you
did before. You will still need to manage the privileges for the datatypes (see the following section
of this chapter for information on security management of abstract datatypes), but the table and
index structures will be the same as they were before the creation of the abstract datatypes. Using
the relational structures will simplify your administration tasks while allowing developers to access
objects via the object views of the tables.

You can also use object views to simulate the references used by row objects. Row objects are
rows within an object table. To create an object view that supports row objects, you need to first
create a datatype that has the same structure as the table, as shown here:

Chapter 5: Developing and Implementing Applications 153

create or replace type CUSTOMER_TY as object
(Name VARCHAR2(25),
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

Next, create an object view based on the CUSTOMER_TY type while assigning object
identifier, or OID, values to the rows in CUSTOMER:

create view CUSTOMER_OV of CUSTOMER_TY
 with object identifier (Name) as
select Name, Street, City, State, Zip
 from CUSTOMER;

The first part of this create view command gives the view its name (CUSTOMER_OV) and tells
Oracle that the view’s structure is based on the CUSTOMER_TY datatype. An object identifier
identifies the row object. In this object view, the Name column will be used as the OID.

If you have a second table that references CUSTOMER via a foreign key or primary key
relationship, you can set up an object view that contains references to CUSTOMER_OV. For example,
the CUSTOMER_CALL table contains a foreign key to the CUSTOMER table, as shown here:

create table CUSTOMER_CALL
(Name VARCHAR2(25),
 Call_Number NUMBER,
 Call_Date DATE,
 constraint CUSTOMER_CALL_PK
 primary key (Name, Call_Number),
 constraint CUSTOMER_CALL_FK foreign key (Name)
 references CUSTOMER(Name));

The Name column of CUSTOMER_CALL references the same column in the CUSTOMER table.
Because you have simulated OIDs (called pkOIDs) based on the primary key of CUSTOMER, you
need to create references to those OIDs. Oracle provides an operator called MAKE_REF that creates
the references (called pkREFs). In the following listing, the MAKE_REF operator is used to create
references from the object view of CUSTOMER_CALL to the object view of CUSTOMER:

create view CUSTOMER_CALL_OV as
select MAKE_REF(CUSTOMER_OV, Name) Name,
 Call_Number,
 Call_Date
 from CUSTOMER_CALL;

Within the CUSTOMER_CALL_OV view, you tell Oracle the name of the view to reference
and the columns that constitute the pkREF. You could now query CUSTOMER_OV data from
within CUSTOMER_CALL_OV by using the DEREF operator on the Customer_ID column:

select DEREF(CCOV.Name)
 from CUSTOMER_CALL_OV CCOV
 where Call_Date = TRUNC(SysDate);

You can thus return CUSTOMER data from your query without directly querying the CUSTOMER
table. In this example, the Call_Date column is used as a limiting condition for the rows returned
by the query.

154 Oracle Database 11g DBA Handbook

Whether you use row objects or column objects, you can use object views to shield your
tables from the object relationships. The tables are not modified; you administer them the way
you always did. The difference is that the users can now access the rows of CUSTOMER as if they
are row objects.

From a DBA perspective, object views allow you to continue creating and supporting standard
tables and indexes while the application developers implement the advanced object-relational
features as a layer above those tables.

Security for Abstract Datatypes
The examples in the previous sections assumed that the same user owned the ADDRESS_TY
datatype and the CUSTOMER table. What if the owner of the datatype is not the table owner?
What if another user wants to create a datatype based on a datatype you have created? In the
development environment, you should establish guidelines for the ownership and use of abstract
datatypes just as you would for tables and indexes.

For example, what if the account named KAREN_SHELL owns the ADDRESS_TY datatype,
and the user of the account named CON_K tries to create a PERSON_TY datatype? I’ll show you
the problem with type ownership, and then show you an easy solution later in this section. For
example, CON_K executes the following command:

create type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

If CON_K does not own the ADDRESS_TY abstract datatype, Oracle will respond to this
create type command with the following message:

Warning: Type created with compilation errors.

The compilation errors are caused by problems creating the constructor method when the
datatype is created. Oracle cannot resolve the reference to the ADDRESS_TY datatype because
CON_K does not own a datatype with that name.

CON_K will not be able to create the PERSON_TY datatype (which includes the ADDRESS_
TY datatype) unless KAREN_SHELL first grants her EXECUTE privilege on the type. The following
listing shows this grant command in action:

grant EXECUTE on ADDRESS_TY to CON_K;

NOTE
You must also grant EXECUTE privilege on the type to any user who
will perform DML operations on the table.

Now that the proper grants are in place, CON_K can create a datatype that is based on
KAREN_SHELL’s ADDRESS_TY datatype:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
 Address KAREN_SHELL.ADDRESS_TY);

Chapter 5: Developing and Implementing Applications 155

CON_K’s PERSON_TY datatype will now be successfully created. However, using datatypes
based on another user’s datatypes is not trivial. For example, during insert operations, you must
fully specify the name of the owner of each type. CON_K can create a table based on her
PERSON_TY datatype (which includes KAREN_SHELL’s ADDRESS_TY datatype), as shown
in the following listing:

create table CON_K_CUSTOMERS
(Customer_ID NUMBER,
 Person PERSON_TY);

If CON_K owned the PERSON_TY and ADDRESS_TY datatypes, an insert into the
CUSTOMER table would use the following format:

insert into CON_K_CUSTOMERS values
(1,PERSON_TY('Jane Doe',
 ADDRESS_TY('101 Main Street','Dodgeville','WI',53595)));

This command will not work. During the insert, the ADDRESS_TY constructor method is
used, and KAREN_SHELL owns it. Therefore, the insert command must be modified to specify
KAREN_SHELL as the owner of ADDRESS_TY. The following example shows the corrected insert
statement, with the reference to KAREN_SHELL shown in bold:

insert into CON_K_CUSTOMERS values
(1,PERSON_TY('John Doe',

KAREN_SHELL.ADDRESS_TY('101 Main Street','Dodgeville','WI',53595)));

Solving this problem is easy: as of Oracle Database 10g, you can create and use a public
synonym for a datatype. Continuing with the previous examples, KAREN_SHELL can create a
public synonym like so and grant EXECUTE privileges on the type:

create public synonym pub_address_ty for address_ty;
grant execute on address_ty to public;

As a result, any user, including CON_K, can now reference the type using the synonym for
creating new tables or types:

create or replace type person_ty as object
 (name varchar2(25),
 address pub_address_ty);

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on procedural
objects, such as procedures and packages. Within the object-relational implementation of Oracle,
the EXECUTE privilege is extended to cover abstract datatypes as well, as you can see in the example
earlier in this section. The EXECUTE privilege is used because abstract datatypes can include
methods—PL/SQL functions and procedures that operate on the datatypes. If you grant someone
the privilege to use your datatype, you are granting the user the privilege to execute the methods
you have defined on the datatype. Although KAREN_SHELL did not yet define any methods on
the ADDRESS_TY datatype, Oracle automatically creates constructor methods that are used to access
the data. Any object (such as PERSON_TY) that uses the ADDRESS_TY datatype uses the constructor
method associated with ADDRESS_TY.

156 Oracle Database 11g DBA Handbook

You cannot create public types, but as you saw earlier in this section, you can create public
synonyms for your types. This helps to alleviate solution to the problem of datatype management;
one solution would be to create all types using a single schema name and creating the
appropriate synonyms. The users who reference the type do not have to know the owner of the
types to use them effectively.

Indexing Abstract Datatype Attributes
In the preceding example, the CON_K_CUSTOMERS table was created based on a PERSON_TY
datatype and an ADDRESS_TY datatype. As shown in the following listing, the CON_K_CUSTOMERS
table contains a scalar (non-object-oriented) column—Customer_ID—and a Person column that is
defined by the PERSON_TY abstract datatype:

create table GEORGE_CUSTOMERS
(Customer_ID NUMBER,
 Person PERSON_TY);

From the datatype definitions shown in the previous section of this chapter, you can see
that PERSON_TY has one column—Name—followed by an Address column defined by the
ADDRESS_TY datatype.

When referencing columns within the abstract datatypes during queries, updates, and
deletes, specify the full path to the datatype attributes. For example, the following query returns
the Customer_ID column along with the Name column. The Name column is an attribute of
the datatype that defines the Person column, so you refer to the attribute as Person.Name, as
shown here:

select C.Customer_ID, C.Person.Name
 from CON_K_CUSTOMERS C;

You can refer to attributes within the ADDRESS_TY datatype by specifying the full path
through the related columns. For example, the Street column is referred to as Person.Address.
Street, which fully describes its location within the structure of the table. In the following
example, the City column is referenced twice—once in the list of columns to select and once
within the where clause:

select C.Person.Name,
 C.Person.Address.City
 from CON_K_CUSTOMERS C
 where C.Person.Address.City like 'C%';

Because the City column is used with a range search in the where clause, the optimizer may be
able to use an index when resolving the query. If an index is available on the City column, Oracle
can quickly find all the rows that have City values starting with the letter C, as requested by the
query.

To create an index on a column that is part of an abstract datatype, you need to specify the
full path to the column as part of the create index command. To create an index on the City
column (which is part of the Address column), you can execute the following command:

create index I_CON_K_CUSTOMERS_CITY
on CON_K_CUSTOMERS(Person.Address.City);

Chapter 5: Developing and Implementing Applications 157

This command will create an index named I_CON_K_CUSTOMER_CITY on the Person.Address.
City column. Whenever the City column is accessed, the optimizer will evaluate the SQL used
to access the data and determine if the new index can be useful to improve the performance of
the access.

When creating tables based on abstract datatypes, you should consider how the columns
within the abstract datatypes will be accessed. If, like the City column in the previous example,
certain columns will commonly be used as part of limiting conditions in queries, they should be
indexed. In this regard, the representation of multiple columns in a single abstract datatype may
hinder your application performance, because it may obscure the need to index specific columns
within the datatype.

When you use abstract datatypes, you become accustomed to treating a group of columns as
a single entity, such as the Address columns or the Person columns. It is important to remember
that the optimizer, when evaluating query access paths, will consider the columns individually.
You therefore need to address the indexing requirements for the columns even when you are
using abstract datatypes. In addition, remember that indexing the City column in one table that
uses the ADDRESS_TY datatype does not affect the City column in a second table that uses the
ADDRESS_TY datatype. If there is a second table named BRANCH that uses the ADDRESS_TY
datatype, then its City column will not be indexed unless you explicitly create an index for it.

Quiescing and Suspending the Database
You can temporarily quiesce or suspend the database during your maintenance operations. Using
these options allows you to keep the database open during application maintenance, avoiding the
time or availability impact associated with database shutdowns.

While the database is quiesced, no new transactions will be permitted by any accounts other
than SYS and SYSTEM. New queries or attempted logins will appear to hang until you unquiesce
the database. The quiesce feature is useful when performing table maintenance or complicated
data maintenance. To use the quiesce feature, you must first enable the Database Resource
Manager, as described earlier in this chapter. In addition, the RESOURCE_MANAGER_PLAN
initialization parameter must have been set to a valid plan when the database was started, and
it must not have been disabled following database startup.

While logged in as SYS or SYSTEM (other SYSDBA privileged accounts cannot execute these
commands), quiesce the database as follows:

alter system quiesce restricted;

Any non-DBA sessions logged into the database will continue until their current command
completes, at which point they will become inactive. In Real Application Clusters configurations,
all instances will be quiesced.

To see if the database is in quiesced state, log in as SYS or SYSTEM and execute the following
query:

select Active_State from V$INSTANCE;

The Active_State column value will be either NORMAL (unquiesced), QUIESCING (active non-
DBA sessions are still running), or QUIESCED.

To unquiesce the database, use the following command:

alter system unquiesce;

158 Oracle Database 11g DBA Handbook

Instead of quiescing the database, you can suspend it. A suspended database performs no I/O
to its datafiles and control files, allowing the database to be backed up without I/O interference.
To suspend the database, use the following command:

alter system suspend;

NOTE
Do not use the alter system suspend command unless you have put
the database in hot backup mode.

Although the alter system suspend command can be executed from any SYSDBA privileged
account, you can only resume normal database operations from the SYS and SYSTEM accounts.
Use SYS and SYSTEM to avoid potential errors while resuming the database operations. In Real
Application Clusters configurations, all instances will be suspended. To see the current status of
the instance, use the following command:

select Database_Status from V$INSTANCE;

The database will be either SUSPENDED or ACTIVE. To resume the database, log in as SYS or
SYSTEM and execute the following command:

alter system resume;

Supporting Iterative Development
Iterative development methodologies typically consist of a series of rapidly developed prototypes.
These prototypes are used to define the system requirements as the system is being developed.
These methodologies are attractive because of their ability to show the customers something
tangible as development is taking place. However, there are a few common pitfalls that occur
during iterative development that undermine its effectiveness.

First, effective versioning is not always used. Creating multiple versions of an application allows
certain features to be “frozen” while others are changed. It also allows different sections of the
application to be in development while others are in test. Too often, one version of the application
is used for every iteration of every feature, resulting in an end product that is not adequately
flexible to handle changing needs (which was the alleged purpose of the iterative development).

Second, the prototypes are not always thrown away. Prototypes are developed to give the
customer an idea of what the final product will look like; they should not be intended as the
foundation of a finished product. Using them as a foundation will not yield the most stable and
flexible system possible. When performing iterative development, treat the prototypes as temporary
legacy systems.

Third, the divisions between development, test, and production environments are clouded.
The methodology for iterative development must very clearly define the conditions that have to
be met before an application version can be moved to the next stage. It may be best to keep the
prototype development completely separate from the development of the full application.

Finally, unrealistic timelines are often set. The same deliverables that applied to the structured
methodology apply to the iterative methodology. The fact that the application is being developed
at an accelerated pace does not imply that the deliverables will be any quicker to generate.

Chapter 5: Developing and Implementing Applications 159

Iterative Column Definitions
During the development process, your column definitions may change frequently. You can
drop columns from existing tables. You can drop a column immediately, or you can mark it as
UNUSED to be dropped at a later time. If the column is dropped immediately, the action may
impact performance. If the column is marked as unused, there will be no impact on performance.
The column can actually be dropped at a later time when the database is less heavily used.

To drop a column, use either the set unused clause or the drop clause of the alter table
command. You cannot drop a pseudocolumn, a column of a nested table, or a partition key column.

In the following example, column Col2 is dropped from a table named TABLE1:

alter table TABLE1 drop column Col2;

You can mark a column as unused, as shown here:

alter table TABLE1 set unused column Col3;

Marking a column as unused does not release the space previously used by the column. You
can also drop any unused columns:

alter table TABLE1 drop unused columns;

You can query USER_UNUSED_COL_TABS, DBA_UNUSED_COL, and ALL_UNUSED_COL_TABS
to see all tables with columns marked as unused.

NOTE
Once you have marked a column as unused, you cannot access that
column. If you export the table after designating a column as unused,
the column will not be exported.

You can drop multiple columns in a single command, as shown in the following example:

alter table TABLE1 drop (Col4, Col5);

NOTE
When dropping multiple columns, you should not use the column
keyword of the alter table command. The multiple column names
must be enclosed in parentheses, as shown in the preceding example.

If the dropped columns are part of primary keys or unique constraints, you will also need to
use the cascade constraints clause as part of your alter table command. If you drop a column that
belongs to a primary key, Oracle will drop both the column and the primary key index.

If you cannot immediately arrange for a maintenance period during which you can drop
the columns, mark them as unused. During a later maintenance period, you can complete the
maintenance from the SYS or SYSTEM account.

Forcing Cursor Sharing
Ideally, application developers should use bind variables in their programs to maximize the reuse
of their previously parsed commands in the shared SQL area. If bind variables are not in use, you
may see many very similar statements in the library cache—queries that differ only in the literal
value in the where clause.

160 Oracle Database 11g DBA Handbook

Statements that are identical except for their literal value components are called similar
statements. Similar statements can reuse previously parsed commands in the shared SQL area
if the CURSOR_SHARING initialization parameter is set to SIMILAR or FORCE. In general, you
should favor using SIMILAR over FORCE, because SIMILAR will allow for a new execution plan
to be generated reflecting any histogram data known about the literal value.

Setting CURSOR_SHARING to EXACT (the default setting) reuses previously parsed commands
only when the literal values are identical.

To use stored outlines with CURSOR_SHARING set to FORCE or SIMILAR, the outlines must
have been generated with that CURSOR_SHARING setting in effect.

NOTE
Dynamic SQL commands are always parsed, essentially bypassing the
value of the shared SQL area.

Managing Package Development
Imagine a development environment with the following characteristics:

None of your standards are enforced.

Objects are created under the SYS or SYSTEM account.

Proper distribution and sizing of tables and indexes is only lightly considered.

Every application is designed as if it were the only application you intend to run in your
database.

As undesirable as these conditions are, they are occasionally encountered during the
implementation of purchased packaged applications. Properly managing the implementation
of packages involves many of the same issues that were described for the application development
processes in the previous sections. This section will provide an overview of how packages should
be treated so they will best fit with your development environment.

Generating Diagrams
Most CASE tools have the ability to reverse-engineer packages into a physical database diagram.
Reverse engineering consists of analyzing the table structures and generating a physical database
diagram that is consistent with those structures, usually by analyzing column names, constraints,
and indexes to identify key columns. However, normally there is no one-to-one correlation
between the physical database diagram and the entity relationship diagram. Entity relationship
diagrams for packages can usually be obtained from the package vendor; they are helpful in
planning interfaces to the package database.

Space Requirements
Most Oracle-based packages provide fairly accurate estimates of their database resource usage
during production usage. However, they usually fail to take into account their usage requirements
during data loads and software upgrades. You should carefully monitor the package’s undo
requirements during large data loads. A spare DATA tablespace may be needed as well if the
package creates copies of all its tables during upgrade operations.

■

■

■

■

Chapter 5: Developing and Implementing Applications 161

Tuning Goals
Just as custom applications have tuning goals, packages must be held to tuning goals as well.
Establishing and tracking these control values will help to identify areas of the package in need
of tuning (see Chapter 8).

Security Requirements
Unfortunately, many packages that use Oracle databases fall into one of two categories: either
they were migrated to Oracle from another database system, or they assume they will have full
DBA privileges for their object owner accounts.

If the packages were first created on a different database system, their Oracle port very likely
does not take full advantage of Oracle’s functional capabilities, such as sequences, triggers, and
methods. Tuning such a package to meet your needs may require modifying the source code.

If the package assumes that it has full DBA authority, it must not be stored in the same
database as any other critical database application. Most packages that require DBA authority do
so in order to add new users to the database. You should determine exactly which system-level
privileges the package administrator account actually requires (usually just CREATE SESSION and
CREATE USER). You can create a specialized system-level role to provide this limited set of system
privileges to the package administrator.

Packages that were first developed on non-Oracle databases may require the use of the same
account as another Oracle-ported package. For example, ownership of a database account called
SYSADM may be required by multiple applications. The only way to resolve this conflict with full
confidence is to create the two packages in separate databases.

Data Requirements
Any processing requirements that the packages have, particularly on the data-entry side, must be
clearly defined. These requirements are usually well documented in package documentation.

Version Requirements
Applications you support may have dependencies on specific versions and features of Oracle. If
you use packaged applications, you will need to base your kernel version upgrade plans on the
vendor’s support for the different Oracle versions. Furthermore, the vendor may switch the optimizer
features it supports—for example, requiring that your COMPATIBLE parameter be set to a specific
value. Your database environment will need to be as flexible as possible in order to support these
changes.

Because of these restrictions outside of your control, you should attempt to isolate the
packaged application to its own instance. If you frequently query data across applications, the
isolation of the application to its own instance will increase your reliance on database links. You
need to evaluate the maintenance costs of supporting multiple instances against the maintenance
costs of supporting multiple applications in a single instance.

Execution Plans
Generating execution plans requires accessing the SQL statements that are run against the database.
The shared SQL area in the SGA maintains the SQL statements that are executed against the
database (accessible via the V$SQL_PLAN view). Matching the SQL statements against specific parts
of the application is a time-consuming process. You should attempt to identify specific areas whose
functionality and performance are critical to the application’s success and work with the package’s

162 Oracle Database 11g DBA Handbook

support team to resolve performance issues. You can use the Automated Workload Repository (see
Chapter 8) to gather all the commands generated during testing periods and then determine the
explain plans for the most resource-intensive queries in that set. If the commands are still in the
shared SQL area, you can see the statistics via V$SQL and the explain plan via V$SQL_PLAN.

Acceptance Test Procedures
Purchased packages should be held to the same functional requirements that custom applications
must meet. The acceptance test procedures should be developed before the package has been
selected; they can be generated from the package-selection criteria. By testing in this manner,
you will be testing for the functionality you need rather than what the package developers
thought you wanted.

Be sure to specify what your options are in the event the package fails its acceptance test
for functional or performance reasons. Critical success factors for the application should not be
overlooked just because it is a purchased application.

The Testing Environment
When establishing a testing environment, follow these guidelines:

It must be larger than your production environment. You need to be able to forecast
future performance.

It must contain known data sets, explain plans, performance results, and data result sets.

It must be used for each release of the database and tools, as well as for new features.

It must support the generation of multiple test conditions to enable the evaluation of the
features’ business costs. You do not want to have to rely on point analysis of results; ideally,
you can determine the cost/benefit curves of a feature as the database grows in size.

It must be flexible enough to allow you to evaluate different licensing cost options.

It must be actively used as a part of your technology implementation methodology.

When testing transaction performance, be sure to track the incremental load rate over time.
In general, the indexes on a table will slow the performance of loads when they reach a second
internal level. See Chapter 8 for details on indexes and load performance.

When testing, your sample queries should represent each of the following groups:

Queries that perform joins, including merge joins, nested loops, outer joins, and hash joins

Queries that use database links

DML statements that use database links

Each type of DML statement (insert, update, and delete statements)

Each major type of DDL statement, including table creations, index rebuilds, and grants

Queries that use Parallel Query (if that option is in use in your environment)

The sample set should not be fabricated; it should represent your operations, and it must be
repeatable. Generating the sample set should involve reviewing your major groups of operations
as well as the OLTP operations executed by your users. The result will not reflect every action
within the database, but will allow you to be aware of the implications of upgrades and thus
allow you to mitigate your risk and make better decisions about implementing new options.

■

■

■

■

■

■

■

■

■

■

■

■

CHAPTER
6

Monitoring Space Usage

163

164 Oracle Database 11g DBA Handbook

good DBA has a toolset in place to monitor the database, both proactively
monitoring various aspects of the database, such as transaction load, security
enforcement, space management, and performance monitoring, and effectively
reacting to any potentially disastrous system problems. Transaction management,
performance tuning, memory management, and database security and auditing are

covered in Chapters 7, 8, and 9. In this chapter, we’ll address how a DBA can effectively and
efficiently manage the disk space used by database objects in the different types of tablespaces:
the SYSTEM tablespace, the SYSAUX tablespace, temporary tablespaces, undo tablespaces, and
tablespaces of different sizes.

To reduce the amount of time it takes to manages disk space, it is important for the DBA to
understand how the applications will be using the database as well as to provide guidance during the
design of the database application. Designing and implementing the database application, including
tablespace layouts and expected growth of the database, have been covered in Chapters 3, 4, and 5.

In this chapter, I’ll also provide some scripts that need not much more than SQL*Plus and the
knowledge to interpret the results. These scripts are good for a quick look at the database’s health
at a given point in time—for example, to see if there is enough disk space to handle a big SQL*Loader
job that evening or to diagnose some response-time issues for queries that normally run quickly.

Oracle provides a number of built-in packages to help the busy DBA manage space and diagnose
problems. For example, Oracle Segment Advisor, introduced in Oracle Database 10g, helps to
determine if a database object has space available for reuse, given how much fragmentation exists
in the object. Other features of Oracle, such as Resumable Space Allocation, allow a long-running
operation that runs out of disk space to be suspended until the DBA can intervene and allocate
enough additional disk space to complete the operation. As a result, the long-running job will
not have to be restarted from the beginning.

We’ll also cover some of the key data dictionary and dynamic performance views that give
us a close look at the structure of the database and a way to optimize space usage. Many of the
scripts provided in this chapter use these views.

At the end of this chapter, we’ll cover two different methods for automating some of the scripts
and Oracle tools: using the DBMS_SCHEDULER built-in package as well as using the Oracle
Enterprise Manager (OEM) infrastructure.

Space usage for tablespaces will be the primary focus in this chapter, along with the objects
contained within the tablespaces. Other database files, such as control files and redo log files, take
up disk space, but as a percentage of the total space used by a database they are small. We will,
however, briefly consider how archived log files are managed because the number of archived log
files will increase indefinitely at a pace proportional to how much DML activity occurs in the
database. Therefore, a good plan for managing archived log files will help keep disk space usage
under control.

Common Space Management Problems
Space management problems generally fall into one of three categories: running out of space in a
regular tablespace, not having enough undo space for long-running queries that need a consistent
“before” image of the tables, and insufficient space for temporary segments. Although we may still
have some fragmentation issues within a database object such as a table or index, locally managed
tablespaces solve the problem of tablespace fragmentation.

A

Chapter 6: Monitoring Space Usage 165

I will address each of these three problem areas by using the techniques described in the
following sections.

Running Out of Free Space in a Tablespace
If a tablespace is not defined with the AUTOEXTEND attribute, then the total amount of space in
all the datafiles that compose the tablespace limits the amount of data that can be stored in the
tablespace. If the AUTOEXTEND attribute is defined, then one or more of the datafiles that compose
the tablespace will grow to accommodate the requests for new segments or the growth of existing
segments. Even with the AUTOEXTEND attribute, the amount of space in the tablespace is ultimately
limited by the amount of disk space on the physical disk drive or storage group.

The AUTOEXTEND attribute is the default if you don’t specify the SIZE parameter in the
create tablespace command and you are using OMF, so you’ll actually have to go out of your
way to prevent a datafile from autoextending. In Oracle Database 11g with the initialization
parameter DB_CREATE_FILE_DEST set to an ASM or file system location, you can run a create
tablespace command like this:

create tablespace bi_02;

In this case, the tablespace BI_02 is created with a size of 100MB in a single datafile,
AUTOEXTEND is on, and the next extent is 100MB when the first datafile fills up. In addition,
extent management is set to LOCAL, space allocation is AUTOALLOCATE, and segment space
management set to AUTO.

The conclusion to be reached here is that we want to monitor the free and used space within
a tablespace to detect trends in space usage over time, and as a result be proactive in making sure
that enough space is available for future space requests. As of Oracle Database 10g, you can use
the DBMS_SERVER_ALERT package to automatically notify you when a tablespace reaches a
warning or critical space threshold level, either at a percent used, space remaining, or both.

Insufficient Space for Temporary Segments
A temporary segment stores intermediate results for database operations such as sorts, index builds,
distinct queries, union queries, or any other operation that necessitates a sort/merge operation that
cannot be performed in memory. Temporary segments should be allocated in a temporary tablespace,
which I introduced in Chapter 1. Under no circumstances should the SYSTEM tablespace be used for
temporary segments; when the database is created, a non-SYSTEM tablespace should be specified as
a default temporary tablespace for users who are not otherwise assigned a temporary tablespace. If
the SYSTEM tablespace is locally managed, a default temporary tablespace must be defined when the
database is created.

When there is not enough space available in the user’s default temporary tablespace, and
either the tablespace cannot be autoextended or the tablespace’s AUTOEXTEND attribute is
disabled, the user’s query or DML statement fails.

Too Much or Too Little Undo Space Allocated
As of Oracle9i, undo tablespaces have simplified the management of rollback information by
managing undo information automatically within the tablespace. The DBA no longer has to define
the number and size of the rollback segments for the kinds of activity occurring in the database.
As of Oracle 10g, manual rollback management has been deprecated.

166 Oracle Database 11g DBA Handbook

Not only does an undo segment allow a rollback of an uncommitted transaction, it provides
for read consistency of long-running queries that begin before inserts, updates, and deletes occur
on a table. The amount of undo space available for providing read consistency is under the control
of the DBA and is specified as the number of seconds that Oracle will attempt to guarantee that
“before” image data is available for long-running queries.

As with temporary tablespaces, we want to make sure we have enough space allocated in an
undo tablespace for peak demands without allocating more than is needed. As with any tablespace,
we can use the AUTOEXTEND option when creating the tablespace to allow for unexpected growth
of the tablespace without reserving too much disk space up front.

Undo segment management is discussed in detail in Chapter 7, whereas the tools to help size
the undo tablespaces are discussed later in this chapter.

Fragmented Tablespaces and Segments
As of Oracle8i, a tablespace that is locally managed uses bitmaps to keep track of free space, which,
in addition to eliminating the contention on the data dictionary, eliminates wasted space because
all extents are either the same size (with uniform extent allocation) or are multiples of the smallest
size (with autoallocation). For migrating from a dictionary-managed tablespace, we will review
an example that converts a dictionary-managed tablespace to a locally managed tablespace. In a
default installation of Oracle Database 10g or Oracle Database 11g using the Database Creation
Assistant (DBCA), all tablespaces, including the SYSTEM and SYSAUX tablespaces, are created as
locally managed tablespaces.

Even though locally managed tablespaces with automatic extent management (using the
autoallocate clause) are created by default when you use create tablespace, you still need to
specify extent management local if you need to specify uniform for the extent management
type in the create tablespace statement:

SQL> create tablespace USERS4
 2 datafile '+DATA'
 3 size 250M autoextend on next 250M maxsize 2000M
 4 extent management local uniform size 8M
 5 segment space management auto;
Tablespace created.

This tablespace will be created with an initial size of 250MB, and it can grow as large
as 2000MB (2GB); extents will be locally managed with a bitmap, and every extent in this
tablespace will be exactly 8MB in size. Space within each segment (table or index) will be
managed automatically with a bitmap instead of freelists.

Even with efficient extent allocation, table and index segments may eventually contain a
lot of free space due to update and delete statements. As a result, a lot of unused space can be
reclaimed by using some of the scripts I provide later in this chapter, as well as by using the
Oracle Segment Advisor.

Oracle Segments, Extents, and Blocks
In Chapter 1, I gave you an overview of tablespaces and the logical structures contained within
them. I also briefly presented datafiles, allocated at the operating system level, as the building
blocks for tablespaces. Being able to effectively manage disk space in the database requires an
in-depth knowledge of tablespaces and datafiles, as well as the components of the segments

Chapter 6: Monitoring Space Usage 167

stored within the tablespaces, such as tables and indexes. At the lowest level, a tablespace
segment consists of one or more extents, each extent comprising one or more data blocks.
Figure 6-1 shows the relationship between segments, extents, and blocks in an Oracle database.

In the following sections, we’ll cover some of the details of data blocks, extents, and segments
with the focus on space management.

Data Blocks
A data block is the smallest unit of storage in the database. Ideally, an Oracle block is a multiple
of the operating system block to ensure efficient I/O operations. The default block size for the
database is specified with the DB_BLOCK_SIZE initialization parameter; this block size is used
for the SYSTEM, TEMP, and SYSAUX tablespaces at database creation and cannot be changed
without re-creating the database.

The format for a data block is presented in Figure 6-2.
Every data block contains a header that specifies what kind of data is in the block—table rows

or index entries. The table directory section has information about the table with rows in the block;
a block can have rows from only one table or entries from only one index, unless the table is a
clustered table, in which case the table directory identifies all the tables with rows in this block.
The row directory provides details of the specific rows of the table or index entries in the block.

FIGURE 6-1 Oracle segments, extents, and blocks

168 Oracle Database 11g DBA Handbook

The space for the header, table directory, and row directory is a very small percentage of the
space allocated for a block; our focus, then, is on the free space and row data within the block.

Within a newly allocated block, free space is available for new rows and updates to existing
rows; the updates may increase or decrease the space allocated for the row if there are varying-
length columns in the row or a non-NULL value is changed to a NULL value, or vice versa. Space
is available within a block for new inserts until there is less than a certain percentage of space
available in the block defined by the PCTFREE parameter, specified when the segment is created.
Once there is less than PCTFREE space in the block, no inserts are allowed. If freelists are used
to manage space within the blocks of a segment, then new inserts are allowed on the table when
used space within the block falls below PCTUSED.

A row may span more than one block if the row size is greater than the block size or an
updated row no longer fits into the original block. In the first case, a row that is too big for a
block is stored in a chain of blocks; this may be unavoidable if a row contains columns that
exceed even the largest block size allowed, which in Oracle 11g is 32KB.

FIGURE 6-2 Contents of an Oracle data block

Chapter 6: Monitoring Space Usage 169

In the second case, an update to a row in a block may no longer fit in the original block, and
as a result Oracle will migrate the data for the entire row to a new block and leave a pointer in
the first block to point to the location in the second block where the updated row is stored. As
you may infer, a segment with many migrated rows may cause I/O performance problems because
the number of blocks required to satisfy a query can double. In some cases, adjusting the value of
PCTFREE or rebuilding the table may result in better space utilization and I/O performance. More
tips on how to improve I/O performance can be found in Chapter 8.

Starting with Oracle9i Release 2, you can use Automatic Segment Space Management (ASSM)
to manage free space within blocks; you enable ASSM in locally managed tablespaces by using
the segment space management auto keywords in the create tablespace command (although this
is the default for locally managed tablespaces).

Using ASSM reduces segment header contention and improves simultaneous insert concurrency;
this is because the free space map in a segment is spread out into a bitmap block within each
extent of the segment. As a result, you dramatically reduce waits because each process performing
insert, update, or delete operations will likely be accessing different blocks instead of one freelist
or one of a few freelist groups. In addition, each extent’s bitmap block lists each block within the
extent along with a four-bit “fullness” indicator defined as follows (with room for future expansion
from values 6–15):

0000 Unformatted block

0001 Block full

0010 Less than 25 percent free space available

0011 25 percent to 50 percent free space

0100 50 percent to 75 percent free space

0101 Greater than 75 percent free space

In a RAC database environment, using ASSM segments means you no longer need to create
multiple freelist groups. In addition, you no longer need to specify PCTUSED, FREELISTS, or
FREELIST GROUPS parameters when you create a table; if you specify any of these parameters,
they are ignored.

Extents
An extent is the next level of logical space allocation in a database; it is a specific number of
blocks allocated for a specific type of object, such as a table or index. An extent is the minimum
number of blocks allocated at one time; when the space in an extent is full, another extent is
allocated.

When a table is created, an initial extent is allocated. Once the space is used in the initial extent,
incremental extents are allocated. In a locally managed tablespace, these subsequent extents can
either be the same size (using the UNIFORM keyword when the tablespace is created) or optimally
sized by Oracle (AUTOALLOCATE). For extents that are optimally sized, Oracle starts with a
minimum extent size of 64KB and increases the size of subsequent extents as multiples of the initial
extent as the segment grows. In this way, fragmentation of the tablespace is virtually eliminated.

■

■

■

■

■

■

170 Oracle Database 11g DBA Handbook

When the extents are sized automatically by Oracle, the storage parameters INITIAL, NEXT,
PCTINCREASE, and MINEXTENTS are used as a guideline, along with Oracle’s internal algorithm,
to determine the best extent sizes. In the following example, a table created in the USERS tablespace
(during installation of a new database, the USERS tablespace is created with AUTOALLOCATE
enabled) does not use the storage parameters specified in the create table statement:

SQL> create table t_autoalloc (c1 char(2000))
 2 storage (initial 1m next 2m pctincrease 50)
 3 tablespace users;

Table created.

SQL> begin
 2 for i in 1..3000 loop
 3 insert into t_autoalloc values ('a');
 4 end loop;
 5 end;
 6 /

PL/SQL procedure successfully completed.

SQL> select segment_name, extent_id, bytes, blocks
 2 from user_extents where segment_name = 'T_AUTOALLOC';

SEGMENT_NAME EXTENT_ID BYTES BLOCKS
------------ ---------- ---------- ----------
T_AUTOALLOC 0 65536 8
T_AUTOALLOC 1 65536 8
. . .
T_AUTOALLOC 15 65536 8
T_AUTOALLOC 16 1048576 128
. . .
T_AUTOALLOC 22 1048576 128

23 rows selected.

Unless a table is truncated or the table is dropped, any blocks allocated to an extent remain
allocated for the table, even if all rows have been deleted from the table. The maximum number
of blocks ever allocated for a table is known as the high-water mark (HWM).

Segments
Groups of extents are allocated for a single segment. A segment must be wholly contained within
one and only one tablespace. Every segment represents one and only one type of database object,
such as a table, a partition of a partitioned table, an index, or a temporary segment. For partitioned
tables, every partition resides in its own segment; however, a cluster (with two or more tables)
resides within a single segment. Similarly, a partitioned index consists of one segment for each
index partition.

Temporary segments are allocated in a number of scenarios. When a sort operation cannot fit
in memory, such as a select statement that needs to sort the data to perform a distinct, group by,
or union operation, a temporary segment is allocated to hold the intermediate results of the sort.

Chapter 6: Monitoring Space Usage 171

Index creation also typically requires the creation of a temporary segment. Because allocation and
deallocation of temporary segments occurs often, it is highly desirable to create a tablespace
specifically to hold temporary segments. This helps to distribute the I/O required for a given
operation, and it reduces the possibility that fragmentation may occur in other tablespaces
due to the allocation and deallocation of temporary segments. When the database is created,
a default temporary tablespace can be created for any new users who do not have a specific
temporary tablespace assigned; if the SYSTEM tablespace is locally managed, a separate temporary
tablespace must be created to hold temporary segments.

How space is managed within a segment depends on how the tablespace containing the block
is created. If the tablespace is dictionary managed, the segment uses freelists to manage space
within the data blocks; if the tablespace is locally managed, space in segments can be managed
with either freelists or bitmaps. Oracle strongly recommends that all new tablespaces be created
as locally managed and that free space within segments be managed automatically with bitmaps.
Automatic segment space management allows more concurrent access to the bitmap lists in a
segment compared to freelists; in addition, tables that have widely varying row sizes make more
efficient use of space in segments that are automatically managed.

As I mentioned earlier, in the section titled “Data Blocks,” if a segment is created with automatic
segment space management, bitmaps are used to manage the space within the segment. As a result,
the pctused, freelist, and freelist groups keywords within a create table or create index statement
are ignored. The three-level bitmap structure within the segment indicates whether blocks below
the HWM are full (less than pctfree), 0 to 25 percent free, 25 to 50 percent free, 50 to 75 percent
free, 75 to 100 percent free, or unformatted.

Data Dictionary Views and Dynamic
Performance Views
A number of data dictionary and dynamic performance views are critical in understanding how
disk space is being used in your database. The data dictionary views that begin with DBA_ are of
a more static nature, whereas the V$ views, as expected, are of a more dynamic nature and give
you up-to-date statistics on how space is being used in the database.

In the next few sections, I’ll highlight the space management views and provide some quick
examples; later in this chapter, you’ll see how these views form the basis of Oracle’s space
management tools.

DBA_TABLESPACES
The view DBA_TABLESPACES contains one row for each tablespace, whether native or currently
plugged in from another database. It contains default extent parameters for objects created in the
tablespace that don’t specify initial and next values. The EXTENT_MANAGEMENT column indicates
whether the tablespace is locally managed or dictionary managed. As of Oracle 10g, the column
BIGFILE indicates whether the tablespace is a smallfile or a bigfile tablespace. Bigfile tablespaces
are discussed later in this chapter.

In the following query we retrieve the tablespace type and the extent management type for all
tablespaces within the database:

SQL> select tablespace_name, block_size,
 2 contents, extent_management from dba_tablespaces;

172 Oracle Database 11g DBA Handbook

TABLESPACE_NAME BLOCK_SIZE CONTENTS EXTENT_MAN
------------------------------ ---------- --------- ----------
SYSTEM 8192 PERMANENT LOCAL
SYSAUX 8192 PERMANENT LOCAL
UNDOTBS1 8192 UNDO LOCAL
TEMP 8192 TEMPORARY LOCAL
USERS 8192 PERMANENT LOCAL
EXAMPLE 8192 PERMANENT LOCAL
DMARTS 16384 PERMANENT LOCAL
XPORT 8192 PERMANENT LOCAL
USERS2 8192 PERMANENT LOCAL
USERS3 8192 PERMANENT LOCAL
USERS4 8192 PERMANENT LOCAL

11 rows selected.

In this example, all the tablespaces are locally managed; in addition, the DMARTS tablespace
has a larger block size to improve response time for data mart tables that are typically accessed
hundreds or thousands of rows at a time.

DBA_SEGMENTS
The data dictionary view DBA_SEGMENTS has one row for each segment in the database. This
view is not only good for retrieving the size of the segment, in blocks or bytes, but also for identifying
the owner of the object and the tablespace where an object resides:

SQL> select tablespace_name, count(*) NUM_OBJECTS,
 2 sum(bytes), sum(blocks), sum(extents) from dba_segments
 3 group by rollup (tablespace_name);

TABLESPACE_NAME NUM_OBJECTS SUM(BYTES) SUM(BLOCKS) SUM(EXTENTS)
---------------- ----------- ---------- ----------- ------------
DMARTS 2 67108864 4096 92
EXAMPLE 418 81068032 9896 877
SYSAUX 5657 759103488 92664 8189
SYSTEM 1423 732233728 89384 2799
UNDOTBS1 10 29622272 3616 47
USERS 44 11665408 1424 73
XPORT 1 134217728 16384 87
 7555 1815019520 217464 12164

DBA_EXTENTS
The DBA_EXTENTS view is similar to DBA_SEGMENTS, except that DBA_EXTENTS drills down
further into each database object. There is one row in DBA_EXTENTS for each extent of each
segment in the database, along with the FILE_ID and BLOCK_ID of the datafile containing the extent:

SQL> select owner, segment_name, tablespace_name,
 2 extent_id, file_id, block_id, bytes from dba_extents
 3 where segment_name = 'AUD$';

Chapter 6: Monitoring Space Usage 173

OWNER SEGMENT_NAM TABLESPACE EXTENT_ID FILE_ID BLOCK_ID BYTES
----- -------------- ---------- ---------- ---------- ---------- ---------
SYS AUD$ SYSTEM 3 1 32407 196608
SYS AUD$ SYSTEM 4 1 42169 262144
SYS AUD$ SYSTEM 5 2 289 393216
SYS AUD$ SYSTEM 2 1 31455 131072
SYS AUD$ SYSTEM 1 1 30303 65536
SYS AUD$ SYSTEM 0 1 261 16384

In this example, the table AUD$ owned by SYS has extents in two different datafiles that
compose the SYSTEM tablespace.

DBA_FREE_SPACE
The view DBA_FREE_SPACE is broken down by datafile number within the tablespace. You can
easily compute the amount of free space in each tablespace by using the following query:

SQL> select tablespace_name, sum(bytes) from dba_free_space
 2 group by tablespace_name;

TABLESPACE_NAME SUM(BYTES)
---------------- ----------
DMARTS 194969600
XPORT 180289536
SYSAUX 44105728
UNDOTBS1 75169792
USERS3 104792064
USERS4 260046848
USERS 1376256
USERS2 104792064
SYSTEM 75104256
EXAMPLE 23724032

10 rows selected.

Note that the free space does not take into account the space that would be available if and
when the datafiles in a tablespace are autoextended. Also, any space allocated to a table for rows
that are later deleted will be available for future inserts into the table, but it is not counted in the
preceding query results as space available for other database objects. When a table is truncated,
however, the space is made available for other database objects.

DBA_LMT_FREE_SPACE
The view DBA_LMT_FREE_SPACE provides the amount of free space, in blocks, for all tablespaces
that are locally managed, and it must be joined with DBA_DATA_FILES to get the tablespace names.

DBA_THRESHOLDS
New to Oracle 10g, DBA_THRESHOLDS contains the currently active list of the different metrics
that gauge the database’s health and specify a condition under which an alert will be issued if the
metric threshold reaches or exceeds a specified value.

174 Oracle Database 11g DBA Handbook

The values in this view are typically maintained via the OEM interface; in addition, the Oracle
10g DBMS_SERVER_ALERT built-in PL/SQL package can set and get the threshold values with
the SET_THRESHOLD and GET_THRESHOLD procedures, respectively. To read alert messages
in the alert queue, you can use the DBMS_AQ and DBMS_AQADM packages, or OEM can be
configured to send a pager or e-mail message when the thresholds have been exceeded.

For a default installation of Oracle Database 10g and Oracle Database 11g, a number of
thresholds are configured, including the following:

At least one user session is blocked every minute for three consecutive minutes.

Any segments are not able to extend for any reason.

The total number of concurrent processes comes within 80 percent of the PROCESSES
initialization parameter value.

More than two invalid objects exist for any individual database user.

The total number of concurrent user sessions comes within 80 percent of the SESSIONS
initialization parameter value.

There are more than 1200 concurrent open cursors.

There are more than 100 logons per second.

A tablespace is more than 85 percent full (warning) or more than 97 percent full (critical).

User logon time is greater than 1000 milliseconds (1 second).

DBA_OUTSTANDING_ALERTS
The Oracle 10g view DBA_OUTSTANDING_ALERTS contains one row for each active alert in the
database, until the alert is cleared or reset. One of the fields in this view, SUGGESTED_ACTION,
contains a recommendation for addressing the alert condition.

DBA_ALERT_HISTORY
After an alert in DBA_OUTSTANDING_ALERTS has been addressed and cleared, a record of the
cleared alert is available in the view DBA_ALERT_HISTORY.

V$ALERT_TYPES
The dynamic performance view V$ALERT_TYPES (new to Oracle 10g) lists the 158 alert conditions
(as of Oracle 11g, Release 1) that can be monitored. The GROUP_NAME column categorizes the
alert conditions by type. For example, for space management issues, we would use alerts with a
GROUP_NAME of 'Space':

SQL> select reason_id, object_type, scope, internal_metric_category,
 2 internal_metric_name from v$alert_types
 3 where group_name = 'Space';

 REASON_ID OBJECT_TYPE SCOPE INTERNAL_METRIC_CATE INTERNAL_METRIC_NA
---------- ------------------ -------- -------------------- ------------------
 123 RECOVERY AREA Database Recovery_Area Free_Space
 1 SYSTEM Instance
 0 SYSTEM Instance

■

■

■

■

■

■

■

■

■

Chapter 6: Monitoring Space Usage 175

 133 TABLESPACE Database problemTbsp bytesFree
 9 TABLESPACE Database problemTbsp pctUsed
 12 TABLESPACE Database Suspended_Session Tablespace
 10 TABLESPACE Database Snap_Shot_Too_Old Tablespace
 13 ROLLBACK SEGMENT Database Suspended_Session Rollback_Segment
 11 ROLLBACK SEGMENT Database Snap_Shot_Too_Old Rollback_Segment
 14 DATA OBJECT Database Suspended_Session Data_Object
 15 QUOTA Database Suspended_Session Quota

11 rows selected.

Using alert type with REASON_ID=123 as an example, an alert can be initiated when the free
space in the database recovery area falls below a specified percentage.

V$UNDOSTAT
Having too much undo space and having not enough undo space are both problems. Although
an alert can be set up to notify the DBA when the undo space is not sufficient to provide enough
transaction history to satisfy Flashback queries or enough “before” image data to prevent
“Snapshot Too Old” errors, a DBA can be proactive by monitoring the dynamic performance
view V$UNDOSTAT during heavy database usage periods.

V$UNDOSTAT displays historical information about the consumption of undo space for ten-
minute intervals. By analyzing the results from this table, a DBA can make informed decisions
when adjusting the size of the undo tablespace or changing the value of the UNDO_RETENTION
initialization parameter.

V$OBJECT_USAGE
If an index is not being used, it not only takes up space that could be used by other objects, but
the overhead of maintaining the index whenever an insert, update, or delete occurs is wasted.
By using the alter index . . . monitoring usage command, the view V$OBJECT_USAGE will be
updated when the index has been accessed indirectly because of a select statement.

V$SORT_SEGMENT
The view V$SORT_SEGMENT can be used to view the allocation and deallocation of space in a
temporary tablespace’s sort segment. The column CURRENT_USERS indicates how many distinct
users are actively using a given segment. V$SORT_SEGMENT is only populated for temporary
tablespaces.

V$TEMPSEG_USAGE
From the perspective of users requesting temporary segments, the view V$TEMPSEG_USAGE
identifies the locations, types, and sizes of the temporary segments currently being requested.
Unlike V$SORT_SEGMENT, V$TEMPSEG_USAGE will contain information about temporary
segments in both temporary and permanent tablespaces. Later in this chapter, I’ll introduce the
improved and simplified temporary tablespace management tools available in Oracle Database 11g.

Space Management Methodologies
In the following sections, we will consider various features of Oracle 11g to facilitate the efficient
use of disk space in the database. Locally managed tablespaces offer a variety of advantages to the
DBA, improving the performance of the objects within the tablespace, as well as easing administration

176 Oracle Database 11g DBA Handbook

of the tablespace—fragmentation of a tablespace is a thing of the past. Another feature introduced
in Oracle9i, Oracle Managed Files, eases datafile maintenance by automatically removing files at
the operating system level when a tablespace or other database object is dropped. Bigfile
tablespaces, introduced in Oracle 10g, simplify datafile management because one and only one
datafile is associated with a bigfile tablespace. This moves the maintenance point up one level,
from the datafile to the tablespace. We’ll also review a couple other features introduced in
Oracle9i—undo tablespaces and multiple block sizes.

Locally Managed Tablespaces
Prior to Oracle8i, there was only one way to manage free space within a tablespace—by using
data dictionary tables in the SYSTEM tablespace. If a lot of insert, delete, and update activity
occurs anywhere in the database, there is the potential for a “hot spot” to occur in the SYSTEM
tablespace where the space management occurs. Oracle removed this potential bottleneck by
introducing locally managed tablespaces (LMTs). A locally managed tablespace tracks free space
in the tablespace with bitmaps, as discussed in Chapter 1. These bitmaps can be managed very
efficiently because they are very compact compared to a freelist of available blocks. Because they
are stored within the tablespace itself, instead of in the data dictionary tables, contention in the
SYSTEM tablespace is reduced.

As of Oracle 10g, by default, all tablespaces are created as locally managed tablespaces,
including the SYSTEM and SYSAUX tablespaces. When the SYSTEM tablespace is locally
managed, you can no longer create any dictionary-managed tablespaces in the database that
are read/write. A dictionary-managed tablespace may still be plugged into the database from
an earlier version of Oracle, but it is read-only.

An LMT can have objects with one of two types of extents: automatically sized or all of a
uniform size. If extent allocation is set to UNIFORM when the LMT is created, all extents, as
expected, are the same size. Because all extents are the same size, there can be no fragmentation.
Gone is the classic example of a 51MB segment that can’t be allocated in a tablespace with two
free 50MB extents because the two 50MB extents are not adjacent.

On the other hand, automatic segment extent management within a locally managed tablespace
allocates space based on the size of the object. Initial extents are small, and if the object stays
small, very little space is wasted. If the table grows past the initial extent allocated for the segment,
subsequent extents to the segment are larger. Extents in an autoallocated LMT have sizes of 64KB,
1MB, 8MB, and 64MB, and the extent size increases as the size of the segment increases, up to a
maximum of 64MB. In other words, Oracle is specifying what the values of INITIAL, NEXT, and
PCTINCREASE are automatically, depending on how the object grows. Although it seems like
fragmentation can occur in a tablespace with autoallocation, in practice the fragmentation is
minimal because a new object with a 64KB initial segment size will fit nicely in a 1MB, 4MB,
8MB, or 64MB block preallocated for all other objects with an initial 64KB extent size.

Given an LMT with either automatically managed extents or uniform extents, the free space
within the segment itself can be AUTO or MANUAL. With AUTO segment space management,
a bitmap is used to indicate how much space is used in each block. The parameters PCTUSED,
FREELISTS, and FREELIST GROUPS no longer need to be specified when the segment is created.
In addition, the performance of concurrent DML operations is improved because the segment’s
bitmap allows concurrent access. In a freelist-managed segment, the data block in the segment
header that contains the freelist is locked out to all other writers of the block when a single writer
is looking for a free block in the segment. Although allocating multiple freelists for very active
segments does somewhat solve the problem, it is another structure that the DBA has to manage.

Chapter 6: Monitoring Space Usage 177

Another advantage of LMTs is that rollback information is reduced or eliminated when any
LMT space-related operation is performed. Because the update of a bitmap in a tablespace is not
recorded in a data dictionary table, no rollback information is generated for this transaction.

Other than third-party applications, such as older versions of SAP that require dictionary-
managed tablespaces, there are no other reasons for creating new dictionary-managed tablespaces
in Oracle 10g. As mentioned earlier, compatibility is provided in part to allow dictionary-managed
tablespaces from previous versions of Oracle to be “plugged into” an Oracle 11g database, although
if the SYSTEM tablespace is locally managed, any dictionary-managed tablespaces must be opened
read-only. Later in this chapter, you’ll see some examples where we can optimize space and
performance by moving a tablespace from one database to another and allocating additional
data buffers for tablespaces with different sizes.

Migrating a dictionary-managed tablespace to a locally managed tablespace is very
straightforward using the DBMS_SPACE_ADMIN built-in package:

execute sys.dbms_space_admin.tablespace_migrate_to_local('USERS')

After upgrading a database to either Oracle9i, Oracle 10g, or Oracle 11g, you may also want to
consider migrating the SYSTEM tablespace to an LMT; if so, a number of prerequisites are in order:

Before starting the migration, shut down the database and perform a cold backup of the
database.

Any non-SYSTEM tablespaces that are to remain read/write should be converted to LMTs.

The default temporary tablespace must not be SYSTEM.

If automatic undo management is being used, the undo tablespace must be online.

For the duration of the conversion, all tablespaces except for the undo tablespace must
be set to read-only.

The database must be started in RESTRICTED mode for the duration of the conversion.

If any of these conditions are not met, the TABLESPACE_MIGRATE_TO_LOCAL procedure will
not perform the migration.

Using OMF to Manage Space
In a nutshell, Oracle-Managed Files (OMF) simplifies the administration of an Oracle database. At
database-creation time, or later by changing a couple parameters in the initialization parameter
file, the DBA can specify a number of default locations for database objects such as datafiles,
redo log files, and control files. Prior to Oracle9i, the DBA had to remember where the existing
datafiles were stored by querying the DBA_DATA_FILES and DBA_TEMP_FILES views. On many
occasions, a DBA would drop a tablespace, but would forget to delete the underlying datafiles,
thus wasting space and the time it took to back up files that were no longer used by the database.

Using OMF, Oracle not only automatically creates and deletes the files in the specified
directory location, it ensures that each filename is unique. This avoids corruption and database
downtime in a non-OMF environment due to existing files being overwritten by a DBA inadvertently
creating a new datafile with the same name as an existing datafile, and using the REUSE clause.

In a test or development environment, OMF reduces the amount of time the DBA must spend
on file management and lets him or her focus on the applications and other aspects of the test

■

■

■

■

■

■

178 Oracle Database 11g DBA Handbook

database. OMF has an added benefit for packaged Oracle applications that need to create
tablespaces: The scripts that create the new tablespaces do not need any modification to include
a datafile name, thus increasing the likelihood of a successful application deployment.

Migrating to OMF from a non-OMF environment is easy, and it can be accomplished over a
longer time period. Non-OMF files and OMF files can coexist indefinitely in the same database.
When the appropriate initialization parameters are set, all new datafiles, control files, and redo
log files can be created as OMF files, while the previously existing files can continue to be managed
manually until they are converted to OMF, if ever.

The OMF-related initialization parameters are detailed in Table 6-1. Note that the operating
system path specified for any of these initialization parameters must already exist; Oracle will not
create the directory. Also, these directories must be writable by the operating system account that
owns the Oracle software (which on most platforms is oracle).

Bigfile Tablespaces
Bigfile tablespaces, introduced in Oracle 10g, take OMF files to the next level; in a bigfile tablespace,
a single datafile is allocated, and it can be up to 8EB (exabytes, a million terabytes) in size.

Bigfile tablespaces can only be locally managed with automatic segment space management.
If a bigfile tablespace is used for automatic undo or for temporary segments, then segment space
management must be set to MANUAL.

Bigfile tablespaces can save space in the System Global Area (SGA) and the control file because
fewer datafiles need to be tracked; similarly, all alter tablespace commands on bigfile tablespaces
need not refer to datafiles because one and only one datafile is associated with each bigfile
tablespace. This moves the maintenance point from the physical (datafile) level to the logical
(tablespace) level, simplifying administration. One downside to bigfile tablespaces is that a

Initialization Parameter Description

DB_CREATE_FILE_DEST The default operating system file directory where
datafiles and tempfiles are created if no pathname
is specified in the create tablespace command.
This location is used for redo log files and control
files if DB_CREATE_ONLINE_LOG_DEST_n is not
specified.

DB_CREATE_ONLINE_LOG_DEST_n Specifies the default location to store redo log files
and control files when no pathname is specified for
redo log files or control files at database-creation
time. Up to five destinations can be specified with
this parameter, allowing up to five multiplexed
control files and five members of each redo log group.

DB_RECOVERY_FILE_DEST Defines the default pathname in the server’s file
system where RMAN backups, archived redo logs,
and flashback logs are located. Also used for redo
log files and control files if neither DB_CREATE_
FILE_DEST nor DB_CREATE_ONLINE_LOG_DEST_n
is specified.

TABLE 6-1 OMF-Related Initialization Parameters

Chapter 6: Monitoring Space Usage 179

backup of a bigfile tablespace uses a single process; a number of smaller tablespaces, however,
can be backed up using parallel processes and will most likely take less time to back up than a
single bigfile tablespace.

Creating a bigfile tablespace is as easy as adding the bigfile keyword to the create tablespace
command:

SQL> create bigfile tablespace whs01
 2 datafile '/u06/oradata/whs01.dbf' size 10g;
Tablespace created.

If you are using OMF, then the datafile clause can be omitted. To resize a bigfile tablespace,
you can use the resize clause:

SQL> alter tablespace whs01 resize 80g;
Tablespace altered.

In this scenario, even 80GB is not big enough for this tablespace, so we will let it autoextend
20GB at a time:

SQL> alter tablespace whs01 autoextend on next 20g;
Tablespace altered.

Notice in both cases that we do not need to refer to a datafile; there is only one datafile, and once
the tablespace is created, we no longer need to worry about the details of the underlying datafile
and how it is managed.

Bigfile tablespaces are intended for use with Automatic Storage Management, discussed in the
next section.

Automatic Storage Management
Using Automatic Storage Management (ASM) can significantly reduce the administrative overhead
of managing space in a database because a DBA need only specify an ASM disk group when
allocating space for a tablespace or other database object. Database files are automatically
distributed among all available disks in a disk group, and the distribution is automatically updated
whenever the disk configuration changes. For example, when a new disk volume is added to an
existing disk group in an ASM instance, all datafiles within the disk group are redistributed to use
the new disk volume. I introduced ASM in Chapter 4. In this section, I’ll revisit some other key
ASM concepts from a storage management point of view and provide more examples.

Because ASM automatically places datafiles on multiple disks, performance of queries and
DML statements is improved because the I/O is spread out among several disks. Optionally, the
disks in an ASM group can be mirrored to provide additional redundancy and performance benefits.

Using ASM provides a number of other benefits. In many cases, an ASM instance with a number
of physical disks can be used instead of a third-party volume manager or network-attached storage
(NAS) subsystem. As an added benefit over volume managers, ASM maintenance operations do
not require a shutdown of the database if a disk needs to be added or removed from a disk group.

In the next few sections, we’ll delve further into how ASM works, with an example of how to
create a database object using ASM.

Disk Group Redundancy
A disk group in ASM is a collection of one or more ASM disks managed as a single entity. Disks
can be added or removed from a disk group without shutting down the database. Whenever a

180 Oracle Database 11g DBA Handbook

disk is added or removed, ASM automatically rebalances the datafiles on the disks to maximize
redundancy and I/O performance.

In addition to the advantages of high redundancy, a disk group can be used by more than one
database. This helps to maximize the investment in physical disk drives by easily reallocating disk
space among several databases whose disk space needs may change over the course of a day or
the course of a year.

As I explained in Chapter 4, the three types of disk groups are normal redundancy, high
redundancy, and external redundancy. The normal-redundancy and high-redundancy groups
require that ASM provide the redundancy for files stored in the group. The difference between
normal redundancy and high redundancy is in the number of failure groups required: A normal-
redundancy disk group typically has two failure groups, and a high-redundancy disk group will
have at least three failure groups. A failure group in ASM would roughly correspond to a redo log
file group member using traditional Oracle datafile management. External redundancy requires
that the redundancy be provided by a mechanism other than ASM (for example, with a hardware
third-party RAID storage array). Alternatively, a disk group might contain a non-mirrored disk
volume that is used for a read-only tablespace that can easily be re-created if the disk volume fails.

ASM Instance
ASM requires a dedicated Oracle instance, typically on the same node as the database that is
using an ASM disk group. In an Oracle Real Application Clusters (RAC) environment, each node
in a RAC database has an ASM instance.

An ASM instance never mounts a database; it only coordinates the disk volumes for other
database instances. In addition, all database I/O from an instance goes directly to the disks in a
disk group. Disk group maintenance, however, is performed in the ASM instance; as a result, the
memory footprint needed to support an ASM instance can be as low as 64MB.

For more details on how to configure ASM for use with RAC, see Chapter 10.

Background Processes
Two new Oracle background processes exist in the ASM instance. The RBAL background process
coordinates the automatic disk group rebalance activity for a disk group. The other background
processes, ORB0 through ORB9, perform the actual rebalance activity in parallel.

Creating Objects Using ASM
Before a database can use an ASM disk group, the group must be created by the ASM instance. In
the following example, a new disk group, KMS25, is created to manage the Unix disk volumes /
dev/hda1, /dev/hda2, /dev/hdb1, /dev/hdc1, and /dev/hdd4:

SQL> create diskgroup kms25 normal redundancy
 2 failgroup mir1 disk '/dev/hda1','/dev/hda2',
 3 failgroup mir2 disk '/dev/hdb1','/dev/hdc1','/dev/hdd4';

When normal redundancy is specified, at least two failure groups must be specified to provide
two-way mirroring for any datafiles created in the disk group.

In the database instance that is using the disk group, OMF is used in conjunction with ASM
to create the datafiles for the logical database structures. In the following example, we set the
initialization parameter DB_CREATE_FILE_DEST using a disk group so that any tablespaces
created using OMF will automatically be named and placed in the disk group KMS25:

db_create_file_dest = '+kms25'

Chapter 6: Monitoring Space Usage 181

Creating a tablespace in the disk group is straight to the point:

SQL> create tablespace lob_video;

Once an ASM file is created, the automatically generated filenames can be found in V$DATAFILE
and V$LOGFILE, along with manually generated filenames. All typical database files can be created
using ASM, except for administrative files, including trace files, alert logs, backup files, export
files, and core dump files.

OMF is a handy option when you want to let Oracle manage the datafile naming for you,
whether the datafile is on a conventional file system or in an ASM disk group. You can also mix
and match: some of your datafiles can be OMF-named, and others manually named.

Undo Management Considerations
Creating an undo tablespace provides a number of benefits for both the DBA and a typical database
user. For the DBA, the management of rollback segments is a thing of the past—all undo segments
are managed automatically by Oracle in the undo tablespace. In addition to providing a read-
consistent view of database objects to database readers when a long transaction against an object is
in progress, an undo tablespace can provide a mechanism for a user to recover rows from a table.

A big enough undo tablespace will minimize the possibility of getting the classic “Snapshot
too old” error message, but how much undo space is enough? If it is undersized, then the
availability window for flashback queries is short; if it is sized too big, disk space is wasted and
backup operations may take longer than necessary.

A number of initialization parameter files control the allocation and use of undo tablespaces.
The UNDO_MANAGEMENT parameter specifies whether AUTOMATIC undo management is used,
and the UNDO_TABLESPACE parameter specifies the undo tablespace itself. To change undo
management from rollback segments to automatic undo management (changing the value of
UNDO_MANAGEMENT from MANUAL to AUTO), the instance must be shut down and restarted
for the change to take effect; you can change the value of UNDO_TABLESPACE while the database
is open. The UNDO_RETENTION parameter specifies, in seconds, the minimum amount of time
that undo information should be retained for Flashback queries. However, with an undersized
undo tablespace and heavy DML usage, some undo information may be overwritten before the
time period specified in UNDO_RETENTION.

New to Oracle 10g is the RETENTION GUARANTEE clause of the CREATE UNDO TABLESPACE
command. In essence, an undo tablespace with a RETENTION GUARANTEE will not overwrite
unexpired undo information at the expense of failed DML operations when there is not enough free
undo space in the undo tablespace. More details on using this clause can be found in Chapter 7.

The following initialization parameters enable automatic undo management with the undo
tablespace UNDO04 using a retention period of at least 24 hours:

undo_management = auto
undo_tablespace = undo04
undo_retention = 86400

The dynamic performance view V$UNDOSTAT can assist in sizing the undo tablespace
correctly for the transaction load during peak processing periods. The rows in V$UNDOSTAT
are inserted at ten-minute intervals and give a snapshot of the undo tablespace usage:

SQL> select to_char(end_time,'yyyy-mm-dd hh24:mi') end_time,
 2 undoblks, ssolderrcnt from v$undostat;

182 Oracle Database 11g DBA Handbook

END_TIME UNDOBLKS SSOLDERRCNT
------------------ -------- -----------
2007-07-23 10:28 522 0
2007-07-23 10:21 1770 0
2007-07-23 10:11 857 0
2007-07-23 10:01 1605 0
2007-07-23 09:51 2864 3
2007-07-23 09:41 783 0
2007-07-23 09:31 1543 0
2007-07-23 09:21 1789 0
2007-07-23 09:11 890 0
2007-07-23 09:01 1491 0

In this example, a peak in undo space usage occurred between 9:41 A.M. and 9:51 A.M.,
resulting in a “Snapshot too old” error for three queries. To prevent these errors, the undo
tablespace should be either manually resized or allowed to autoextend.

SYSAUX Monitoring and Usage
The SYSAUX tablespace, introduced in Oracle 10g, is an auxiliary tablespace to the SYSTEM
tablespace, and it houses data for several components of the Oracle database that either required
their own tablespace or used the SYSTEM tablespace in previous releases of Oracle. These
components include the Enterprise Manager Repository, formerly in the tablespace OEM_
REPOSITORY, as well as LogMiner, Oracle Spatial, and Oracle Text, all of which formerly used
the SYSTEM tablespace for storing configuration information. The current occupants of the
SYSAUX tablespace can be identified by querying the V$SYSAUX_OCCUPANTS view:

SQL> select occupant_name, occupant_desc, space_usage_kbytes
 2 from v$sysaux_occupants;

OCCUPANT_NAME OCCUPANT_DESC SPACE_USAGE_KBYTES
------------- -- ------------------
LOGMNR LogMiner 7744
LOGSTDBY Logical Standby 960
SMON_SCN_TIME Transaction Layer - SCN to TIME mapping 3328
PL/SCOPE PL/SQL Identifier Collection 384
STREAMS Oracle Streams 1024
XDB XDB 98816
AO Analytical Workspace Object Table 38208
XSOQHIST OLAP API History Tables 38208
XSAMD OLAP Catalog 15936
SM/AWR Server Manageability - Automatic Workloa 131712
 d Repository
SM/ADVISOR Server Manageability - Advisor Framework 13248
SM/OPTSTAT Server Manageability - Optimizer Statist 52672
 ics History
SM/OTHER Server Manageability - Other Components 6016
STATSPACK Statspack Repository 0
SDO Oracle Spatial 47424
WM Workspace Manager 7296
ORDIM Oracle interMedia ORDSYS Components 11200

Chapter 6: Monitoring Space Usage 183

ORDIM/PLUGINS Oracle interMedia ORDPLUGINS Components 0
ORDIM/SQLMM Oracle interMedia SI_INFORMTN_SCHEMA Com 0
 ponents
EM Enterprise Manager Repository 155200
TEXT Oracle Text 5568
ULTRASEARCH Oracle Ultra Search 7616
ULTRASEARCH_D Oracle Ultra Search Demo User 12288
EMO_USER
EXPRESSION_FI Expression Filter System 3968
LTER
EM_MONITORING Enterprise Manager Monitoring User 1536
_USER
TSM Oracle Transparent Session Migration User 256
SQL_MANAGEMEN SQL Management Base Schema 1728
T_BASE
AUTO_TASK Automated Maintenance Tasks 320
JOB_SCHEDULER Unified Job Scheduler 576

29 rows selected.

If the SYSAUX tablespace is taken offline or otherwise becomes corrupted, only these
components of the Oracle database will be unavailable; the core functionality of the database will
be unaffected. In any case, the SYSAUX tablespace helps to take the load off of the SYSTEM
tablespace during normal operation of the database.

To monitor the usage of the SYSAUX tablespace, you can query the column SPACE_USAGE_
KBYTES on a routine basis, and it can alert the DBA when the space usage grows beyond a certain
level. If the space usage for a particular component requires a dedicated tablespace to be allocated
for the component, such as for the EM Repository, the procedure identified in the MOVE_
PROCEDURE column of the V$SYSAUX_OCCUPANTS view will move the application to
another tablespace:

SQL> select occupant_name, move_procedure from v$sysaux_occupants
 2 where occupant_name = 'EM';

OCCUPANT_NAME MOVE_PROCEDURE
--------------- ---
EM emd_maintenance.move_em_tblspc

In the following scenario, we know that we will be adding several hundred nodes to our
management repository in the near future. Because we want to keep the SYSAUX tablespace from
growing too large, we decide to create a new tablespace to hold only the Enterprise Manager
data. In the following example, we’ll create a new tablespace and move the Enterprise Manager
schema into the new tablespace:

SQL> create tablespace EM_REP
2> datafile '+DATA' size 250m autoextend on next 100m;

Tablespace created.
SQL> execute sysman.emd_maintenance.move_em_tblspc('EM_REP');
PL/SQL procedure successfully completed.

SQL> select occupant_name, occupant_desc, space_usage_kbytes
 2> from v$sysaux_occupants

184 Oracle Database 11g DBA Handbook

 3> where occupant_name = 'EM';

OCCUPANT_NAME OCCUPANT_DESC SPACE_USAGE_KBYTES
-------------- -- -------------------
EM Enterprise Manager Repository 0

1 row selected.

Since the current space allocation for the EM tools is about 150MB, a tablespace starting at a
size of 250MB with additional extents of 100MB each should be sufficient for most environments.
Note that the row for Enterprise Manager is still in V$SYSAUX_OCCUPANTS; even though it is
not taking up any space in the SYSAUX tablespace, we may want to move its metadata back into
SYSAUX at some point in the future. Therefore, we may need to query V$SYSAUX_OCCUPANTS
again to retrieve the move procedure. We use the same procedure for moving the application into
and out of SYSAUX:

SQL> execute sysman.emd_maintenance.move_em_tblspc('SYSAUX');
PL/SQL procedure successfully completed.

If a component is not being used in the database at all, such as Ultra Search, a negligible
amount of space is used in the SYSAUX tablespace.

Archived Redo Log File Management
It is important to consider space management for objects that exist outside of the database, such as
archived redo log files. In ARCHIVELOG mode, an online redo log file is copied to the destination(s)
specified by LOG_ARCHIVE_DEST_n (where n is a number from 1 to 10) or by DB_RECOVERY_
FILE_DEST (the flash recovery area) if none of the LOG_ARCHIVE_DEST_n values are set.

The redo log being copied must be copied successfully to at least one of the destinations
before it can be reused by the database. The LOG_ARCHIVE_MIN_SUCCEED_DEST parameter
defaults to 1 and must be at least 1. If none of the copy operations are successful, the database
will be suspended until at least one of the destinations receives the log file. Running out of disk
space is one possible reason for this type of failure.

If the destination for the archived log files is on a local file system, an operating system
shell script can monitor the space usage of the destination, or it can be scheduled with DBMS_
SCHEDULER or with OEM.

Built-in Space Management Tools
Oracle 10g provides a number of built-in tools that a DBA can use on demand to determine if
there are any problems with disk space in the database. Most, if not all, of these tools can be
manually configured and run by calling the appropriate built-in package. In this section, we’ll
cover the packages and procedures used to query the database for space problems or advice
on space management. In addition, I’ll show you the new initialization parameter used by the
Automatic Diagnostic Repository to identify the alert and trace file location. Later in this chapter,
you’ll see how some of these tools can be automated to notify the DBA via e-mail or pager when
a problem is imminent; many, if not all, of these tools are available on demand via the EM
Database Control web interface.

Chapter 6: Monitoring Space Usage 185

Segment Advisor
Frequent inserts, updates, and deletes on a table may, over time, leave the space within a table
fragmented. Oracle can perform segment shrink on a table or index. Shrinking the segment makes
the free space in the segment available to other segments in the tablespace, with the potential to
improve future DML operations on the segment because fewer blocks may need to be retrieved
for the DML operation after the segment shrink. Segment shrink is very similar to online table
redefinition in that space in a table is reclaimed. However, segment shrink can be performed
in place without the additional space requirements of online table redefinition.

To determine which segments will benefit from segment shrink, you can invoke Segment
Advisor to perform growth trend analysis on specified segments. In this section, we’ll invoke
Segment Advisor on some candidate segments that may be vulnerable to fragmentation.

In the example that follows, we’ll set up Segment Advisor to monitor the HR.EMPLOYEES
table. In recent months, there has been high activity on this table; in addition, a new column,
WORK_RECORD, has been added to the table, which HR uses to maintain comments about
the employees:

SQL> alter table hr.employees add (work_record varchar2(4000));
Table altered.
SQL> alter table hr.employees enable row movement;
Table altered.

We have enabled ROW MOVEMENT in the table so that shrink operations can be performed on
the table if recommended by Segment Advisor.

After Segment Advisor has been invoked to give recommendations, the findings from Segment
Advisor are available in the DBA_ADVISOR_FINDINGS data dictionary view. To show the potential
benefits of shrinking segments when Segment Advisor recommends a shrink operation, the view
DBA_ADVISOR_RECOMMENDATIONS provides the recommended shrink operation along with
the potential savings, in bytes, for the operation.

To set up Segment Advisor to analyze the HR.EMPLOYEES table, we will use an anonymous
PL/SQL block, as follows:

-- begin Segment Advisor analysis for HR.EMPLOYEES
-- rev. 1.1 RJB 07/07/2007
--
-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task_id number

-- PL/SQL block follows
declare
 name varchar2(100);
 descr varchar2(500);
 obj_id number;
begin
 name := ''; -- unique name generated from create_task
 descr := 'Check HR.EMPLOYEE table';
 dbms_advisor.create_task
 ('Segment Advisor', :task_id, name, descr, NULL);
 dbms_advisor.create_object
 (name, 'TABLE', 'HR', 'EMPLOYEES', NULL, NULL, obj_id);

186 Oracle Database 11g DBA Handbook

 dbms_advisor.set_task_parameter(name, 'RECOMMEND_ALL', 'TRUE');
 dbms_advisor.execute_task(name);
end;

PL/SQL procedure successfully completed.

SQL> print task_id

 TASK_ID

 384
SQL>

The procedure DBMS_ADVISOR.CREATE_TASK specifies the type of advisor; in this case, it is
Segment Advisor. The procedure will return a unique task ID and an automatically generated
name to the calling program; we will assign our own description to the task.

Within the task, identified by the uniquely generated name returned from the previous procedure,
we identify the object to be analyzed with DBMS_ADVISOR.CREATE_OBJECT. Depending on the
type of object, the second through the sixth arguments vary. For tables, we only need to specify the
schema name and the table name.

Using DBMS_ADVISOR.SET_TASK_PARAMETER, we tell Segment Advisor to give all possible
recommendations about the table. If we want to turn off recommendations for this task, we would
specify FALSE instead of TRUE for the last parameter.

Finally, we initiate the Segment Advisor task with the DBMS_ADVISOR.EXECUTE_TASK
procedure. Once it is done, we display the identifier for the task so we can query the results
in the appropriate data dictionary views.

Now that we have a task number from invoking Segment Advisor, we can query DBA_
ADVISOR_FINDINGS to see what we can do to improve the space utilization of the
HR.EMPLOYEES table:

SQL> select owner, task_id, task_name, type,
 2 message, more_info from dba_advisor_findings
 3 where task_id = 384;

OWNER TASK_ID TASK_NAME TYPE
---------- ------- --------- ------
RJB 6 TASK_00003 INFORMATION

MESSAGE
--
Perform shrink, estimated savings is 107602 bytes.

MORE_INFO

Allocated Space:262144: Used Space:153011: Reclaimable Space :107602:

The results are fairly self-explanatory. We can perform a segment shrink operation on the table
to reclaim space from numerous insert, delete, and update operations on the HR.EMPLOYEES
table. Because the WORK_RECORD column was added to the HR.EMPLOYEES table after the table
was already populated, we may have created some chained rows in the table; in addition, since
the WORK_RECORD column can be up to 4000 bytes long, updates or deletes of rows with big

Chapter 6: Monitoring Space Usage 187

WORK_RECORD columns may create blocks in the table with free space that can be reclaimed.
The view DBA_ADVISOR_RECOMMENDATIONS provides similar information:

SQL> select owner, task_id, task_name, benefit_type
 2 from dba_advisor_recommendations
 3 where task_id = 384;

OWNER TASK_ID TASK_NAME
---------- ------- ----------
RJB 384 TASK_00003

BENEFIT_TYPE
--
Perform shrink, estimated savings is 107602 bytes.

In any case, we will shrink the segment HR.EMPLOYEES to reclaim the free space. As an
added time-saving benefit to the DBA, the SQL needed to perform the shrink is provided in the
view DBA_ADVISOR_ACTIONS:

SQL> select owner, task_id, task_name, command, attr1
 2 from dba_advisor_actions where task_id = 384;

OWNER TASK_ID TASK_NAME COMMAND
---------- ------- ---------- -----------------
RJB 6 TASK_00003 SHRINK SPACE

ATTR1

alter table HR.EMPLOYEES shrink space

1 row selected.

SQL> alter table HR.EMPLOYEES shrink space;
Table altered.

As mentioned earlier, the shrink operation does not require extra disk space and does not
prevent access to the table during the operation, except for a very short period of time at the end of
the process to free the unused space. All indexes are maintained on the table during the operation.

In addition to freeing up disk space for other segments, there are other benefits to shrinking a
segment. Cache utilization is improved because fewer blocks need to be in the cache to satisfy
SELECT or other DML statements against the segment. Also, because the data in the segment is
more compact, the performance of full table scans is improved.

There are a couple of caveats and minor restrictions. First, segment shrink will not work
on LOB segments if you are using Oracle Database 10g. Online table reorganization is a more
appropriate method in this case. Also, segment shrink is not allowed on a table that contains
any function-based indexes regardless of whether you are using Oracle Database 10g or 11g.

Undo Advisor and the Automatic Workload Repository
New to Oracle 10g, the Undo Advisor provides tuning information for the undo tablespace,
whether it’s sized too large, it’s too small, or the undo retention (via the initialization parameter
UNDO_RETENTION) is not set optimally for the types of transactions that occur in the database.

188 Oracle Database 11g DBA Handbook

Using the Undo Advisor is similar to using the Segment Advisor in that we will call the
DBMS_ADVISOR procedures and query the DBA_ADVISOR_* data dictionary views to see
the results of the analysis.

The Undo Advisor, however, relies on another feature new to Oracle 10g—the Automatic
Workload Repository (AWR). The Automatic Workload Repository, built into every Oracle
database, contains snapshots of all key statistics and workloads in the database at 60-minute
intervals by default. The statistics in the AWR are kept for seven days, after which the oldest
statistics are dropped. Both the snapshot intervals and the retention period can be adjusted to
suit your environment, however. The AWR maintains the historical record of how the database
is being used over time and helps to diagnose and predict problems long before they can cause
a database outage.

To set up Undo Advisor to analyze undo space usage, we will use an anonymous PL/SQL
block similar to what we used for Segment Advisor. Before we can use Segment Advisor, however,
we need to determine the timeframe to analyze. The data dictionary view DBA_HIST_SNAPSHOT
contains the snapshot numbers and date stamps; we will look for the snapshot numbers from 8:00
P.M. Saturday, July 21, 2007 through 9:30 P.M. Saturday, July 21, 2007:

SQL> select snap_id, begin_interval_time, end_interval_time
 2 from DBA_HIST_SNAPSHOT
 3 where begin_interval_time > '21-Jul-07 08.00.00 PM' and
 4 end_interval_time < '21-Jul-07 09.31.00 PM'
 5 order by end_interval_time desc;

 SNAP_ID BEGIN_INTERVAL_TIME END_INTERVAL_TIME
---------- --------------------------- ---------------------------
 8 21-JAN-07 09.00.30.828 PM 21-JAN-07 09.30.14.078 PM
 7 21-JAN-07 08.30.41.296 PM 21-JAN-07 09.00.30.828 PM
 6 21-JAN-07 08.00.56.093 PM 21-JAN-07 08.30.41.296 PM

Given these results, we will use a SNAP_ID range from 6 to 8 when we invoke Undo Advisor.
The PL/SQL anonymous block is as follows:

-- begin Undo Advisor analysis
-- rev. 1.1 RJB 7/16/2007
--
-- SQL*Plus variable to retrieve the task number from Segment Advisor
variable task_id number

declare
 task_id number;
 name varchar2(100);
 descr varchar2(500);
 obj_id number;
begin
 name := ''; -- unique name generated from create_task
 descr := 'Check Undo Tablespace';
 dbms_advisor.create_task
 ('Undo Advisor', :task_id, name, descr);
 dbms_advisor.create_object
 (name, 'UNDO_TBS', NULL, NULL, NULL, 'null', obj_id);
 dbms_advisor.set_task_parameter(name, 'TARGET_OBJECTS', obj_id);
 dbms_advisor.set_task_parameter(name, 'START_SNAPSHOT', 6);

Chapter 6: Monitoring Space Usage 189

 dbms_advisor.set_task_parameter(name, 'END_SNAPSHOT', 8);
 dbms_advisor.set_task_parameter(name, 'INSTANCE', 1);
 dbms_advisor.execute_task(name);
end;

PL/SQL procedure successfully completed.

SQL> print task_id

TASK_ID

 527

As with the Segment Advisor, we can review the DBA_ADVISOR_FINDINGS view to see the
problem and the recommendations.

SQL> select owner, task_id, task_name, type,
 2 message, more_info from dba_advisor_findings
 3 where task_id = 527;

OWNER TASK_ID TASK_NAME TYPE
---------- ------- ---------- -------------
RJB 527 TASK_00003 PROBLEM

MESSAGE

The undo tablespace is OK.

MORE_INFO
--

In this particular scenario, Undo Advisor indicates that there is enough space allocated in the
undo tablespace to handle the types and volumes of queries run against this database.

Index Usage
Although indexes provide a tremendous benefit by speeding up queries, they can have an impact
on space usage in the database. If an index is not being used at all, the space occupied by an
index can be better used elsewhere; if we don’t need the index, we also can save processing time
for insert, update, and delete operations that have an impact on the index. Index usage can be
monitored with the dynamic performance view V$OBJECT_USAGE. In our HR schema, we
suspect that the index on the JOB_ID column of the EMPLOYEES table is not being used. We
turn on monitoring for this index as follows:

SQL> alter index hr.emp_job_ix monitoring usage;
Index altered.

We take a quick look at the V$OBJECT_USAGE view to make sure this index is being monitored:

SQL> select * from v$object_usage;
INDEX_NAME TABLE_NAME MON USED START_MONITORING
--------------- --------------- --- ---- -------------------
EMP_JOB_IX EMPLOYEES YES NO 07/24/2007 10:04:55

190 Oracle Database 11g DBA Handbook

The column USED will tell us if this index is accessed to satisfy a query. After a full day of
typical user activity, we check V$OBJECT_USAGE again and then turn off monitoring:

SQL> alter index hr.emp_job_ix nomonitoring usage;
Index altered.
SQL> select * from v$object_usage;
INDEX_NAME TABLE_NAME MON USED START_MONITORING END_MONITORING
---------- --------------- --- ---- ------------------- ---------------
EMP_JOB_IX EMPLOYEES NO YES 07/24/2007 10:04:55 07/25/2007 11:39:45

Sure enough, the index appears to be used at least once during a typical day.
On the other end of the spectrum, an index may be accessed too frequently. If key values are

inserted, updated, and deleted frequently, an index can become less efficient in terms of space
usage. The following commands can be used as a baseline for an index after it is created, and
then run periodically to see if the space usage becomes inefficient:

SQL> analyze index hr.emp_job_ix validate structure;
Index analyzed.
SQL> select pct_used from index_stats where name = 'EMP_JOB_IX';

PCT_USED

 78

The PCT_USED column indicates the percentage of the allocated space for the index in use.
Over time, the EMPLOYEES table is heavily used, due to the high turnover rate of employees at
the company, and this index, among others, is not using its space efficiently, as indicated by the
following analyze command and select query, so we decide that a rebuild is in order:

SQL> analyze index hr.emp_job_ix validate structure;
Index analyzed.
SQL> select pct_used from index_stats where name = 'EMP_JOB_IX';
 PCT_USED

 26
SQL> alter index hr.emp_job_ix rebuild online;
Index altered.

Notice the inclusion of the online option in the alter index . . . rebuild statement. The
indexed table can remain online with minimal overhead while the index is rebuilding. In rare
circumstances, such as on longer key lengths, you may not be able to use the online option.

Space Usage Warning Levels
Earlier in this chapter, we reviewed the data dictionary view DBA_THRESHOLDS, which contains
a list of the active metrics to measure a database’s health. In a default installation of Oracle 11g,
use the following select statement to see some of the 22 built-in thresholds:

SQL> select metrics_name, warning_operator warn, warning_value wval,
 2 critical_operator crit, critical_value cval,
 3 consecutive_occurrences consec
 4 from dba_thresholds;

Chapter 6: Monitoring Space Usage 191

METRICS_NAME WARN WVAL CRIT CVAL CONSEC
-------------------------------- ---- ------------- ---- ------------- ------
Average Users Waiting Counts GT 10 NONE 3
. . .
Blocked User Session Count GT 0 NONE 15
Current Open Cursors Count GT 1200 NONE 3
Database Time Spent Waiting (%) GT 30 NONE 3
. . .
Logons Per Sec GE 100 NONE 2
Session Limit % GT 90 GT 97 3
Tablespace Bytes Space Usage LE 0 LE 0 1
Tablespace Space Usage GE 85 GE 97 1

22 rows selected.

In terms of space usage, we see that the warning level for a given tablespace is when the
tablespace is 85 percent full, and the space is at a critical level when it reaches 97 percent full.
In addition, this condition need only occur during one reporting period, which by default is one
minute. For the other conditions in this list, the condition must be true anywhere between 2 and
15 consecutive reporting periods before an alert is issued.

To change the level at which an alert is generated, we can use the DBMS_SERVER_ALERT.
SET_THRESHOLD procedure. In this example, we want to be notified sooner if a tablespace is
running out of space, so we will update the warning threshold for alert notification from 85
percent down to 60 percent:

--
-- PL/SQL anonymous procedure to update the Tablespace Space Usage threshold
--

declare
 /* OUT */
 warning_operator number;
 warning_value varchar2(100);
 critical_operator number;
 critical_value varchar2(100);
 observation_period number;
 consecutive_occurrences number;
 /* IN */
 metrics_id number;
 instance_name varchar2(50);
 object_type number;
 object_name varchar2(50);

 new_warning_value varchar2(100) := '60';
begin
 metrics_id := DBMS_SERVER_ALERT.TABLESPACE_PCT_FULL;
 object_type := DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE;
 instance_name := 'dw';
 object_name := NULL;

192 Oracle Database 11g DBA Handbook

-- retrieve the current values with get_threshold
 dbms_server_alert.get_threshold(
 metrics_id, warning_operator, warning_value,
 critical_operator, critical_value,
 observation_period, consecutive_occurrences,
 instance_name, object_type, object_name);

-- update the warning threshold value from 85 to 60
 dbms_server_alert.set_threshold(
 metrics_id, warning_operator, new_warning_value,
 critical_operator, critical_value,
 observation_period, consecutive_occurrences,
 instance_name, object_type, object_name);

end;

PL/SQL procedure successfully completed.

Checking DBA_THRESHOLDS again, we see the warning level has been changed to 60
percent:

SQL> select metrics_name, warning_operator warn, warning_value wval
 2 from dba_thresholds;

METRICS_NAME WARN WVAL
-------------------------------- ---- -------------
Average Users Waiting Counts GT 10
. . .
Blocked User Session Count GT 0
Current Open Cursors Count GT 1200
Database Time Spent Waiting (%) GT 30
. . .
Logons Per Sec GE 100
Session Limit % GT 90
Tablespace Bytes Space Usage LE 0
Tablespace Space Usage GE 60

22 rows selected.

A detailed example of how to use Oracle’s Advanced Queuing to subscribe to queue alert
messages is beyond the scope of this book. Later in this chapter, I will, however, show some
examples of how to use Enterprise Manager to set up asynchronous notification of alert conditions
using e-mail, a pager, or a PL/SQL procedure.

Resumable Space Allocation
Starting with Oracle9i, the Oracle database provides a way to suspend long-running operations in
the event of space allocation failures. Once the DBA is notified and the space allocation problem
has been corrected, the long-running operation can complete. The long-running operation does
not have to be restarted from the beginning.

Chapter 6: Monitoring Space Usage 193

Three types of space management problems can be addressed with Resumable Space Allocation:

Out of space in the tablespace

Maximum extents reached in the segment

Space quota exceeded for a user

The DBA can automatically make statements resumable by setting the initialization parameter
RESUMABLE_TIMEOUT to a value other than 0. This value is specified in seconds. At the session
level, a user can enable resumable operations by using the ALTER SESSION ENABLE RESUMABLE
command:

SQL> alter session enable resumable timeout 3600;

In this case, any long-running operation that may run out of space will suspend for up to 3600
seconds (60 minutes) until the space condition is corrected. If it is not corrected within the time
limit, the statement fails.

In the scenario that follows, the HR department is trying to add the employees from the branch
office EMPLOYEES table to an EMPLOYEE_SEARCH table that contains employees throughout the
company. Without Resumable Space Allocation, the HR user receives an error, as follows:

SQL> insert into employee_search
 2 select * from employees;
insert into employee_search
*
ERROR at line 1:
ORA-01653: unable to extend table HR.EMPLOYEE_SEARCH by 128
 in tablespace USERS9

After running into this problem many times, the HR user decides to use Resumable Space
Allocation to prevent a lot of rework whenever there are space problems in the database, and
tries the operation again:

SQL> alter session enable resumable timeout 3600;
Session altered.
SQL> insert into hr.employee_search
 2 select * from hr.employees;

The user does not receive a message, and it is not clear that the operation has been
suspended. However, in the alert log (managed by the Automatic Diagnostic Repository
as of Oracle Database 11g), the XML message reads as follows:

<msg time='2007-07-23T22:58:26.749-05:00'
 org_id='oracle' comp_id='rdbms'
 client_id='' type='UNKNOWN' level='16'
 host_id='dw' host_addr='192.168.2.95' module='SQL*Plus'
pid='1843'>
<txt> ORA-01653: unable to extend table
 HR.EMPLOYEE_SEARCH by 128 in tablespace USERS9
</txt>
</msg>

■

■

■

194 Oracle Database 11g DBA Handbook

The DBA receives a pager alert, set up in OEM, and checks the data dictionary view DBA_
RESUMABLE:

SQL> select user_id, instance_id, status, name, error_msg
 2 from dba_resumable;

 USER_ID INSTANCE_ID STATUS NAME ERROR_MSG
---------- ----------- --------- -------------------- --------------------
 80 1 SUSPENDED User HR(80), Session ORA-01653: unable to
 113, Instance 1 extend table HR.EMP
 LOYEE_SEARCH by 128
 in tablespace USERS9

The DBA notices that the tablespace USERS9 does not allow autoextend, and modifies the
tablespace to allow growth:

SQL> alter tablespace users9
 2 add datafile '+DATA'
 3 size 100m autoextend on;
Tablespace altered.

The user session’s insert completes successfully, and the status of the resumable operation is
reflected in the DBA_RESUMABLE view:

 USER_ID INSTANCE_ID STATUS NAME ERROR_MSG
---------- ----------- --------- -------------------- --------------------
 80 1 NORMAL User HR(80), Session
 113, Instance 1

The alert log file also indicates a successful resumption of this operation:

<msg time='2007-07-23T23:06:31.178-05:00'
 org_id='oracle' comp_id='rdbms'
 client_id='' type='UNKNOWN' level='16'
 host_id='dw' host_addr='192.168.2.95' module='SQL*Plus'
 pid='1843'>
<txt>statement in resumable session 'User HR(80),
 Session 113, Instance 1' was resumed </txt>
</msg>

In Figure 6-3, you can see the tablespace USERS9 space alert appear on the instance’s home
page in the Alerts section, in addition to the previous alert warning you that the USERS9 tablespace
was nearly full about 15 minutes before the HR user temporarily ran out of space!

As far as the user is concerned, the operation took longer than expected but still completed
successfully. Another way to provide more information to the user is to set up a special type of
trigger introduced in Oracle9i called a system trigger. A system trigger is like any other trigger,

Chapter 6: Monitoring Space Usage 195

except it is based on some type of system event rather than on a DML statement against a table.
Here is a template for a system trigger that fires on an AFTER SUSPEND event:

create or replace trigger resumable_notify
 after suspend on database -- fired when resumable space event occurs
declare
 -- variables, if required
begin
 -- give DBA 2 hours to resolve
 dbms_resumable.set_timeout(7200);
 -- check DBA_RESUMABLE for user ID, then send e-mail
 utl_mail.send ('karen_s@rjbdba.com', . . .);
end;

Managing Alert and Trace Files with ADR
New to Oracle Database 11g, the Automatic Diagnostic Repository (ADR) is a system-managed
repository for storing database alert logs, trace files, and any other diagnostic data previously
controlled by several other initialization parameters.

The initialization parameter DIAGNOSTIC_DEST sets the base location for all diagnostic
directories; in the dw database I use throughout this chapter, the value of the parameter
DIAGNOSTIC_DEST is /u01/app/oracle. Figure 6-4 shows a typical directory structure starting
with the subdirectory /u01/app/oracle/diag.

Notice that there are separate directories for the ASM databases and the database (rdbms)
instances; within the rdbms directory, you can see the dw directory twice: the first-level directory
is the database dw, and the second dw is the instance dw. If this were a Real Application Clusters
(RAC) database, you would see each instance of the dw database under the first-level dw directory.
In fact, Oracle strongly recommends that all instances within a RAC database have the same
value for DIAGNOSTIC_DEST.

Because the location of all logging and diagnostic information is controlled by the initialization
parameter DIAGNOSTIC_DEST, the following initialization parameters are ignored:

BACKGROUND_DUMP_DEST

USER_DUMP_DEST

CORE_DUMP_DEST

■

■

■

FIGURE 6-3 Alerts section on the instance home page

196 Oracle Database 11g DBA Handbook

For backward compatibility, however, you can still use these as read-only parameters to
determine the location of the alert log, trace files, and core dumps:

SQL> show parameter dump_dest

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
background_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/trace
core_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/cdump
user_dump_dest string /u01/app/oracle/diag/rdbms/dw/
 dw/trace

You can still alter the values for these parameters, but they are ignored by ADR. Alternatively,
you can use the view V$DIAG_INFO to find all diagnostic-related directories for the instance:

SQL> select name, value from v$diag_info;

NAME VALUE
------------------------- ---
Diag Enabled TRUE

FIGURE 6-4 ADR directory structure

Chapter 6: Monitoring Space Usage 197

ADR Base /u01/app/oracle
ADR Home /u01/app/oracle/diag/rdbms/dw/dw
Diag Trace /u01/app/oracle/diag/rdbms/dw/dw/trace
Diag Alert /u01/app/oracle/diag/rdbms/dw/dw/alert
Diag Incident /u01/app/oracle/diag/rdbms/dw/dw/incident
Diag Cdump /u01/app/oracle/diag/rdbms/dw/dw/cdump
Health Monitor /u01/app/oracle/diag/rdbms/dw/dw/hm
Default Trace File /u01/app/oracle/diag/rdbms/dw/dw/trace/dw_ora
 _28810.trc

Active Problem Count 0
Active Incident Count 0

11 rows selected.

OS Space Management
Outside of the Oracle environment, space should be monitored by the system administrator with
a thorough understanding from the DBA as to the parameters in place for autoextending datafiles.
Setting AUTOEXTEND ON with large NEXT values for a tablespace will allow a tablespace to
grow and accommodate more inserts and updates, but this will fail if the server’s disk volumes
do not have the space available.

Space Management Scripts
In this section, I provide a couple scripts you can run on an as-needed basis, or you can schedule
them to run on a regular basis to proactively monitor the database.

These scripts take the dictionary views and give a more detailed look at a particular structure.
The functionality of some of these scripts might overlap with the results provided by some of the
tools I’ve mentioned earlier in the chapter, but they might be more focused and in some cases
provide more detail about the possible space problems in the database.

Segments That Cannot Allocate Additional Extents
In the following script, we want to identify segments (most likely tables or indexes) that cannot
allocate additional extents:

select s.tablespace_name, s.segment_name,
 s.segment_type, s.owner
from dba_segments s
where s.next_extent >=
 (select max(f.bytes)
 from dba_free_space f
 where f.tablespace_name = s.tablespace_name)
or s.extents = s.max_extents
order by tablespace_name, segment_name;

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE OWNER
------------------ ----------------------- ----------------- ---------------
USERS9 EMPLOYEE_SEARCH TABLE HR

198 Oracle Database 11g DBA Handbook

In this example, we’re using a correlated subquery to compare the size of the next extent to
the amount of free space left in the tablespace. The other condition we’re checking is whether the
next extent request will fail because the segment is already at the maximum number of extents.

The reason these objects might be having problems is most likely one of two possibilities: The
tablespace does not have room for the next extent for this segment, or the segment has the maximum
number of extents allocated. To solve this problem, the DBA can extend the tablespace by adding
another datafile or by exporting the data in the segment and re-creating it with storage parameters
that more closely match its growth pattern. As of Oracle9i, using locally managed tablespaces
instead of dictionary-managed tablespaces solves this problem when disk space is not the issue—
the maximum number of extents in an LMT is unlimited.

Used and Free Space by Tablespace and Datafile
The following SQL*Plus script breaks down the space usage of each tablespace, which is further
broken down by datafile within each tablespace. This is a good way to see how space is used
and extended within each datafile of a tablespace, and it may be useful for load balancing when
you’re not using ASM or other high-availability storage.

--
-- Free space within non-temporary datafiles, by tablespace.
--
-- No arguments.
-- 1024*1024*1000 = 1048576000 = 1GB to match OEM
--

column free_space_gb format 9999999.999
column allocated_gb format 9999999.999
column used_gb format 9999999.999
column tablespace format a12
column filename format a20

select ts.name tablespace, trim(substr(df.name,1,100)) filename,
 df.bytes/1048576000 allocated_gb,
 ((df.bytes/1048576000) - nvl(sum(dfs.bytes)/1048576000,0)) used_gb,
 nvl(sum(dfs.bytes)/1048576000,0) free_space_gb
from v$datafile df
 join dba_free_space dfs on df.file# = dfs.file_id
 join v$tablespace ts on df.ts# = ts.ts#
group by ts.name, dfs.file_id, df.name, df.file#, df.bytes
order by filename;

TABLESPACE FILENAME ALLOCATED_GB USED_GB FREE_SPACE_GB
------------ -------------------- ------------ ---------- -------------
DMARTS +DATA/dw/datafile/dm .25 .0640625 .1859375
 arts.269.628621093
EM_REP +DATA/dw/datafile/em .25 .0000625 .2499375
 _rep.270.628640521
EXAMPLE +DATA/dw/datafile/ex .1 .077375 .022625
 ample.265.627433157
SYSAUX +DATA/dw/datafile/sy .7681875 .7145 .0536875
 saux.257.627432973

Chapter 6: Monitoring Space Usage 199

SYSTEM +DATA/dw/datafile/sy .77 .7000625 .0699375
 stem.256.627432971
UNDOTBS1 +DATA/dw/datafile/un .265 .0155625 .2494375
 dotbs1.258.627432975
USERS +DATA/dw/datafile/us .0125 .0111875 .0013125
 ers.259.627432977
USERS2 +DATA/dw/datafile/us .1 .0000625 .0999375
 ers2.267.627782171
USERS4 +DATA/dw/datafile/us .25 .002 .248
 ers4.268.628561597
USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
 ers9.271.628727991
USERS9 +DATA/dw/datafile/us .01 .0000625 .0099375
 ers9.272.628729587
USERS9 +DATA/dw/datafile/us .05 .0000625 .0499375
 ers9.273.628730561
USERS3 +DATA2/dw/datafile/u .1 .0000625 .0999375
 sers3.256.627786775
XPORT /u05/oradata/xport.d .3 .1280625 .1719375
 bf

14 rows selected.

Only the USERS9 tablespace has more than one datafile in this database. To include temporary
tablespaces on this report, you can use a union query to combine this query with a similar query
based on V$TEMPFILE.

Automating and Streamlining
the Notification Process
Although any of the scripts and packages presented earlier in this chapter can be executed on
demand, some of them can and should be automated, not only to save time for the DBA but also
to be proactive and catch problems long before they cause a system outage.

Two of the primary methods for automating the scripts and packages are DBMS_SCHEDULER
and Oracle Enterprise Manager. Each of these methods has its advantages and disadvantages.
DBMS_SCHEDULER can provide more control over how the task is scheduled and can be set
up using only a command-line interface. Oracle Enterprise Manager, on the other hand, uses a
completely web-based environment that allows a DBA to oversee a database environment from
wherever there is access to a web browser.

Using DBMS_SCHEDULER
New to Oracle 10g is the DBMS_SCHEDULER package. It provides new features and functionality
over the previous job scheduler package, DBMS_JOB. Although DBMS_JOB is still available in
Oracle 10g, it is highly recommended that your jobs convert to DBMS_SCHEDULER because the
DBMS_JOB package may be deprecated in a future release.

DBMS_SCHEDULER contains many of the procedures you’d expect from a scheduling package:
CREATE_JOB, DROP_JOB, DISABLE, STOP_JOB, and COPY_JOB. In addition, DBMS_SCHEDULER
makes it easy to automatically repeat job executions with CREATE_SCHEDULE and to partition jobs
into categories based on resource usage with the CREATE_JOB_CLASS procedure.

200 Oracle Database 11g DBA Handbook

OEM Job Control and Monitoring
Not only can Oracle Enterprise Manager present most database administration tasks in a graphical,
web-based environment, it can automate some of the routine tasks that a DBA might perform on a
daily basis. In this section, we’ll cover the OEM-equivalent functionality to Segment Advisor and
Undo Advisor, covered previously in this chapter.

Segment Advisor
Figure 6-5 shows the home page for OEM. Many of the space management functions, including
Segment Advisor, are available directly from this home page, especially when there is a pending alert.

The top portion of the home page lists general availability information of the instance, including
the instance name, host name, CPU usage, and session information. The bottom half of the home
page contains direct links to status pages and advisors. Figure 6-6 shows the bottom half of the
home page from Figure 6-5.

FIGURE 6-5 OEM home page

Chapter 6: Monitoring Space Usage 201

If there is not an outstanding space-related alert, and you want to run Segment Advisor, click
the Advisor Central link in Figure 6-6, and then click the Segment Advisor link; you will see the
page in Figure 6-7.

In Figure 6-7, select the Tablespaces radio button; you suspect that one or more tables in the
USERS tablespace might need reorganization. Click Next; you will see Step 2 in Figure 6-8. Add
the USERS tablespace to the list of objects to be analyzed.

When you click Next in Figure 6-8, you can change the scheduling for the analysis job; by
default, the job runs immediately, which is what you want to do in this case. Figure 6-9 shows the
other scheduling options.

When you click Next in Figure 6-9, you see the review page in Figure 6-10. You can click Show
SQL if you are curious or if you want to use the SQL statements in your own custom batch job.

FIGURE 6-6 OEM home page-related links

202 Oracle Database 11g DBA Handbook

FIGURE 6-7 Segment Advisor Step 1: select analysis type

FIGURE 6-8 Segment Advisor Step 2: select objects

As you might suspect, clicking Submit in Figure 6-10 submits the job to be run either
immediately or at the specified time. The next page you see is the Advisors tab in Figure 6-11.

Chapter 6: Monitoring Space Usage 203

FIGURE 6-9 Segment Advisor Step 3: scheduling options

FIGURE 6-10 Segment Advisor Step 4: review

204 Oracle Database 11g DBA Handbook

In Figure 6-11, you see the Segment Advisor task you just initiated. In this case, all of the recent
Advisor tasks are Segment Advisor tasks; depending on the time of day and other jobs you have
scheduled, this can be a mix of Memory Advisor tasks, SQL Advisor tasks, and so forth. Most of
the tasks in Figure 6-11 are created with the default Oracle installation and are run on a regular
basis, such as the Auto Space Advisor. As a result, any results you see in your ad hoc analysis task
would show up eventually in one of the periodic Segment Advisor task results.

When the Status column for your Segment Advisor job changes to COMPLETED (you can
refresh the list by refreshing the browser window or clicking Refresh), you can click the job name
to see the results of the job; you can see the results of this job in Figure 6-12.

The advisor results in Figure 6-12 indicate that the table EMPLOYEES_SEARCH would benefit
from a shrink operation, potentially improving access to the table and freeing up space in the
USERS tablespace. To implement the recommendation, you can click the Shrink button in the
Recommendation column.

Undo Advisor
To start the Automatic Undo Management Advisor, start at the page in Figure 6-11, and click the
Automatic Undo Management link at the top of the page. In Figure 6-13, you see the current
settings for the undo tablespace UNDOTBS1.

FIGURE 6-11 Advisors and Tasks

Chapter 6: Monitoring Space Usage 205

FIGURE 6-12 Segment Advisor results

FIGURE 6-13 Undo Advisor current settings and options

206 Oracle Database 11g DBA Handbook

Given the recent SQL load in this database, the current size of the undo tablespace (265MB)
is sufficient (with AUTOEXTEND set at 5MB increments) to satisfy the undo data needs for similar
queries in the future. However, you’re expecting to add some data warehouse tables and you may
have long-running queries that may exceed the current 15-minute undo retention window, and
you want to maintain overall system performance by avoiding frequent extensions to the existing
undo tablespace. Therefore, you probably need to increase the size of the undo tablespace; in
Figure 6-13, specify 45 minutes in the Duration text box and click the Run Analysis button. The
analysis is performed immediately; at the bottom of Figure 6-14, you see that the minimum
required undo tablespace size is 545MB.

You don’t need to change your undo tablespace size immediately; the beauty of Undo
Advisor is that you can change the time period for analysis and retention to see what your disk
requirements will be in a given scenario.

FIGURE 6-14 Undo Advisor recommendations

CHAPTER
7

Managing Transactions
with Undo Tablespaces

207

208 Oracle Database 11g DBA Handbook

n Chapter 6, we touched briefly on how the space in an undo tablespace is
managed, along with views such as V$UNDOSTAT that can help the DBA monitor
and size the undo tablespace. In this chapter, we’ll delve much more deeply into
the configuration and management of the undo tablespace, and how we may
resolve the sometimes conflicting requirements of providing enough undo for read

consistency while preventing the failure of DML statements because the undo retention parameter
is set too high.

To start off this chapter, we’ll do a quick review of transactions from a database user’s point of
view so that you will better understand how to support the user’s transactions with the appropriately
sized undo tablespace. Next, we’ll cover the basics of how to create an undo tablespace, either
during database creation or later using the familiar create tablespace command. Undo segments
fulfill a number of requirements for database users, and we will enumerate and explain each of
those requirements in some detail.

Oracle provides a number of ways to monitor and, as a result, more precisely size undo
tablespaces. The package dbms_advisor can be used to analyze the undo tablespace usage, as
we did in Chapter 6; we will investigate this package in more detail and show how Oracle
Enterprise Manager Database Control can make it easy to perform the analysis.

The last major section of this book will review the different types of Oracle Flashback features
that rely on an adequately sized undo tablespace to recover from a number of different user error
scenarios. All the major Flashback features at the query, table, or transaction level are covered in
this section; Flashback Database is covered in Chapter 14.

Rollback segments from previous Oracle releases were hard to manage and were usually
sized too large or too small by most DBAs; Oracle strongly recommends that all new databases
use Automatic Undo Management and that databases upgraded from a previous version of Oracle
be converted to using Automatic Undo Management. We won’t cover any aspects of manual
undo management here except for how to migrate from rollback segments to automatic undo.

Transaction Basics
A transaction is a collection of SQL DML statements that is treated as a logical unit; the failure of
any of the statements in the transaction implies that none of the other changes made to the database
in the transaction should be permanently saved to the database. Once the DML statements in the
transaction have successfully completed, the application or SQL*Plus user will issue a commit to
make the changes permanent. In the classic banking example, a transaction that transfers a dollar
amount from one account to another is successful only if both the debit of one account (an update
of the savings account balance) and the credit of another account (an update of the checking
account balance) are both successful. Failure of either or both statements invalidates the entire
transaction. When the application or SQL*Plus user issues a commit, if only one or the other update
statement is successful, the bank will have some very unhappy customers!

A transaction is initiated implicitly. After a commit of a previous transaction is completed, and
at least one row of a table is inserted, updated, or deleted, a new transaction is implicitly created.
Also, any DDL commands such as create table and alter index will commit an active transaction
and begin a new transaction. You can name a transaction by using the set transaction . . . name
‘transaction_name’ command. Although this provides no direct benefit to the application, the
name assigned to the transaction is available in the dynamic performance view V$TRANSACTION
and allows a DBA to monitor long-running transactions; in addition, the transaction name helps

I

Chapter 7: Managing Transactions with Undo Tablespaces 209

the DBA resolve in-doubt transactions in distributed database environments. The set transaction
command, if used, must be the first statement within the transaction.

Within a given transaction, you can define a savepoint. A savepoint allows the sequence of DML
commands within a transaction to be partitioned so that it is possible to roll back one or more of
the DML commands after the savepoint, and subsequently submit additional DML commands or
commit the DML commands performed before the savepoint. Savepoints are created with the
savepoint savepoint_name command. To undo the DML commands since the last savepoint,
you use the command rollback to savepoint savepoint_name.

A transaction is implicitly committed if a user disconnects from Oracle normally; if the user
process terminates abnormally, the most recent transaction is rolled back.

Undo Basics
Undo tablespaces facilitate the rollback of logical transactions. In addition, undo tablespaces
support a number of other features, including read consistency, various database-recovery
operations, and Flashback functions.

Rollback
As described in the previous section, any DML command within a transaction—whether the
transaction is one or one hundred DML commands—may need to be rolled back. When a DML
command makes a change to a table, the old data values changed by the DML command are
recorded in the undo tablespace within a system-managed undo segment or a rollback segment.

When an entire transaction is rolled back (that is, a transaction without any savepoints),
Oracle undoes all the changes made by DML commands since the beginning of the transaction
using the corresponding undo records, releases the locks on the affected rows, if any, and the
transaction ends.

If part of a transaction is rolled back to a savepoint, Oracle undoes all changes made by DML
commands after the savepoint. All subsequent savepoints are lost, all locks obtained after the
savepoint are released, and the transaction remains active.

Read Consistency
Undo provides read consistency for users who are reading rows that are involved in a DML
transaction by another user. In other words, all users who are reading the affected rows will see
no changes in the rows until they issue a new query after the DML user commits the transaction.
Undo segments are used to reconstruct the datablocks back to a read-consistent version and, as
a result, provide the previous values of the rows to any user issuing a select statement before the
transaction commits.

For example, user CLOLSEN begins a transaction at 10:00 that is expected to commit at 10:15,
with various updates and insertions to the EMPLOYEES table. As each insert, update, and delete
occurs on the EMPLOYEES table, the old values of the table are saved in the undo tablespace.
When the user SUSANP issues a select statement against the EMPLOYEES table at 10:08, none
of the changes made by CLOLSEN are visible to anyone except CLOLSEN; the undo tablespace
provides the previous values of CLOLSEN’s changes for SUSANP and all other users. Even if the
query from SUSANP does not finish until 10:20, the table still appears to be unchanged until a
new query is issued after the changes are committed. Until CLOLSEN performs a commit at 10:15,
the data in the table appears unchanged as of 10:00.

210 Oracle Database 11g DBA Handbook

If there is not enough undo space available to hold the previous values of changed rows, the
user issuing the select statement may receive an “ORA-01555: Snapshot Too Old” error. Later in
this chapter, we will discuss ways in which we can address this issue.

Database Recovery
Undo tablespaces are also a key component of instance recovery. The online redo logs bring both
committed and uncommitted transactions forward to the point in time of the instance crash; the
undo data is used to roll back any transactions that were not committed at the time of the crash or
instance failure.

Flashback Operations
The data in the undo tablespace is used to support the various types of Flashback options: Flashback
Table, Flashback Query, and the package DBMS_FLASHBACK. Flashback Table will restore a
table as of a point of time in the past, Flashback Query lets you view a table as of an SCN or time
in the past, and DBMS_FLASHBACK provides a programmatic interface for Flashback operations.
Flashback Data Archive, new to Oracle Database 11g, stores and tracks all transactions on a
specified table for a specified time period; in a nutshell, Flashback Data Archive stores undo data
for a specific table in a specific tablespace outside of the global undo tablespace. Also new to
Oracle Database 11g is Flashback Transaction Backout that can roll back an already committed
transaction and its dependent transactions while the database is online. All these Flashback
options are covered in more detail at the end of this chapter.

Managing Undo Tablespaces
Creating and maintaining undo tablespaces is a “set it and forget it” operation once the undo
requirements of the database are understood. Within the undo tablespace, Oracle automatically
creates, sizes, and manages the undo segments, unlike previous versions of Oracle in which the
DBA would have to manually size and constantly monitor rollback segments.

In the next couple sections, we’ll review the processes used to create and manage undo
tablespaces, including the relevant initialization parameters. In addition, we’ll review some
scenarios where we may create more than one undo tablespace and how to switch between
undo tablespaces.

Creating Undo Tablespaces
Undo tablespaces can be created in two ways: at database creation or with the create tablespace
command after the database is created. As with any other tablespace in Oracle 10g, the undo
tablespace can be a bigfile tablespace, further easing the maintenance of undo tablespaces.

Creating an Undo Tablespace with CREATE DATABASE
A database may have more than one undo tablespace, although only one can be active at a time.
Here’s what creating an undo tablespace at database creation looks like:

Chapter 7: Managing Transactions with Undo Tablespaces 211

create database ord
 user sys identified by ds88dkw2
 user system identified by md78s233
 sysaux datafile '/u02/oradata/ord/sysaux001.dbf' size 1g
 default temporary tablespace temp01
 tempfile '/u03/oradata/ord/temp001.dbf' size 150m
 undo tablespace undotbs01
 datafile '/u01/oradata/ord/undo001.dbf' size 500m;

If the undo tablespace cannot be successfully created in the create database command, the
entire operation fails. The error must be corrected, any files remaining from the operation must
be deleted, and the command must be reissued.

Although the undo tablespace clause in the create database command is optional, if it is
omitted and Automatic Undo Management is enabled, an undo tablespace is still created with
an autoextensible datafile with an initial size of 10MB and the default name SYS_UNDOTBS.

Creating an Undo Tablespace with CREATE TABLESPACE
Any time after the database is created, a new undo tablespace can be created. An undo
tablespace is created just as any other tablespace with the addition of the undo keyword:

create undo tablespace undotbs02
 datafile '/u01/oracle/rbdb1/undo0201.dbf'
 size 500m reuse autoextend on;

Depending on the volatility of the database or the expectation that the undo needs of the database
may increase dramatically in the future, we start out this tablespace at only 500MB and allow it
to grow.

Extents in an undo tablespace must be system managed; in other words, you can only specify
extent management as local autoallocate.

Creating an Undo Tablespace Using EM Database Control
Creating an undo tablespace is straightforward using Enterprise Manager Database Control. From
the Server tab on the home page, click the Tablespaces link. You will be presented with a list of
existing tablespaces; click the Create button. In Figure 7-1, we’re creating a new undo tablespace
named UNDO_BATCH. Specify Undo Retention Guarantee as well. I’ll explain how that works
later in this chapter.

At the bottom of the screen, click Add and specify the name of the datafile to use for the undo
tablespace, as indicated in Figure 7-2. In this example, you use the ASM disk group DATA for the
datafile with a size of 500MB and 100MB more each time it extends. Click Continue to return to
the page in Figure 7-1.

Clicking Storage allows us to specify extent allocation, although for an undo tablespace it
must be automatic. If we are supporting multiple block sizes, we can specify the block size for
the undo tablespace. Figure 7-3 shows that we are specifying automatic extent allocation and a
block size of 8192, the default and only block size defined for the database.

212 Oracle Database 11g DBA Handbook

FIGURE 7-1 Using EM Database Control to create an undo tablespace

FIGURE 7-2 Specifying a datafile for a new undo tablespace

Chapter 7: Managing Transactions with Undo Tablespaces 213

As with most every EM Database Control maintenance screen, we can view the actual SQL
commands that will be executed when we are ready to create the tablespace. In Figure 7-4, we
clicked the Show SQL button to preview the SQL commands used to create the tablespace.

After we click OK in Figure 7-3, the new undo tablespace is created successfully in Figure 7-5.
Note that EM Database Control, although a big timesaver for the DBA, does not cover every

possible scenario, nor does it prevent the DBA from trying to create an undo tablespace with the
wrong parameters. Earlier in Figure 7-3, we could have specified Uniform extent allocation, but
if you try to create the tablespace, it will fail with an error message. As mentioned earlier in this
chapter, undo tablespaces must have automatically allocated extents.

FIGURE 7-3 Specifying storage characteristics for an undo tablespace

FIGURE 7-4 Previewing SQL commands to create an undo tablespace

214 Oracle Database 11g DBA Handbook

Dropping Undo Tablespaces
Dropping an undo tablespace is similar to dropping any other tablespace; the only restriction is
that the undo tablespace being dropped must not be the active undo tablespace or still have undo
data for an uncommitted transaction. You may, however, drop an undo tablespace that has unexpired
undo information, which may cause a long-running query to fail. To drop the tablespace we created
in the previous section, we use the drop tablespace command:

SQL> drop tablespace undo_batch;
Tablespace dropped.
SQL>

The clause including contents is implied when dropping an undo tablespace. However,
to remove the operating system data files when the tablespace is dropped, you must specify
including contents and datafiles. Trying to drop the active undo tablespace is not allowed:

FIGURE 7-5 Create Undo Tablespace confirmation

Chapter 7: Managing Transactions with Undo Tablespaces 215

SQL> drop tablespace undotbs1;
drop tablespace undotbs1
*
ERROR at line 1:
ORA-30013: undo tablespace 'UNDOTBS1' is currently in use
SQL>

The active undo tablespace must be switched with another undo tablespace before it can be
dropped. More information on switching undo tablespaces is covered later in this chapter.

Modifying Undo Tablespaces
The following operations are allowed on undo tablespaces:

Adding a datafile to an undo tablespace

Renaming a datafile in an undo tablespace

Changing an undo tablespace’s datafile to online or offline

Beginning or ending an open tablespace backup (alter tablespace undotbs begin backup)

Enabling or disabling the undo retention guarantee

Everything else is automatically managed by Oracle.

Using OMF for Undo Tablespaces
In addition to using a bigfile tablespace for undo tablespaces, you can also use OMF to automatically
name (and locate, if you’re not using ASM) an undo tablespace; the initialization parameter DB_
CREATE_FILE_DEST contains the location where an undo tablespace will be created if the datafile
clause is not specified in the create undo tablespace command. In the following example, we
create an undo tablespace using OMF in an ASM disk group:

SQL> show parameter db_create_file_dest
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
db_create_file_dest string +DATA

SQL> create undo tablespace undo_bi;
Tablespace created.

SQL> select ts.name ts_name, df.name df_name, bytes
 2 from v$tablespace ts join v$datafile df using(ts#)
 3 where ts.name = 'UNDO_BI';

TS_NAME DF_NAME BYTES
------------ --- ----------
UNDO_BI +DATA/dw/datafile/undo_bi.275.629807457 104857600

SQL>

Because we did not specify a datafile size either, the tablespace defaults to a size of 100MB;
in addition, the datafile is autoextensible with an unlimited maximum size, limited only by the file
system.

■

■

■

■

■

216 Oracle Database 11g DBA Handbook

Undo Tablespace Dynamic Performance Views
A number of dynamic performance views and data dictionary views contain information about
undo tablespaces, user transactions, and undo segments. Table 7-1 contains the view names and
their descriptions.

The views in Table 7-1 are described in more detail later in this chapter.

Undo Tablespace Initialization Parameters
In the following sections, we’ll describe the initialization parameters needed to specify the undo
tablespace for the database as well as control how long Oracle will retain undo information in
the database.

UNDO_MANAGEMENT
The parameter UNDO_MANAGEMENT defaults to MANUAL in Oracle Database 10g, and AUTO
in Oracle Database 11g. Setting the parameter UNDO_MANAGEMENT to AUTO places the
database in Automatic Undo Management mode. At least one undo tablespace must exist in the
database for this parameter to be valid, whether UNDO_TABLESPACE is specified or not. UNDO_
MANAGEMENT is not a dynamic parameter; therefore, the instance must be restarted whenever
UNDO_MANAGEMENT is changed from AUTO to MANUAL, or vice versa.

UNDO_TABLESPACE
The UNDO_TABLESPACE parameter specifies which undo tablespace will be used for Automatic
Undo Management. If UNDO_MANAGEMENT is not specified or set to MANUAL, and UNDO_
TABLESPACE is specified, the instance will not start.

NOTE
UNDO_TABLESPACE is used in a Real Application Clusters (RAC)
environment to assign a particular undo tablespace to an instance,
where the total number of undo tablespaces in the database is the
same or more than the number of instances in the cluster.

View Description

DBA_TABLESPACES Tablespace names and characteristics, including the CONTENTS
column, which can be PERMANENT, TEMPORARY, or UNDO;
the undo RETENTION column is NOT APPLY, GUARANTEE, or
NOGUARANTEE.

DBA_UNDO_EXTENTS All undo segments in the database, including their size, their
extents, the tablespace where they reside, and current status
(EXPIRED or UNEXPIRED).

V$UNDOSTAT The amount of undo usage for the database at ten-minute
intervals; contains at most 1008 rows (7 days).

V$ROLLSTAT Rollback segment statistics, including size and status.

V$TRANSACTION Contains one row for each active transaction for the instance.

TABLE 7-1 Undo Tablespace Views

Chapter 7: Managing Transactions with Undo Tablespaces 217

Conversely, if UNDO_MANAGEMENT is set to AUTO and there is no undo tablespace in the
database, the instance will start, but then the SYSTEM rollback segment will be used for all undo
operations, and a message is written to the alert log. Any user DML that attempts to make changes
in non-SYSTEM tablespaces will, in addition, receive the error message “ORA-01552: cannot use
system rollback segment for non-system tablespace ‘USERS,’” and the statement fails.

UNDO_RETENTION
UNDO_RETENTION specifies a minimum amount of time that undo information is retained for
queries. In automatic undo mode, UNDO_RETENTION defaults to 900 seconds. This value is
valid only if there is enough space in the undo tablespace to support read-consistent queries; if
active transactions require additional undo space, an unexpired undo may be used to satisfy the
active transactions and may cause “ORA-01555: Snapshot Too Old” errors.

The column TUNED_UNDORETENTION of the dynamic performance view V$UNDOSTAT
gives the tuned undo retention time for each time period; the status of the undo tablespace usage
is updated in V$UNDOSTAT every ten minutes:

SQL> show parameter undo_retention

NAME TYPE VALUE
------------------------------------ ----------- ---------------
undo_retention integer 900

SQL> select to_char(begin_time,'yyyy-mm-dd hh24:mi'),
 2 undoblks, txncount, tuned_undoretention
 3 from v$undostat where rownum = 1;

TO_CHAR(BEGIN_TI UNDOBLKS TXNCOUNT TUNED_UNDORETENTION
---------------- ---------- ---------- -------------------
2007-08-05 16:07 9 89 900
1 row selected.
SQL>

Because the transaction load is very light during the most recent time period, and the instance
has just recently started up, the tuned undo retention value is the same as the minimum specified
in the UNDO_RETENTION initialization parameter: 900 seconds (15 minutes).

TIP
You don’t need to specify UNDO_RETENTION unless you have
Flashback or LOB retention requirements; the UNDO_RETENTION
parameter is not used for managing transaction rollback.

Multiple Undo Tablespaces
As mentioned earlier in this chapter, a database can have multiple undo tablespaces, but only one
of them can be active for a given instance at any one time. In this section, we’ll show an example
of switching to a different undo tablespace while the database is open.

NOTE
In a Real Application Clusters (RAC) environment, one undo
tablespace is required for each instance in the cluster.

218 Oracle Database 11g DBA Handbook

In our dw database, we have three undo tablespaces:

SQL> select tablespace_name, status from dba_tablespaces
 2 where contents = 'UNDO';
TABLESPACE_NAME STATUS
--------------------------- ---------
UNDOTBS1 ONLINE
UNDO_BATCH ONLINE
UNDO_BI ONLINE

2 rows selected.

But only one of the undo tablespaces is active:

SQL> show parameter undo_tablespace
NAME TYPE VALUE
-------------------------- ----------- ----------------------
undo_tablespace string UNDOTBS1

For overnight processing, we change the undo tablespace from UNDOTBS1 to the tablespace
UNDO_BATCH, which is much larger to support higher DML activity. The disk containing the
daytime undo tablespace is much faster but has a limited amount of space; the disk containing
the overnight undo tablespace is much larger, but slower. As a result, we use the smaller undo
tablespace to support OLTP during the day, and the larger undo tablespace for our data mart and
data warehouse loads, as well as other aggregation activities, at night when response time is not
as big of an issue.

NOTE
Other than special circumstances described in this section, it is
unlikely that you will be switching undo tablespaces for a given
instance. Oracle’s best practices suggest that you create a single undo
tablespace per instance that is large enough to handle all transaction
loads; in other words, “set it and forget it.”

About the time the undo tablespace is going to be switched, the user HR is performing some
maintenance operations on the HR.EMPLOYEES table, and she has an active transaction in the
current undo tablespace:

SQL> connect hr/hr@dw;
Connected.
SQL> set transaction name 'Employee Maintenance';
Transaction set.
SQL> update employees set commission_pct = commission_pct * 1.1;
107 rows updated.
SQL>

Checking V$TRANSACTION, you see HR’s uncommitted transaction:

SQL> select t.status, t.start_time, t.name
 2 from v$transaction t join v$session s on t.ses_addr = s.saddr
 3 where s.username = 'HR';

Chapter 7: Managing Transactions with Undo Tablespaces 219

STATUS START_TIME NAME
-------------- -------------------- -------------------------
ACTIVE 08/05/07 17:41:50 Employee Maintenance

1 row selected.

You change the undo tablespace as follows:

SQL> alter system set undo_tablespace=undo_batch;
System altered.

HR’s transaction is still active, and therefore the old undo tablespace still contains the undo
information for HR’s transaction, leaving the undo segment still available with the following status
until the transaction is committed or rolled back:

SQL> select r.status
 2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
 3 join v$session s on t.ses_addr = s.saddr
 4 where s.username = 'HR';

STATUS

PENDING OFFLINE

1 row selected.

Even though the current undo tablespace is UNDO_BATCH, the daytime tablespace
UNDOTBS1 cannot be taken offline or dropped until HR’s transaction is committed or
rolled back:

SQL> show parameter undo_tablespace
NAME TYPE VALUE
-------------------------- ----------- ----------------------
undo_tablespace string UNDO_BATCH

SQL> alter tablespace undotbs1 offline;
alter tablespace undotbs1 offline
*
ERROR at line 1:
ORA-30042: Cannot offline the undo tablespace

The error message ORA-30042 applies if you try to offline an undo tablespace that is in use—
either it is the current undo tablespace or it still has pending transactions. Note that if we switch
back to the daytime tablespace before HR commits or rolls back the original transaction, the status
of HR’s rollback segment reverts back to ONLINE:

SQL> alter system set undo_tablespace=undotbs1;
System altered.
SQL> select r.status
 2 from v$rollstat r join v$transaction t on r.usn=t.xidusn
 3 join v$session s on t.ses_addr = s.saddr
 4 where s.username = 'HR';

220 Oracle Database 11g DBA Handbook

STATUS

ONLINE

1 row selected.

Sizing and Monitoring the Undo Tablespace
There are three types of undo data in the undo tablespace: active or unexpired, expired, and
unused. Active or unexpired is undo data that is still needed for read consistency, even after a
transaction has been committed. Once all queries needing the active undo data have completed
and the undo retention period is reached, the active undo data becomes expired. Expired undo
data may still be used to support other Oracle features, such as the Flashback features, but it is
no longer needed to support read consistency for long-running transactions. Unused undo data
is space in the undo tablespace that has never been used.

As a result, the minimum size for an undo tablespace is enough space to hold the before-image
versions of all data from all active transactions that have not yet been committed or rolled back.
If the space allocated to the undo tablespace cannot even support the changes to uncommitted
transactions to support a rollback operation, the user will get the error message “ORA-30036:
unable to extend segment by space_qty in undo tablespace tablespace_name.” In this situation,
the DBA must increase the size of the undo tablespace, or as a stopgap measure the user can split
up a larger transaction into smaller ones while still maintaining any required business rules.

Manual Methods
The DBA can use a number of manual methods to correctly size the undo tablespace. As
demonstrated in Chapter 6, we can review the contents of the dynamic performance view
V$UNDOSTAT to see the undo segment usage at ten-minute intervals. In addition, the column
SSOLDERRCNT indicates how many queries failed with a “Snapshot too old” error:

SQL> select to_char(end_time,'yyyy-mm-dd hh24:mi') end_time,
 2> undoblks, ssolderrcnt from v$undostat;
END_TIME UNDOBLKS SSOLDERRCNT
---------------- ---------- -----------
2007-08-02 20:17 45 0
2007-08-02 20:07 116 0
2007-08-02 19:57 2763 0
2007-08-02 19:47 23 0
2007-08-02 19:37 45120 2
2007-08-02 19:27 119 0
2007-08-02 19:17 866 0

Between 19:27 and 19:37 we have a spike in undo usage, resulting in some failed queries.
As a rule of thumb, you can use the following calculations:

undo_tablespace_size = UR * UPS + overhead

In this formula, UR equals undo retention in seconds (from the initialization parameter
UNDO_RETENTION), UPS equals undo blocks used per second (maximum), and overhead
equals undo metadata, usually a very small number relative to the overall size. For example,
if a database has an 8K block size, and UNDO_RETENTION equals 43200 (12 hours), and we

Chapter 7: Managing Transactions with Undo Tablespaces 221

generate 500 undo blocks every second, all of which must be retained for at least 12 hours, our
total undo space must be:

undo_tablespace_size = 43200 * 500 * 8192 = 176947200000 = 177GB

Add about 10 to 20 percent to this calculation to allow for unexpected situations. Alternatively,
you can enable autoextend for the datafiles in the undo tablespace. Although this calculation is
useful as a starting point, Oracle 10g’s and Oracle 11g’s built-in advisors, using trending analysis,
can give a better overall picture of undo space usage and recommendations.

Undo Advisor
Oracle 11g’s Undo Advisor automates a lot of the tasks necessary to fine-tune the amount of space
required for an undo tablespace. In Chapter 6, we reviewed two examples of using the Undo
Advisor: via the EM Database Control interface and using the PL/SQL DBMS_ADVISOR packages
within the Automatic Workload Repository (AWR) to programmatically choose a time period to
analyze and perform the analysis.

The Automatic Undo Management GUI screen is shown in Figure 7-6.
UNDO_RETENTION is currently set to 15 minutes and the size of the active undo tablespace

(UNDO_BATCH) is 500MB. In this example, if we want a read-consistent view of table data for
720 minutes, clicking the Run Analysis button tells us that we only need an undo tablespace size
of 165MB (and ideally three times this amount) to support workload fluctuations. Therefore, our
undo tablespace is sized adequately at 500MB.

FIGURE 7-6 Tablespace characteristics

222 Oracle Database 11g DBA Handbook

Controlling Undo Usage
As of Oracle9i, Oracle’s Database Resource Manager can help to control undo space usage by
user or by group of users within a resource consumer group via the UNDO_POOL directive. Each
consumer group can have its own undo pool; when the total undo generated by a group exceeds
the assigned limit, the current transaction generating the undo is terminated and generates the
error message “ORA-30027: Undo quota violation—failed to get number (bytes).” The session
will have to wait until the DBA increases the size of the undo pool or until other transactions
from users in the same consumer group complete.

In the following example, we change the default value of UNDO_POOL from NULL
(unlimited) to 50000KB (50MB) for users in the resource consumer group LOW_GROUP:

begin
 dbms_resource_manager.create_pending_area();
 dbms_resource_manager.update_plan_directive(
 plan => 'system_plan',
 group_or_subplan => 'low_group',
 new_comment => 'Limit undo space for low priority groups',
 new_undo_pool => 50000);
 dbms_resource_manager.validate_pending_area();
 dbms_resource_manager.submit_pending_area();
end;

Oracle Resource Manager and other resource directives are covered in more detail in Chapter 5.

Read Consistency vs. Successful DML
For OLTP databases, generally we want DML commands to succeed at the expense of read-consistent
queries. For a DSS environment, however, we may want long-running queries to complete without
getting a “Snapshot too old” error. Although increasing the UNDO_RETENTION parameter or
increasing the size of the undo tablespace helps to ensure that undo blocks are available for read-
consistent queries, undo tablespaces have another characteristic to help ensure that queries will run
to completion: the RETENTION GUARANTEE setting.

Undo retention guarantee is set at the tablespace level, and it can be altered at any time.
Setting a retention guarantee for an undo tablespace ensures that an unexpired undo within the
tablespace should be retained even if it means that DML transactions might not have enough
undo space to complete successfully. By default, a tablespace is created with NOGUARANTEE,
unless you specify the GUARANTEE keyword, either when the tablespace is created or later with
ALTER TABLESPACE:

SQL> alter tablespace undotbs1 retention guarantee;
Tablespace altered.

SQL> select tablespace_name, retention
 2 from dba_tablespaces
 3 where tablespace_name = 'UNDOTBS1';

TABLESPACE_NAME RETENTION
------------------------------ -----------
UNDOTBS1 GUARANTEE

Chapter 7: Managing Transactions with Undo Tablespaces 223

1 row selected.

For non-undo tablespaces, the value of RETENTION is always NOT APPLY.

Flashback Features
In this section we’ll discuss the Flashback features supported by undo tablespaces or Flashback Data
Archive: Flashback Query, Flashback Table, Flashback Version Query, and Flashback Transaction
Query. In addition, we’ll cover the highlights of using the DBMS_FLASHBACK package. As of
Oracle Database 11g, these features are collectively known as the Oracle Total Recall Option.

Flashback Database and Flashback Drop are covered in Chapter 14. Flashback Database
uses Flashback logs in the Flash Recovery Area instead of undo in an undo tablespace to provide
the Flashback functionality; Flashback Drop places dropped tables into a virtual recycle bin within
the tablespace and they remain there until the user retrieves it with flashback table . . . to before
drop command or empties the recycle bin, or else until the space is needed by new permanent
objects in the tablespace.

To further extend the self-service capabilities of Oracle10g and Oracle 11g, the DBA can grant
system and object privileges to users to allow them to fix their own problems, usually without any
DBA intervention. In the following example, we’re enabling the user SCOTT to perform Flashback
operations on specific tables and to access transaction metadata across the database:

SQL> grant insert, update, delete, select on hr.employees to scott;
Grant succeeded.
SQL> grant insert, update, delete, select on hr.departments to scott;
Grant succeeded.
SQL> grant flashback on hr.employees to scott;
Grant succeeded.
SQL> grant flashback on hr.departments to scott;
Grant succeeded.
SQL> grant select any transaction to scott;
Grant succeeded.

Flashback Query
Starting with Oracle9i Release 2, the as of clause is available in a select query to retrieve the state
of a table as of a given timestamp or SCN. You might use this to find out which rows in a table were
deleted since midnight, or you might want to just do a comparison of the rows in a table today
versus what was in the table yesterday.

In the following example, HR is cleaning up the EMPLOYEES table and deletes two
employees who no longer work for the company:

SQL> delete from employees
 2 where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL>

224 Oracle Database 11g DBA Handbook

Normally, HR will copy these rows to the EMPLOYEES_ARCHIVE table first, but she forgot
to do that this time; HR doesn’t need to put those rows back into the EMPLOYEES table, but she
needs to get the two deleted rows and put them into the archive table. Because HR knows she
deleted the rows less than an hour ago, we can use a relative timestamp value with Flashback
Query to retrieve the rows:

SQL> insert into hr.employees_archive
 2 select * from hr.employees
 3 as of timestamp systimestamp - interval '60' minute
 4 where hr.employees.employee_id not in
 5 (select employee_id from hr.employees);

2 rows created.

SQL> commit;
Commit complete.

Because we know that EMPLOYEE_ID is the primary key of the table, we can use it to retrieve
the employee records that existed an hour ago but do not exist now. Note also that we didn’t have
to know which records were deleted; we essentially compared the table as it existed now versus
an hour ago and inserted the records that no longer exist into the archive table.

TIP
It is preferable to use the SCN for Flashback over a timestamp;
SCNs are exact, whereas the timestamp values are only stored every
three seconds to support Flashback operations. As a result, enabling
Flashback using timestamps may be off by as much as 1.5 seconds.

Although we could use Flashback Table to get the entire table back, and then archive and
delete the affected rows, in this case it is much simpler to merely retrieve the deleted rows and
insert them directly into the archive table.

Another variation of Flashback Table is to use Create Table As Select (CTAS) with the subquery
being a Flashback Query:

SQL> delete from employees where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

SQL> create table employees_deleted as
 2 select * from employees
 3 as of timestamp systimestamp - interval '60' minute
 4 where employees.employee_id not in
 5 (select employee_id from employees);
Table created.

SQL> select employee_id, last_name from employees_deleted;

Chapter 7: Managing Transactions with Undo Tablespaces 225

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 195 Jones
 196 Walsh

2 rows selected.

This is known as an out-of-place restore (in other words, restoring the table or a subset of the
table to a different location than the original). This has the advantage of being able to further
manipulate the missing rows, if necessary, before placing them back in the table; for example,
after reviewing the out-of-place restore, an existing referential integrity constraint may require that
you insert a row into a parent table before the restored row can be placed back in the child table.

One of the disadvantages of an out-of-place restore using CTAS is that neither constraints nor
indexes are rebuilt automatically.

DBMS_FLASHBACK
An alternative to Flashback Query is the package DBMS_FLASHBACK. One of the key differences
between the DBMS_FLASHBACK package and Flashback Query is that DBMS_FLASHBACK operates
at the session level, whereas Flashback Query operates at the object level.

Within a PL/SQL procedure or a user session, DBMS_FLASHBACK can be enabled and all
subsequent operations, including existing applications, can be carried out without the as of clause
being added to select statements. After DBMS_FLASHBACK is enabled as of a particular timestamp
or SCN, the database appears as if the clock was turned back to the timestamp or SCN until
DBMS_FLASHBACK is disabled. Although DML is not allowed when DBMS_FLASHBACK is
enabled, a cursor can be opened in a PL/SQL procedure before DBMS_FLASHBACK is enabled
to allow data from a previous point in time to be inserted or updated in the database as of the
current point in time.

Table 7-2 lists the procedures available within DBMS_FLASHBACK.

Procedure Description

DISABLE Disables Flashback mode for the session

ENABLE_AT_SYSTEM_CHANGE_NUMBER Enables Flashback mode for the session,
specifying an SCN

ENABLE_AT_TIME Enables Flashback mode for the session,
using the SCN closest to the TIMESTAMP
specified

GET_SYSTEM_CHANGE_NUMBER Returns the current SCN

TRANSACTION_BACKOUT Backs out a transaction and all dependent
transactions using transaction names or
transaction identifiers (XIDs)

TABLE 7-2 DBMS_FLASHBACK Procedures

226 Oracle Database 11g DBA Handbook

The procedures that enable and disable Flashback mode are relatively simple to use. The
complexity usually lies within a PL/SQL procedure, for example, that creates cursors to support
DML commands.

In the following example, we’ll revisit HR’s deletion of the EMPLOYEES rows and how HR can
restore those to the table using the DBMS_FLASHBACK package. In this scenario, HR will put the
deleted employee rows back into the table and instead add a termination date column to the table
to reflect the date at which the employees left the company:

SQL> delete from hr.employees where employee_id in (195,196);
2 rows deleted.

SQL> commit;
Commit complete.

About ten minutes later, HR decides to get those rows back using DBMS_FLASHBACK, and
enables Flashback for her session:

SQL> execute dbms_flashback.enable_at_time(
 2 to_timestamp(sysdate - interval '45' minute));
PL/SQL procedure successfully completed.

Next, HR verifies that the two deleted rows existed as of 45 minutes ago:

SQL> select employee_id, last_name from hr.employees
 2 where employee_id in (195,196);

EMPLOYEE_ID LAST_NAME
----------- -------------------------
 195 Jones
 196 Walsh

SQL>

To put the rows back into the HR.EMPLOYEES table, HR writes an anonymous PL/SQL procedure
to create a cursor to hold the deleted rows, disable Flashback Query, then reinsert the rows:

declare
 -- cursor to hold deleted rows before closing
 cursor del_emp is
 select * from employees where employee_id in (195,196);
 del_emp_rec del_emp%rowtype; -- all columns of the employee row
begin
 -- open the cursor while still in Flashback mode
 open del_emp;
 -- turn off Flashback so we can use DML to put the rows
 -- back into the EMPLOYEES table
 dbms_flashback.disable;
 loop
 fetch del_emp into del_emp_rec;
 exit when del_emp%notfound;
 insert into employees values del_emp_rec;
 end loop;

Chapter 7: Managing Transactions with Undo Tablespaces 227

 commit;
 close del_emp;
end; -- anonymous PL/SQL procedure

Note that HR could have enabled Flashback within the procedure; in this case, HR enabled
it outside of the procedure to run some ad hoc queries, and then used the procedure to create the
cursor, turn off Flashback, and reinsert the rows.

Flashback Transaction Backout
A given transaction in a complex application may be consistent and atomic, but the validity of the
transaction may not be validated until many other transactions have taken place; in other words,
the ill effects of an earlier transaction may cause other transactions to further modify the same
data as the original transaction. Trying to manually track the interdependent successive transactions
is tedious and error-prone. Flashback Transaction makes it easy to identify and roll back the
offending transaction and optionally all dependent transactions.

To enable Flashback Transaction Backout, enable archiving (if it is not already in ARCHIVELOG
mode) while the database is mounted (but not open):

alter database archivelog;

Next, run these commands to create at least one archived redo log file and to add additional
transaction information to the log files.

alter system archive log current;
alter database add supplemental log data;

Adding the supplemental log data will have a noticeable impact on performance in a heavy
DML environment. Be sure to monitor system resources before and after you enable the additional
logging to assess the cost of the logging operation. Finally, open the database:

alter database open;

You leverage Flashback Transaction Backout features via the DBMS_FLASHBACK procedure
TRANSACTION_BACKOUT. After you run DBMS_FLASHBACK.TRANSACTION_BACKOUT, the
DML against the related tables is performed but not committed; you must then review the tables
DBA_FLASHBACK_TRANSACTION_STATE and DBA_FLASHBACK_TRANSACTION_REPORT to
see if the correct transactions were rolled back. You must then manually perform either a commit
or a rollback.

Flashback Table
New to Oracle10g, the Flashback Table feature not only restores the state of rows in a table as of
a point of time in the past, but it also restores the table’s indexes, triggers, and constraints while
the database is online, increasing the overall availability of the database. The table can be restored
as of a timestamp or an SCN. Flashback Table is preferable to other Flashback methods if the
scope of user errors is small and limited to one or very few tables. It’s also the most straightforward if
you know that you want to restore the table to a point in the past unconditionally. For recovering
the state of a larger number of tables, Flashback Database may be a better choice. Flashback
Table cannot be used on a standby database and cannot reconstruct all DDL operations, such
as adding and dropping columns.

228 Oracle Database 11g DBA Handbook

To use Flashback Table on a table or tables, you must enable row movement on the table
before performing the Flashback operation, although row movement need not be in effect when
the user error occurs. Row movement is also required to support Oracle’s segment shrink
functionality; because row movement will change the ROWID of a table row, do not enable row
movement if your applications depend on the ROWID being the same for a given row until the
row is deleted. Because none of our applications reference our tables by ROWID, we can safely
enable row movement for the HR tables:

SQL> alter table employees enable row movement;
Table altered.
SQL> alter table departments enable row movement;
Table altered.
SQL> alter table jobs enable row movement;
Table altered.

The next day, the HR user accidentally deletes all the rows in the EMPLOYEES table due to a
cut-and-paste error from an existing script:

SQL> delete from hr.employees
 2 /
107 rows deleted.

SQL> commit
 2 ;
Commit complete.

SQL> where employee_id = 195
SP2-0734: unknown command beginning "where empl..." - rest of line ignored.

Because the undo tablespace is large enough and the HR user notices the problem within the
retention period, the HR user can bring back the entire table quickly without calling the DBA:

SQL> flashback table employees
 2 to timestamp systimestamp - interval '15' minute;
Flashback complete.

SQL> select count(*) from employees;
 COUNT(*)

 107

If two or more tables have a parent/child relationship with foreign key constraints, and rows
were inadvertently deleted from both tables, they can be flashed back in the same flashback
command:

Chapter 7: Managing Transactions with Undo Tablespaces 229

SQL> flashback table employees, departments
 2 to timestamp systimestamp - interval '15' minute;
Flashback complete.

The HR user can also use EM Database Control to flash back one or more tables. In Figure 7-
7, she has selected the Perform Recovery link under the Availability tab.

Selecting an object type of Tables, the HR user has the option to flash back existing tables or
dropped tables. In this case, she will be flashing back an existing table.

After clicking Next, she knows the precise time of day at which the table was valid, so she
specifies a time about ten minutes before the delete operation on the screen in Figure 7-8. In
addition, you can specify a restore point or SCN for the recovery operation if you don’t know
the time of day.

In Figure 7-9, HR is selecting the table to flash back (in this case, HR.EMPLOYEES).

FIGURE 7-7 EM Database Control Backup/Recovery page

230 Oracle Database 11g DBA Handbook

FIGURE 7-8 Specifying the time frame for table recovery operation

FIGURE 7-9 Specifying the table name for table recovery operation

Chapter 7: Managing Transactions with Undo Tablespaces 231

FIGURE 7-10 Specifying the dependency options for table recovery operation

FIGURE 7-11 Reviewing table recovery operation actions

EM Database Control identifies any dependencies, such as foreign key constraints, and alerts
the HR user in Figure 7-10. Unless there is a good reason to break any parent/child relationships
between the tables, leave the default option, Cascade, selected.

In Figure 7-11, the HR user can take one more look at the options she has selected.

232 Oracle Database 11g DBA Handbook

In addition, as with most EM Database Control screens, she can review the SQL commands
generated:

FLASHBACK TABLE HR.EMPLOYEES, HR.JOBS, HR.DEPARTMENTS TO TIMESTAMP
to_timestamp('2007-08-05 20:10:47', 'YYYY-MM-DD HH24:MI:SS')

Clicking Submit runs the command.
Note that in this example, using the command line would take less time and is probably more

straightforward; however, if you have unknown dependencies or if the command-line syntax is
unfamiliar to you, then EM Database Control is a better option.

Flashback Version Query
Flashback Version Query, another Flashback feature that relies on undo data, provides a finer
level of detail than an as of query: Whereas the Flashback methods we’ve presented up to now
bring back rows of a table or an entire table for a particular point in time, Flashback Version
Query will return the entire history of a given row between two SCNs or timestamps.

For the examples in this and the next section, the user HR makes a number of changes to the
HR.EMPLOYEES and HR.DEPARTMENTS tables:

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011365

SQL> update hr.employees set salary = salary*1.2 where employee_id=195;
1 row updated.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011381

SQL> delete from hr.employees where employee_id = 196;
1 row deleted.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011409

SQL> insert into hr.departments values (660,'Security', 100, 1700);
1 row created.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011433

SQL> update hr.employees set manager_id = 100 where employee_id = 195;
1 row updated.

SQL> commit;

Chapter 7: Managing Transactions with Undo Tablespaces 233

Commit complete.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011464
SQL> update hr.employees set department_id = 660 where employee_id = 195;
1 row updated.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011470

SQL> update hr.employees set salary = salary*1.2 where employee_id=195;
1 row updated.

SQL> commit;
Commit complete.

SQL> select dbms_flashback.get_system_change_number from dual;
GET_SYSTEM_CHANGE_NUMBER

 4011508
SQL>

The next day, the HR user is out of the office, and the other HR department employees wants
to know what rows and tables were changed. Using Flashback Version Query, the user HR can
see not only the values of a column at a particular time, but the entire history of changes between
specified timestamps or SCNs.

A Flashback Version Query uses the versions between clause to specify a range of SCNs
or timestamps for analysis of a given table (in this case, the EMPLOYEES table). When versions
between is used in a Flashback Version Query, a number of pseudocolumns are available to help
identify the SCN and timestamp of the modifications, as well as the transaction ID and the type
of operation performed on the row. Table 7-3 shows the pseudocolumns available with Flashback
Version Queries.

Pseudocolumn Description

VERSIONS_
START{SCN|TIME}

The starting SCN or timestamp when the change was made to
the row.

VERSION_END{SCN|TIME} The ending SCN or timestamp when the change was no longer
valid for the row. If this is NULL, either the row version is still
current or the row was deleted.

VERSIONS_XID The transaction ID of the transaction that created the row version.

VERSIONS_OPERATION The operation performed on the row (I=Insert, D=Delete,
U=Update).

TABLE 7-3 Flashback Version Query Pseudocolumns

234 Oracle Database 11g DBA Handbook

The HR user runs a Flashback Version Query to see the changes to any key columns in
HR.EMPLOYEES for the two employees with IDs 195 and 196:

SQL> select versions_startscn startscn, versions_endscn endscn,
 2 versions_xid xid, versions_operation oper,
 3 employee_id empid, last_name name, manager_id mgrid, salary sal
 4 from hr.employees
 5 versions between scn 4011365 and 4011508
 6 where employee_id in (195,196);

 STARTSCN ENDSCN XID OPER EMPID NAME MGRID SAL
--------- --------- ---------------- ---- ----- -------- ----- ----------
 4011507 1100120025000000 U 195 Jones 100 4032
 4011463 4011507 0E001A0024000000 U 195 Jones 100 3360
 4011463 195 Jones 123 2800
 4011463 0E001A0024000000 D 196 Walsh 124 3100
 4011463 196 Walsh 124 3100

The rows are presented with the most recent changes first. Alternatively, HR could have filtered
the query by TIMESTAMP or displayed the TIMESTAMP values, but either can be used in a Flashback
Query or Flashback Table operation, if required later. From this output, we see that one employee
was deleted and that another employee received two pay adjustments instead of one. It’s also
worth noting that some of the transactions contain only one DML command, and others have
two.In the next section, we’ll attempt to correct one or more of these problems.

Flashback Transaction Query
Once we have identified any erroneous or incorrect changes to a table, we can use Flashback
Transaction Query to identify any other changes that were made by the transaction containing the
inappropriate changes. Once identified, all changes within the transaction can be reversed as a
group, typically to maintain referential integrity or the business rules used to process the transaction
in the first place.

A Flashback Transaction Query, unlike a Flashback Version Query, does not reference the
table involved in DML transactions; instead, you query the data dictionary view FLASHBACK_
TRANSACTION_QUERY. The columns of FLASHBACK_TRANSACTION_QUERY are summarized
in Table 7-4.

To further investigate the changes that were made to the EMPLOYEES table, we will query
the view FLASHBACK_TRANSACTION_QUERY with the oldest transaction from the query in the
previous section:

SQL> select start_scn, commit_scn, logon_user,
 2 operation, table_name, undo_sql
 3 from flashback_transaction_query
 4 where xid = hextoraw('0E001A0024000000');

START_SCN COMMIT_SCN LOGON_USER OPERATION TABLE_NAME
---------- ---------- ---------- ------------ ---------------
UNDO_SQL

 4011380 4011463 HR UPDATE EMPLOYEES
update "HR"."EMPLOYEES" set "MANAGER_ID" = '123' where ROWID =

Chapter 7: Managing Transactions with Undo Tablespaces 235

'AAARAxAAFAAAAHGABO';

 4011380 4011463 HR INSERT DEPARTMENTS
delete from "HR"."DEPARTMENTS" where ROWID = 'AAARAsAAFAAAAA3AAb';

 4011380 4011463 HR DELETE EMPLOYEES
insert into "HR"."EMPLOYEES"("EMPLOYEE_ID","FIRST_NAME",
"LAST_NAME","EMAIL","PHONE_NUMBER","HIRE_DATE","JOB_ID","SALARY",
"COMMISSION_PCT","MANAGER_ID","DEPARTMENT_ID","WORK_RECORD")
values ('196','Alana','Walsh','AWALSH','650.507.9811',
TO_DATE('24-APR-98', 'DD-MON-RR'),'SH_CLERK','3100',
NULL,'124','50',NULL);

 4011380 4011463 HR UPDATE EMPLOYEES
update "HR"."EMPLOYEES" set "SALARY" = '2800' where
ROWID = 'AAARAxAAFAAAAHGABO';

 4011380 4011463 HR BEGIN

We confirm what we already expected—that another user in the HR department made the
deletion and salary update (thus pointing out the usefulness of assigning separate user accounts
for each member of the HR department). The UNDO_SQL column contains the actual SQL code
that can be used to reverse the effect of the transaction. Note, however, that in this example, this
is the first transaction to occur between the SCNs of interest. If other transactions made further
updates to the same columns, we may want to review the other updates before running the SQL
code in the UNDO_SQL column.

Column Name Description

XID Transaction ID number

START_SCN SCN for the first DML in the transaction

START_TIMESTAMP Timestamp of the first DML in the transaction

COMMIT_SCN SCN when the transaction was committed

COMMIT_TIMESTAMP Timestamp when the transaction was committed

LOGON_USER User who owned the transaction

UNDO_CHANGE# Undo SCN

OPERATION DML operation performed: DELETE, INSERT, UPDATE, BEGIN, or
UNKNOWN

TABLE_NAME Table changed by DML

TABLE_OWNER Owner of the table changed by DML

ROW_ID ROWID of the row modified by DML

UNDO_SQL SQL statement to undo the DML operation

TABLE 7-4 FLASHBACK_TRANSACTION_QUERY Columns

236 Oracle Database 11g DBA Handbook

Flashback Data Archive
Recent regulations such as Sarbanes-Oxley and HIPAA require strict control and tracking
requirements for customer and patient data; keeping a historical record of all changes to rows
in critical tables is error prone and requires custom applications or database triggers to maintain
repositories for the historical changes. Every time you create a new application or update a table
in an application that requires historical tracking, you must make changes to your tracking
application as well. As of Oracle Database 11g, you can use Flashback Data Archive to
automatically save historical changes to all key tables for as long as regulatory agencies or
your stakeholders require.

Flashback Data Archive is implemented natively in Oracle Database 11g; in a nutshell, you
create one or more repository areas (one of which can be the default), assign a default retention
period for objects in the repository, and then mark the appropriate tables for tracking.

A Flashback Data Archive acts much like an undo tablespace; however, a Flashback Data
Archive only records update and delete statements, but not insert statements. In addition, undo
data is typically retained for a period of hours or days for all objects; rows in Flashback Data
Archives can span years or even decades. Flashback Data Archives has a much narrower focus as
well, recording only historical changes to table rows; Oracle uses data in an undo tablespace for
read-consistency in long-running transactions and to roll back uncommitted transactions.

You can access data in a Flashback Data Archive just as you do with Flashback Query: using
the as of clause in a select statement. In the next few sections, we’ll show you how to create a
Flashback Data Archive, assign permissions to users and objects, and query historical data in
a Flashback Data Archive.

Creating an Archive
You can create one or several Flashback Data Archives in existing tablespaces using the create
flashback archive command; however, Oracle best practices recommends that you use dedicated
tablespaces. All archives must have a default retention period using the retention clause and can
optionally be identified as the default archive using the default keyword. The disk quota in an
archive is limited by the disk space within the tablespace unless you assign a maximum amount
of disk space in the archive using the quota keyword.

In this example, you first create a dedicated tablespace for your Flashback Data Archive:

SQL> create tablespace fbda1
 2 datafile '+data' size 10g;

Tablespace created.
SQL>

Next, you create three Flashback Data Archives: one for the ES department with no quota limit
and a ten-year retention period, a second one for the finance department with a 500MB limit and
a seven-year retention period, and a third for all other users in the USERS4 tablespace as the default
with a 250MB limit and a two-year retention period:

SQL> create flashback archive fb_es
 2 tablespace fbda1 retention 10 year;

Flashback archive created.

SQL> create flashback archive fb_fi

Chapter 7: Managing Transactions with Undo Tablespaces 237

 2 tablespace fbda1 quota 500m
 3 retention 7 year;

Flashback archive created.

SQL> create flashback archive default fb_dflt
 2 tablespace users4 quota 250m
 3 retention 2 year;

Flashback archive created.

SQL>

You cannot specify more than one tablespace in the create flashback archive command; you
must use the alter flashback archive command to add a tablespace, as you’ll see later in this chapter,
in the section “Managing Flashback Data Archives.”

Using Flashback Data Archive Data Dictionary Views
Two new data dictionary views support Flashback Data Archives: DBA_FLASHBACK_ARCHIVE
and DBA_FLASHBACK_ARCHIVE_TS. DBA_FLASHBACK_ARCHIVE lists the archives, and DBA_
FLASHBACK_ARCHIVE_TS displays the tablespace-to-archive mapping:

SQL> select flashback_archive_name, flashback_archive#,
 2 retention_in_days, status
 3 from dba_flashback_archive;

FLASHBACK_AR FLASHBACK_ARCHIVE# RETENTION_IN_DAYS STATUS
------------ ------------------ ----------------- -------
FB_ES 1 3650
FB_FI 2 2555
FB_DFLT 3 730 DEFAULT

SQL> select * from dba_flashback_archive_ts;

FLASHBACK_AR FLASHBACK_ARCHIVE# TABLESPACE QUOTA_IN_M
------------ ------------------ ---------- ----------
FB_ES 1 FBDA1
FB_FI 2 FBDA1 500
FB_DFLT 3 USERS4 250

SQL>

The view DBA_FLASHBACK_ARCHIVE_TABLES tracks the tables enabled for flashback
archiving. I’ll show you the contents of this view later in this chapter after enabling a table for
flashback archiving.

Assigning Flashback Data Archive Permissions
A user must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create or modify
Flashback Data Archives, and the FLASHBACK ARCHIVE object privilege to enable tracking on a
table. Once enabled, a user doesn’t need any specific permissions to use the as of clause in a select
statement other than the SELECT permission on the table itself.

238 Oracle Database 11g DBA Handbook

The FLASHBACK_ARCHIVE_ADMINSTER privilege also includes adding and removing
tablespaces from an archive, dropping an archive, and performing an ad hoc purge of history data.

Managing Flashback Data Archives
You can easily add another tablespace to an existing archive; use the alter flashback archive
command like this to add the USERS3 tablespace to the FB_DFLT archive with a quota of 400MB:

SQL> alter flashback archive fb_dflt
 2 add tablespace users3 quota 400m;

Flashback archive altered.

SQL>

You can purge archive data with the purge clause; in this example, you want to purge all rows
in the FB_DFLT archive before January 1, 2005:

SQL> alter flashback archive fb_dflt
 2 purge before timestamp
 3 to_timestamp('2005-01-01 00:00:00', 'YYYY-MM-DD HH24:MI:SS');

Assigning a Table to a Flashback Data Archive
You assign a table to an archive either at table creation using the standard create table syntax
with the addition of the flashback archive clause, or later with the alter table command, as in
this example:

SQL> alter table hr.employees flashback archive fb_es;

Table altered.

Note that in the previous command that specified a specific archive for the HR.EMPLOYEES
table; if you did not specify an archive, Oracle assigns FB_DFLT. You can review the tables that
use Flashback Data Archive by querying the data dictionary view DBA_FLASHBACK_ARCHIVE_
TABLES:

SQL> select * from dba_flashback_archive_tables;

TABLE_NAME OWNER_NAME FLASHBACK_AR ARCHIVE_TABLE_NAME
---------------------- ---------- ------------ --------------------
EMPLOYEES HR FB_ES SYS_FBA_HIST_70313

Querying Flashback Data Archives
Querying the historical data for a table in a Flashback Data Archive is as easy as using the as of
clause in a table when you are using DML activity stored in an undo tablespace. In fact, users will
not know whether they are retrieving historical data from the undo tablespace or from a Flashback
Data Archive.

In this scenario, much like in the scenarios earlier in this chapter, one of the employees in the
HR department deletes an employee row in the EMPLOYEES table and forgets to archive it to the
EMPLOYEE_HISTORY table first; with Flashback Data Archives enabled for the EMPLOYEES table,

Chapter 7: Managing Transactions with Undo Tablespaces 239

the HR employee can rely on the FB_ES archive to satisfy any queries on employees no longer in
the EMPLOYEE table. This is the delete statement from three weeks ago:

SQL> delete from employees where employee_id = 169;

1 row deleted.

SQL>

The HR employee needs to find the hire date for employee 169, so she retrieves the historical
information from the EMPLOYEES table with the as of clause specifying a time four weeks ago:

SQL> select employee_id, last_name, hire_date
 2 from employees
 3 as of timestamp (systimestamp - interval '28' day)
 4 where employee_id = 169;

EMPLOYEE_ID LAST_NAME HIRE_DATE
----------- ------------------------- ---------
 169 Bloom 23-MAR-98

SQL>

Whether Oracle is using an undo tablespace or a Flashback Data Archive for a query containing
as of is completely transparent to the user.

Flashback and LOBs
Undo data for LOB columns in a table can take up gigabytes of disk space even for a single row;
therefore, to enable flashback operations for LOB columns, you must explicitly specify the retention
keyword in the storage clause for the LOB. This keyword is mutually exclusive with the pctversion
keyword, which specified a percentage of the table space for old versions of the LOBs. If you use
the retention keyword, old versions of a LOB are retained for the amount of time specified by the
UNDO_RETENTION parameter, just as any other table rows in the undo tablespace.

Migrating to Automatic Undo Management
To migrate your environment from manually managed rollback segments to Automatic Undo
Management, you need to know one thing: how large to size the undo tablespace based on the
usage of the rollback segments in manual undo mode. With all manual rollback segments online,
execute the procedure DBMS_UNDO_ADV.RBU_MIGRATION to return the size, in megabytes,
of the current rollback segment utilization:

SQL> variable undo_size number
SQL> begin
 2 :undo_size := dbms_undo_adv.rbu_migration;
 3 end;
 4 /

240 Oracle Database 11g DBA Handbook

PL/SQL procedure successfully completed.

SQL> print :undo_size

 UNDO_SIZE

 2840

SQL>

In this example, an undo tablespace created to replace the rollback segments should be at
least 2840MB, or 2.84GB, to support the undo requirements currently supported by rollback
segments.

CHAPTER
8

Database Tuning

241

242 Oracle Database 11g DBA Handbook

rom a tuning perspective, every system has a performance bottleneck that may
move from component to component over a time period of days or even weeks
The goal of performance design is to make sure that the physical limitations of the
applications and the associated hardware—I/O throughput rates, memory sizes,
query performance, and so on—do not impact the business performance. If the

application performance limits the business process it is supposed to be supporting, the application
must be tuned. During the design process, the limits of the application environment—including
the hardware and the design of the application’s interactions with the database—must be evaluated.
No environment provides infinite computing capacity, so every environment is designed to fail at
some performance point. In the process of designing the application, you should strive to have
your performance needs amply served by the performance capabilities of the environment.

Performance tuning is a part of the life cycle of every database application, and the earlier
performance is addressed (preferably before going into production), the more likely it will be
successfully resolved. As noted in previous chapters, most performance problems are not isolated
symptoms but rather are the result of the system design. Tuning efforts should therefore focus on
identifying and fixing the underlying flaws that result in unacceptable performance.

Tuning is the final step in a four-step process: planning, implementing, and monitoring must
precede it. If you tune only for the sake of tuning, you are failing to address the full cycle of
activity and will likely never resolve the underlying flaws that caused the performance problem.

Most of the database objects that can be tuned are discussed elsewhere in this book—for
example, undo segments are covered thoroughly in Chapter 7. This chapter only discusses the
tuning-related activities for such objects, while their own chapters cover planning and monitoring
activities.

As of Oracle Database 10g, and significantly enhanced in Oracle Database 11g, you can take
advantage of new tuning tools and features, including the Automated Workload Repository. For
ease of use, and to take advantage of numerous automated monitoring and diagnostic tools, OEM
Database Control is the Oracle-recommended tool on a routine basis. Before jumping into the
OEM tools, however, I’ll present some of the prerequisites and principles behind effective
proactive and reactive tuning methods.

In the following sections, you will see tuning activities for the following areas:

Application design

SQL

Memory usage

Data storage

Data manipulation

Physical storage

Logical storage

Network traffic

■

■

■

■

■

■

■

■

F

Chapter 8: Database Tuning 243

Tuning Application Design
Why should a DBA tuning guide include a section on application design? And why should this
section come first? Because nothing you can do as a DBA will have as great an impact on the
system performance as the design of the application. The requirements for making the DBA’s
involvement in application development a reality are described in Chapter 5. In designing an
application, you can take several steps to make effective and proper use of the available
technology, as described in the following sections.

Effective Table Design
No matter how well designed your database is, poor table design will lead to poor performance.
Not only that, but overly rigid adherence to relational table designs will lead to poor performance.
That is due to the fact that while fully relational table designs (said to be in the third normal form
or even fourth normal form) are logically desirable, they are usually physically undesirable in
anything but OLTP environments.

The problem with such designs is that although they accurately reflect the ways in which an
application’s data is related to other data, they do not reflect the normal access paths that users will
employ to access that data. Once the user’s access requirements are evaluated, the fully relational
table design will become unworkable for many large queries. Typically, the first problems will occur
with queries that return a large number of columns. These columns are usually scattered among
several tables, forcing the tables to be joined together during the query. If one of the joined tables
is large, the performance of the whole query may suffer.

In designing the tables for an application, developers should first develop the model in third
normal form and then consider denormalizing data to meet specific requirements—for example,
creating small summary tables (or materialized views) from large, static tables. Can that data be
dynamically derived from the large, static tables on demand? Of course. But if the users frequently
request it, and the data is largely unchanging, then it makes sense to periodically store that data in
the format in which the users will ask for it.

For example, some applications store historical data and current data in the same table. Each
row may have a timestamp column, so the current row in a set is the one with the most recent
timestamp. Every time a user queries the table for a current row, the user will need to perform a
subquery, such as the following:

where timestamp_col =
 (select max(timestamp_col)
 from table
 where emp_no=196811)

If two such tables are joined, there will be two subqueries. In a small database, this may not
present a performance problem, but as the number of tables and rows increase, performance
problems will follow. Partitioning the historical data away from the current data or storing the
historical data in a separate table will involve more work for the DBAs and developers but should
improve the long-term performance of the application.

User-centered table design, rather than theory-centered table design, will yield a system that
better meets the users’ requirements; this is not to say that you should not design the database

244 Oracle Database 11g DBA Handbook

using 3NF and 4NF methodologies: it’s a good starting point for revealing business requirements
and a prerequisite for the physical database design. Physical database design options include
separating a single table into multiple tables, and the reverse—combining multiple tables into
one. The emphasis should be on providing the users the most direct path possible to the data they
want in the format they want.

Distribution of CPU Requirements
When effectively designed and given adequate hardware, an Oracle database application will
process I/O requests without excessive waits, will use memory areas without swapping and
paging memory to disk, and will use the CPU without generating high load averages. Data that is
read into memory by one process will be stored in memory and reused by many processes before
it is aged out of memory. SQL commands are reused via the shared SQL area, further reducing the
burden on the system.

If the I/O burdens of the system are reduced, the CPU burden may increase. You have several
options for managing the CPU resources:

The CPU load should be scheduled. You should time long-running batch queries or
update programs to run at off-peak hours. Rather than run them at lower operating
system priority while online users are performing transactions, run them at normal
operating system priority at an appropriate time. Maintaining their normal priority level
while scheduling the jobs appropriately will minimize potential locking, undo, and CPU
conflicts.

Take advantage of the opportunity to physically shift CPU requirements from one server
to another. Wherever possible, isolate the database server from the application’s CPU
requirements. The data distribution techniques described in the networking chapters
of this book will result in data being stored in its most appropriate place, and the CPU
requirements of the application may be separated from the I/O requirements against the
database.

Consider using Oracle’s Real Application Clusters (RAC) technology to spread the database
access requirements for a single database across multiple instances. See Chapter 10 for
an in-depth review of RAC features along with step-by-step instructions on how to create
a RAC database.

Use the database resource management features. You can use the Database Resource
Manager to establish resource allocation plans and resource consumer groups. You can
use Oracle’s capabilities to change the resource allocations available to the consumer
groups. See Chapter 5 for details on creating and implementing resource consumer
groups and resource plans via the Database Resource Manager.

Use Parallel Query to distribute the processing requirements of SQL statements among
multiple CPUs. Parallelism can be used by almost every SQL command, including select,
create table as select, create index, recover, and the SQL*Loader Direct Path loading
options.

The degree to which a transaction is parallelized depends on the defined degree of parallelism
for the transaction. Each table has a defined degree of parallelism, and a query can override the

■

■

■

■

■

Chapter 8: Database Tuning 245

default degree of parallelism by using the PARALLEL hint. Oracle evaluates the number of CPUs
available on the server and the number of disks on which the table’s data is stored in order to
determine the default degree of parallelism.

The maximum available parallelism is set at the instance level. The PARALLEL_MAX_SERVERS
initialization parameter sets the maximum number of parallel query server processes that can be
used at any one time by all the processes in the database. For example, if you set PARALLEL_
MAX_SERVERS to 32 for your instance, and you run a query that uses 30 parallel query server
processes for its query and sorting operations, then only two parallel query server processes are
available for all the rest of the users in the database. Therefore, you need to carefully manage the
parallelism you allow for your queries and batch operations. The PARALLEL_ADAPTIVE_MULTI_
USER parameter, when set to TRUE, enables an adaptive algorithm designed to improve
performance in multiuser environments using parallel execution. The algorithm automatically
reduces the requested degree of parallelism according to the system load at query startup time.
The effective degree of parallelism is based on the default degree of parallelism, or the degree
from the table, or hints, divided by a reduction factor.

For each table, you can set a default degree of parallelism via the parallel clause of the create
table and alter table commands. The degree of parallelism tells Oracle how many parallel query
server processes to attempt to use for each part of the operation. For example, if a query that
performs both table scanning and data sorting operations has a degree of parallelism of 5, there
could be ten parallel query server processes used—five for scanning and five for sorting. You can
also specify a degree of parallelism for an index when it is created, via the parallel clause of the
create index command.

The minimum number of parallel query server processes started is set via the PARALLEL_
MIN_SERVERS initialization parameter. In general, you should set this parameter to a very low
number (less than 5) unless the system is actively used at all hours of the day. Setting this
parameter to a low value will force Oracle to repeatedly start new query server processes, but it
will greatly decrease the amount of memory held by idle parallel query server processes during
low-use periods. If you set a high value for PARALLEL_MIN_SERVERS, you may frequently have
idle parallel query server processes on your server, holding onto the memory they had previously
acquired but not performing any functions.

Parallelizing operations distributes their processing requirements across multiple CPUs;
however, you should use these features carefully. If you use a degree of parallelism of 5 for a large
query, you will have five separate processes accessing the data. If you have that many processes
accessing the data, you may create contention for the disks on which the data is stored, thus
hurting performance. When using Parallel Query, you should selectively apply it to those tables
whose data is well distributed over many physical devices. Also, you should avoid using it for all
tables; as noted earlier, a single query may use all the available parallel query server processes,
eliminating the parallelism for all the rest of the transactions in your database.

Effective Application Design
In addition to the application design topics described later in this chapter are several general
guidelines for Oracle applications.

First, they should minimize the number of times they request data from the database. Options
include the use of sequences, PL/SQL blocks, and the denormalization of tables. You can use
distributed database objects such as materialized views to help reduce the number of times a
database is queried.

246 Oracle Database 11g DBA Handbook

NOTE
Even mildly inefficient SQL can impact your database’s performance
if it is executed frequently enough. SQL that generates few or no
physical I/O reads still consumes CPU resources.

Second, different users of the same application should query the database in a very similar
fashion. Consistent access paths increase the likelihood that requests may be resolved by
information that is already available in the SGA. The sharing of data includes not only the tables
and rows retrieved but also the queries that are used. If the queries are identical, a parsed version
of a query may already exist in the shared SQL pool, reducing the amount of time needed to process
the query. Cursor sharing enhancements in the optimizer increase the likelihood of statement reuse
within the shared pool—but the application needs to be designed with statement reuse in mind.

Third, you should restrict the use of dynamic SQL. Dynamic SQL, by definition, is undefined
until run time; an application’s dynamic SQL may select a couple of rows the first time, perform
several full table scans of the order table the second time, and inadvertently perform a Cartesian
join the third time (or consciously perform a Cartesian join using the cross join keyword in a
select statement!). In addition, there is no way to guarantee that a dynamically generated SQL
statement is syntactically correct until run time. Dynamically generated SQL is a double-edged
sword: you have the flexibility to create your SQL on the fly based on user input, but you open
yourself up to SQL injection attacks for both your in-house applications and your external website
applications.

Fourth, you should minimize the number of times you open and close sessions in the
database. If the application repeatedly opens a session, executes a small number of commands,
and then closes the session, the performance of the SQL may be a minor factor in the overall
performance. The session management may cost more than any other step in the application.

When stored procedures are used, the same code may be executed multiple times, taking
advantage of the shared pool. You can also manually compile procedures, functions, and
packages to avoid run-time compilation. When you create a procedure, Oracle automatically
compiles it. If the procedure later becomes invalid, the database must recompile it before
executing it. To avoid incurring this compilation cost at run time, use the alter procedure
command shown here:

alter procedure MY_RAISE compile;

You can view the SQL text for all procedures in a database via the Text column in the DBA_
SOURCE view. The USER_SOURCE view will display the procedures owned by the user performing
the query. Text for packages, functions, and package bodies is also accessible via the DBA_SOURCE
and USER_SOURCE views, which in turn reference a table named SYS.SOURCE$.

The first two design guidelines discussed—limiting the number of user accesses and coordinating
their requests—require the application developer to know as much as possible about how the
data is to be used and the access paths involved. For this reason, it is critical that users be as
involved in the application design as they are in the table design. If the users spend long hours
drawing pictures of tables with the data modelers and little time with the application developers
discussing the access paths, the application will most likely not meet the users’ needs. The access
paths should be discussed as part of the data modeling exercise.

Chapter 8: Database Tuning 247

Tuning SQL
As with application design, the tuning of SQL statements seems far removed from a DBA’s duties.
However, DBAs should be involved in reviewing the SQL that is written as part of the application.
A well-designed application may still experience performance problems if the SQL it uses is poorly
tuned. Application design and SQL problems cause most of the performance problems in properly
designed databases.

The key to tuning SQL is to minimize the search path that the database uses to find the data.
In most Oracle tables, each row has a RowID associated with it. The RowID contains information
about the physical location of the row—its file, the block within that file, and the row within the
database block.

When a query with no where clause is executed, the database will usually perform a full table
scan, reading every block from the table. During a full table scan, the database locates the first
block of the table and then reads sequentially through all the other blocks in the table. For large
tables, full table scans can be very time-consuming.

When specific rows are queried, the database may use an index to help speed the retrieval
of the desired rows. An index maps logical values in a table to their RowIDs—which in turn map
them to specific physical locations. Indexes may either be unique—in which case there is no
more than one occurrence for each value—or nonunique. Indexes only store RowIDs for NOT
NULL values in the indexed columns.

You may index several columns together. This is called a concatenated or composite index,
and it will be used if its leading column is used in the query’s where clause. The optimizer can
also use a “skip-scan” approach in which a concatenated index is used even if its leading column
is not in the query’s where clause.

Indexes must be tailored to the access path needed. Consider the case of a three-column,
concatenated index. As shown in the following listing, this index is created on the City, State,
and Zip columns of the EMPLOYEE table:

create index CITY_ST_ZIP_NDX
on EMPLOYEE(City, State, Zip)
tablespace INDEXES;

If a query of the form

select * from EMPLOYEE
 where State='NJ';

is executed, then the leading column of the index (City) is not in the where clause. Oracle can
use two types of index-based accesses to retrieve the rows—a skip-scan of the index or a full scan
of the index. The optimizer will select an execution path based on the index’s statistics—its size,
the size of the table, and the selectivity of the index. If users will frequently run this type of query,
the index’s columns may need to be reordered with State first in order to reflect the actual usage
pattern.

An index range scan is another index-based optimization that Oracle can use to efficiently
retrieve selective data. Oracle uses an index range scan when the variable in the where clause is
equal to, less than, or greater than the specified constant and the variable is the leading column if

248 Oracle Database 11g DBA Handbook

the index is a multi-part index. No order by clause is required if you want the rows returned in the
index order, as in this example where you are looking for employees hired before August 1st, 2007:

select * from EMPLOYEE where hire_date < '1-AUG-2007';

It is critical that the table’s data be as ordered as possible. If users are frequently executing
range queries—selecting those values that are within a specified range—then having the data
ordered may require fewer data blocks to be read while resolving the query, thus improving
performance. The ordered entries in the index will point to a set of neighboring blocks in the
table rather than blocks that are scattered throughout the datafile(s).

For example, consider a range query of the following type:

select *
 from EMPLOYEE
 where Empno between 1 and 100;

This range query will require fewer data blocks to be read if the physical rows in the EMPLOYEE
table are ordered by the EMPNO column. To guarantee that the rows are properly ordered in the
table, extract the rows to a flat file (or another table), sort the rows there, and then delete the old
rows and reload them from the sorted data set. In addition, you should use online segment shrink
to reclaim fragmented free space below the high water mark for tables with frequent DML activity;
this improves cache utilization and requires fewer blocks to be scanned in full table scans. You
use the alter table . . . shrink space command to compact the free space in a table.

Impact of Order on Load Rates
Indexes impact the performance of both queries and data loads. During insert operations, the
rows’ order has a significant impact on load performance. Even in heavily indexed environments,
properly ordering the rows prior to insert may improve load performance by 50 percent.

As an index grows, Oracle allocates new blocks. If a new index entry is added beyond the last
previous entry, the new entry will be added to the last block in the index. If the new entry causes
Oracle to exceed the space available in that block, the entry will be moved to a new block. There
is very little performance impact from this block allocation.

If the inserted rows are not ordered, new index entries will be written to existing index node
blocks. If there is no more room in the block where the new value is added, and the block is not
the last block in the index, the block’s entries will be split in two. Half the index entries will be
left in the original block, and half will be moved to a new block. As a result, the performance
suffers during loads (because of the additional space management activity) and during queries
(because the index contains more unused space, requiring more blocks to be read for the same
number of entries read).

NOTE
There is a significant drop in load performance when an index
increases its number of internal levels. To see the number of levels,
analyze an index and then select its B level column value from DBA_
INDEXES.

Because of the way Oracle manages its indexes internally, load rates will be affected each
time a new index is added (because it is unlikely that inserted rows will be sorted correctly for

Chapter 8: Database Tuning 249

multiple columns). From a load rate perspective, favor fewer multicolumn indexes over multiple
single-column indexes.

Additional Indexing Options
If the data is not very selective, you may consider using bitmap indexes. As described in Chapter
16, bitmap indexes are most effective for queries against large, static data sets with few distinct
values. You can create both bitmap indexes and normal (B-tree) indexes on the same table, and
Oracle will perform any necessary index conversions dynamically during query processing. See
Chapter 16 for details on using bitmap indexes.

NOTE
Avoid creating bitmap indexes on tables modified by online transactions;
data warehouse tables, however, are excellent candidates for bitmap
indexes.

If two tables are frequently queried together, then clusters may be effective in improving
performance. Clusters store rows from multiple tables in the same physical data blocks, based
on their logical values (the cluster key).

Queries in which a column’s value is compared to an exact value (rather than a range of
values) are called equivalence queries. A hash cluster stores a row in a specific location based
on its value in the cluster key column. Every time a row is inserted, its cluster key value is used
to determine in which block it should be stored; this same logic can be used during queries to
quickly find data blocks that are needed for retrieval. Hash clusters are designed to improve the
performance of equivalence queries; they will not be as helpful in improving the performance of
the range queries discussed earlier. Performance will be significantly worse with range queries,
queries that force a full table scan, or for hash clusters that are frequently updated.

Reverse indexes provide another tuning solution for equivalence queries. In a reverse index,
the bytes of the index are stored in reverse order. In a traditional index, two consecutive values
are stored next to each other. In a reverse index, consecutive values are not stored next to each
other. For example, the values 2004 and 2005 are stored as 4002 and 5002, respectively, in a
reverse index. Although not appropriate for range scans, reverse indexes may reduce contention
for index blocks if many equivalence queries are performed. Reverse key indexes may need to be
rebuilt quite often to perform well. They should also include a large value for PCTFREE to allow
for inserts.

NOTE
You cannot reverse a bitmap index.

You can create function-based indexes on expressions involving columns. This query could
not use a B-tree index on the Name column:

Select * from EMPLOYEE
where UPPER(Name) = 'JONES';

However, the query

select * from EMPLOYEE
 where Name = 'JONES';

250 Oracle Database 11g DBA Handbook

could, because the second query does not perform a function on the Name column. Instead of
creating an index on the column Name, you can create an index on the column expression
UPPER(Name), as shown in the following example:

create index EMP_UPPER_NAME on
EMPLOYEE(UPPER(Name));

Although function-based indexes can be useful, be sure to consider the following points when
creating them:

Can you restrict the functions that will be used on the column? If so, can you restrict all
functions from being performed on the column?

Do you have adequate storage space for the additional indexes?

When you drop the table, you will be dropping more indexes (and therefore more
extents) than before. How will that impact the time required to drop the table? (This is
less of a consideration if you are using locally managed tablespaces, which you should
be using if you’re running Oracle Database 10g or later.)

Function-based indexes are useful, but you should implement them sparingly. The more
indexes you create on a table, the longer all insert, update, and delete operations will take. Of
course, this applies to creating any additional indexes on a table, regardless of type.

Text indexes use Oracle’s text options (Oracle Text) to create and manage lists of words and
their occurrences—similar to the way a book’s index works. Text indexes are most often used to
support applications that perform searches on portions of words with wildcards.

Partitioned tables can have indexes that span all partitions (global indexes) or indexes that are
partitioned along with the table partitions (local indexes). From a query-tuning perspective, local
indexes may be preferable because they contain fewer entries than global indexes.

Generating Explain Plans
How can you determine which access path the database will use to perform a query? This
information can be viewed via the explain plan command. This command will evaluate the
execution path for a query and will place its output into a table (named PLAN_TABLE) in the
database. A sample explain plan command is shown in the following listing:

explain plan
 for
select *
 from BOOKSHELF
 where Title like 'M%';

The first line of this command tells the database that it is to explain its execution plan for the query
without actually executing the query. You can optionally include a set Statement_ID clause to label
the explain plan in PLAN_TABLE. Following the keyword for, the query to be analyzed is listed.

The account that is running this command must have a plan table in its schema. Oracle
provides the create table commands needed for this table. The file, named utlxplan.sql, is located
in the $ORACLE_HOME/rdbms/admin directory. Users may run this script to create the table in
their schemas.

■

■

■

Chapter 8: Database Tuning 251

NOTE
You should drop and re-create the plan table following each Oracle
upgrade because new columns may be added by the upgrade scripts.

Query the plan table using the DBMS_XPLAN procedure:

select * from table(DBMS_XPLAN.DISPLAY);

You can also use the Oracle-supplied script in $ORACLE_HOME/rdbms/admin/utlxpls.sql to
query the plan table for serial execution, or the $ORACLE_HOME/rdbms/admin/utlxplp.sql for
parallel execution.

This query will report on the types of operations the database must perform to resolve the
query. The output will show the steps of the query execution in a hierarchical fashion, illustrating
the relationships between the steps. For example, you may see an index-based step that has a
TABLE ACCESS BY INDEX ROWID step as its parent, indicating that the index step is processed
first and the RowIDs returned from the index are used to retrieve specific rows from the table.

You can use the set autotrace on command in SQL*Plus to automatically generate the explain
plan output and trace information for every query you run. The autotrace-generated output will
not be displayed until after the query has completed, whereas the explain plan output is generated
without running the command. To enable autotrace-generated output, a plan table must either be
created in the schema in which the autotrace utility will be used or created in the SYSTEM schema
with access granted to the schema that will use the autotrace utility. The script plustrce.sql, located
in the $ORACLE_HOME/sqlplus/admin directory, must also be run as SYS before you can set
autotrace on. Users must have the PLUSTRACE role enabled prior to executing set autotrace on.
For an installation or upgrade to Oracle Database 10g or later, this script is run automatically.

NOTE
To show the explain plan output without running the query, use the
set autotrace traceonly explain command.

If you use the parallel query options or query remote databases, an additional section of the
set autotrace on output will show the text of the queries executed by the parallel query server
processes or the query executed within the remote database.

To disable the autotrace feature, use the set autotrace off command.
The following listing shows how to turn on autotrace and generate an explain plan:

set autotrace traceonly explain

select *
 from BOOKSHELF
 where Title like 'M%';

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=2 Bytes=80)
 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (TABLE) (Cost
 =3 Card=2 Bytes=80)
 2 1 INDEX (RANGE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Co
 st=1 Card=2)

252 Oracle Database 11g DBA Handbook

To understand the explain plan, read the order of operations within the hierarchy from inside
out, until you come to a set of operations at the same level of indentation; then read from top to
bottom. In this example, there are no operations at the same level of indentation; therefore, you
read the order of operations from inside out. The first operation is the index range scan, followed
by the table access; the SELECT STATEMENT operation displays the output to the user. Each
operation has an ID value (the first column) and a parent ID value (the second number; it is blank
in the topmost operation). In more complex explain plans, you may need to use the parent ID
values to determine the order of operations.

This plan shows that the data returned to the user comes via a TABLE ACCESS BY INDEX
ROWID operation. The RowIDs are supplied by an index range scan of a unique index.

Each step is assigned a “cost.” The cost is cumulative, reflecting the cost of that step plus the
costs of all its child steps. You can use the cost values to identify steps that contribute the greatest
amount to the overall cost of the query and then target them for specific tuning efforts.

When evaluating the output of the explain plan command, you should make sure that the
most selective indexes (that is, the most nearly unique indexes) are used by the query. If a
nonselective index is used, you may be forcing the database to perform unnecessary reads to
resolve the query. A full discussion of SQL tuning is beyond the scope of this book, but you
should focus your tuning efforts on making sure that the most resource-intensive SQL statements
are using the most selective indexes possible.

In general, transaction-oriented applications (such as multiuser systems used for data entry)
judge performance by the time it takes to return the first row of a query. For transaction-oriented
applications, you should focus your tuning efforts on using indexes to reduce the database’s
response time to the query.

If the application is batch oriented (with large transactions and reports), you should focus on
improving the time it takes to complete the overall transaction instead of the time it takes to return
the first row from the transaction. Improving the overall throughput of the transaction may require
using full table scans in place of index accesses—and may improve the overall performance of
the application.

If the application is distributed across multiple databases, focus on reducing the number of
times database links are used in queries. If a remote database is frequently accessed during a
query, the cost of accessing that remote database is paid each time the remote data is accessed.
Even if the cost of accessing the remote data is low, accessing it thousands of times will eventually
place a performance burden on your application. See the section “Reducing Network Traffic”
later in this chapter for additional tuning suggestions for distributed databases.

Tuning Memory Usage
As of Oracle 10g, you can use the Automatic Workload Repository (AWR) toolset to gather and
manage statistical data (as described later in this chapter). As of Oracle 11g, you can use new
initialization parameters such as MEMORY_TARGET to further automate the overall memory used
by Oracle—helping you tune the database automatically when you don’t have time to read the
AWR reports!

The data block buffer cache and the shared pool are managed via a least recently used (LRU)
algorithm. A preset area is set aside to hold values; when it fills, the least recently used data is
eliminated from memory and written back to disk. An adequately sized memory area keeps the
most frequently accessed data in memory; accessing less frequently used data requires physical
reads.

Chapter 8: Database Tuning 253

You can see the queries performing the logical and physical reads in the database via the
V$SQL view. V$SQL reports the cumulative number of logical and physical reads performed for
each query currently in the shared pool, as well as the number of times each query was executed.
The following script shows the SQL text for the queries in the shared pool, with the most I/O
intensive queries listed first. The query also displays the number of logical reads (buffer gets)
per execution:

select Buffer_Gets,
 Disk_Reads,
 Executions,
 Buffer_Gets/Executions B_E,
 SQL_Text
 from V$SQL where executions != 0
 order by Disk_Reads desc;

If the shared pool has been flushed, queries executed prior to the flush will no longer be
accessible via V$SQL. However, the impact of those queries can still be seen, provided the users
are still logged in. The V$SESS_IO view records the cumulative logical reads and physical reads
performed for each user’s session. You can query V$SESS_IO for each session’s hit ratio, as shown
in the following listing:

select SESS.Username,
 SESS_IO.Block_Gets,
 SESS_IO.Consistent_Gets,
 SESS_IO.Physical_Reads,
 round(100*(SESS_IO.Consistent_Gets
 +SESS_IO.Block_Gets-SESS_IO.Physical_Reads)/
 (decode(SESS_IO.Consistent_Gets,0,1,
 SESS_IO.Consistent_Gets+SESS_IO.Block_Gets)),2)
 session_hit_ratio
 from V$SESS_IO sess_io, V$SESSION sess
 where SESS.Sid = SESS_IO.Sid
 and SESS.Username is not null
 order by Username;

To see the objects whose blocks are currently in the data block buffer cache, query the X$BH
table in SYS’s schema, as shown in the following query (note that the SYS and SYSTEM objects are
excluded from the output so the DBA can focus on the application tables and indexes present in
the SGA):

select Object_Name,
 Object_Type ,
 count(*) Num_Buff
 from X$BH a, SYS.DBA_OBJECTS b
 where A.Obj = B.Object_Id
 and Owner not in ('SYS','SYSTEM')
 group by Object_Name, Object_Type;

NOTE
You can query the Name and Kind columns from V$CACHE to see
similar data if you are not connected as the SYS user.

254 Oracle Database 11g DBA Handbook

There are multiple cache areas within the data block buffer cache:

The DEFAULT cache This is the standard cache for objects that use the default database
block size for the database.

The KEEP cache This is dedicated to objects you wish to keep in memory at all times.
In general, this area is used for small tables with few transactions. This cache is good for
lookup tables for such things as state codes, ZIP codes, and salesman data.

The RECYCLE cache This is a dedicated to objects you wish to flush from memory quickly.
Like the KEEP cache, the RECYCLE cache isolates objects in memory so that they do not
interfere with the normal functioning of the DEFAULT cache.

Block-size-specific caches Oracle supports multiple database block sizes within a
single database; you must create a cache for each non-default database block size.

With all the areas of the SGA—the data block buffers, the dictionary cache, and the shared
pool—the emphasis should be on sharing data among users. Each of these areas should be large
enough to hold the most commonly requested data from the database. In the case of the shared
pool, it should be large enough to hold the parsed versions of the most commonly used queries.
When they are adequately sized, the memory areas in the SGA can dramatically improve the
performance of individual queries and of the database as a whole.

The sizes of the KEEP and RECYCLE buffer pools do not reduce the available space in the data
block buffer cache. For a table to use one of the new buffer pools, specify the name of the buffer
pool via the buffer_pool parameter within the table’s storage clause. For example, if you want a
table to be quickly removed from memory, assign it to the RECYCLE pool. The default pool is
named DEFAULT, so you can use the alter table command to redirect a table to the DEFAULT
pool at a later date. Here is an example of assigning a table to the KEEP buffer pool:

create table state_cd_lookup
 (state_cd char(2),
 state_nm varchar2(50)
)
storage (buffer_pool keep);

You can use the LARGE_POOL_SIZE initialization parameter to specify the size of the large
pool allocation heap in bytes. The large pool allocation heap is used in shared server systems
for session memory, by parallel execution for message buffers, and by backup processes for I/O
buffers. By default, the large pool is not created.

As of Oracle Database 10g, you can use Automatic Shared Memory Management (ASMM). To
activate ASMM, set a nonzero value for the SGA_TARGET database initialization parameter. After
you set SGA_TARGET to the size of the SGA you want (that is, all of the caches added together),
you can then set the other cache-related parameters (DB_CACHE_SIZE, SHARED_POOL_SIZE,
JAVA_POOL_SIZE, and LARGE_POOL_SIZE) each to 0; if you provide values for these parameters,
those values will serve as the lower bound for the automatic tuning algorithm. Shut down and
restart the database for the changes to take effect; the database will then begin actively managing
the size of the different caches. You can monitor the size of the caches at any time via the
V$SGASTAT dynamic performance view. Oracle Database 11g takes the automation a step
farther: you can set MEMORY_TARGET to the total amount of memory available to Oracle.
The amount of memory specified in MEMORY_TARGET is allocated between the SGA and PGA
automatically; when MEMORY_TARGET is set, SGA_TARGET and PGA_AGGREGATE_TARGET
are set to zero and ignored.

■

■

■

■

Chapter 8: Database Tuning 255

As the workload in the database changes, the database will alter the cache sizes to reflect the
needs of the application. For example, if there is a heavy batch-processing load at night and a
more intensive online transaction load during the day, the database may alter the cache sizes as
the load changes. These changes occur automatically, without DBA intervention. If you specify a
value for a pool in your initialization parameter file, Oracle will use that as the minimum value
for that pool.

NOTE
DBAs can create KEEP and RECYCLE pools in the buffer cache. KEEP
and RECYCLE pools are not affected by the dynamic cache resizing
and are not part of the DEFAULT buffer pool.

From within OEM, you can see if dynamic memory management is enabled by clicking the
Memory Parameters option; the Automatic Shared Memory Management button can be set to
“Enabled” or “Disabled.”

You may wish to selectively “pin” packages in the shared pool. Pinning packages in memory
immediately after starting the database will increase the likelihood that a large enough section of
contiguous free space is available in memory. As shown in the following listing, the KEEP procedure
of the DBMS_SHARED_POOL package designates the packages to pin in the shared pool:

execute DBMS_SHARED_POOL.KEEP('APPOWNER.ADD_CLIENT','P');

Pinning of packages is more closely related to application management than application tuning,
but it can have a performance impact. If you can avoid dynamic management of fragmented
memory areas, you minimize the work Oracle has to do when managing the shared pool.

Specifying the Size of the SGA
To enable the automatic management of the caches, set the SGA_TARGET initialization parameter
to the size of the SGA.

If you choose to manage the caches manually, you can set the SGA_MAX_SIZE parameter to
the size of the SGA. You can then specify the sizes for the individual caches; they can be
dynamically altered while the database is running via the alter system command.

You can also set the SGA_TARGET to a size smaller than the SGA_MAX_SIZE. Oracle will use
the SGA_TARGET to initially set the individual caches and can grow them over time to occupy
more memory up to SGA_MAX_SIZE. This is a good way to determine what the total memory
requirements should be before deploying your database in a production environment.

Parameter Description

SGA_MAX_SIZE The maximum size to which the SGA can grow.

SHARED_POOL_SIZE The size of the shared pool.

DB_BLOCK_SIZE This will be the default database block size for the database.

DB_CACHE_SIZE The cache size specified in bytes.

DB_nK_CACHE_SIZE If you will be using multiple database block sizes within a single
database, you must specify at a DB_CACHE_SIZE parameter value and
at least one DB_nK_CACHE_SIZE parameter value. For example, if your
standard database block size is 4KB, you can also specify a cache for
the 8KB block size tablespaces via the DB_8K_CACHE_SIZE parameter.

256 Oracle Database 11g DBA Handbook

For example, you may specify the following:

SGA_MAX_SIZE=1024M
SHARED_POOL_SIZE=220M
DB_BLOCK_SIZE=8192
DB_CACHE_SIZE=320M
DB_4K_BLOCK_SIZE=4M

With these parameters, 4MB will be available for data queried from objects in tablespaces
with 4KB block sizes. Objects using the standard 8KB block size will use the 160MB cache.
While the database is open, you can change the SHARED_POOL_SIZE and DB_CACHE_SIZE
parameter values via the alter system command.

SGA_TARGET is a dynamic parameter and can be changed through Database Control or with
the alter system command.

SGA_TARGET can be increased up to the value of SGA_MAX_SIZE. It can be reduced until any
one of the auto-tuned components reaches its minimum size—either a user-specified minimum or
an internally determined minimum. Both of these parameters can be used to tune the SGA.

Using the Cost-Based Optimizer
With each release of its software, Oracle has added new features to its optimizer and has enhanced
existing features. Effective use of the cost-based optimizer requires that the tables and indexes
in your application be analyzed regularly. The frequency with which you analyze the objects
depends on the rate of change within the objects. For batch transaction applications, you should
reanalyze the objects after each large set of batch transactions. For OLTP applications, you
should reanalyze the objects on a time-based schedule (such as via a weekly or nightly process).

NOTE
As of Oracle Database 10g Release 1, the rule-based optimizer is
desupported.

Statistics on objects are gathered via executions of the DBMS_STATS package’s procedures. If
you analyze a table, its associated indexes are automatically analyzed as well. You can analyze a
schema (via the GATHER_SCHEMA_STATS procedure) or a specific table (via GATHER_TABLE_
STATS). You can also analyze only the indexed columns, thus speeding the analysis process. In
general, you should analyze a table’s indexes each time you analyze the table. In the following
listing, the PRACTICE schema is analyzed:

execute DBMS_STATS.GATHER_SCHEMA_STATS('PRACTICE', 'COMPUTE');

You can view the statistics on tables and indexes via DBA_TABLES, DBA_TAB_COL_
STATISTICS, and DBA_INDEXES. Some column-level statistics are still provided in DBA_TAB_
COLUMNS, but they are provided there strictly for backward compatibility. The statistics for the
columns of partitioned tables are found in DBA_PART_COL_STATISTICS.

NOTE
As of Oracle Database 10g, statistics are automatically gathered
in a default installation using the automated maintenance tasks
infrastructure (AutoTask) during maintenance windows.

Chapter 8: Database Tuning 257

When the command in the preceding listing is executed, all the objects belonging to the
PRACTICE schema will be analyzed using the compute statistics option. You can also choose
to estimate statistics based on a specified percentage of the table’s rows.

Implications of the COMPUTE STATISTICS Option
In the examples in the preceding section, the compute statistics option was used to gather
statistics about objects. Oracle also provides the estimate statistics option, which bases the
object’s statistics on a review of a portion of the data. If you choose to use estimate statistics,
analyze as much of the table as possible. You can specify a percentage of the rows to analyze—
analyzing 20 percent is usually sufficient.

TIP
The availability of the analyze table . . . compute statistics or analyze
table . . . estimate statistics command outside of the DBMS_STATS
package may be removed in a future release of Oracle; use the
analyze command for non-statistics-related tasks such as validate
structure or list chained rows, or else to collect information on freelist
blocks.

Analyzing data can require large amounts of sort space. Because the analysis may include
full table scans as well, you should change your session settings immediately prior to starting the
analysis. When the analysis completes, either end your session or change your settings back to
the database’s values. The session settings to change are those for SORT_AREA_SIZE and DB_
FILE_MULTIBLOCK_READ_COUNT. As of Oracle Database 10g, Oracle strongly suggests using
PGA_AGGREGATE_TARGET to automatically manage the value of SORT_AREA_SIZE. The larger
the sort area size is, the less likely you are to need to use the temporary tablespace for sort
segments. The higher the multiblock read count is, the more blocks you may be able to read
during a single physical read (as limited by the operating system). Use the alter session command
to increase these values for your session.

Tuning Data Access
Even if your tables are properly configured and indexed, your performance may suffer if there
are wait events caused by file accesses. In the following sections, you will see recommendations
related to file and tablespace configuration.

In general, you should avoid placing Oracle files on distributed-parity RAID systems such as
RAID 5. The overhead generated during writes to such file systems generally presents a performance
bottleneck as the system use increases, particularly for sequentially written files such as the online
redo log files. Favor the use of RAID 0+1 to support both the mirroring and striping of data without
introducing these performance bottlenecks.

Locally Managed Tablespaces
You can use locally managed tablespaces to handle extent management within the tablespaces.
Locally managed tablespaces manage their own space by maintaining a bitmap in each datafile of
the free and used blocks or sets of blocks in the datafile. Each time an extent is allocated or freed
for reuse, the database updates the bitmap to show the new status.

258 Oracle Database 11g DBA Handbook

NOTE
As of Oracle Database 10g, all tablespaces in a default installation are
locally managed; bigfile tablespaces must be locally managed. Use
dictionary-managed tablespaces only for compatibility with previous
versions of Oracle.

When you use locally managed tablespaces, the data dictionary is not updated and rollback
activity is not generated during extent creations. Locally managed tablespaces automatically track
adjacent free space, so there is no need to coalesce extents. Within a locally managed tablespace,
all extents can have the same size or the system can automatically determine the size of extents.

To use local space management, you can specify the local option for the extent management
clause in the create tablespace command. An example of the create tablespace command
declaring a locally managed tablespace is shown here:

create tablespace CODES_TABLES
datafile '/u01/oracle/VLDB/codes_tables.dbf'
size 500M
extent management local uniform size 256K;

Assuming that the block size for the database in which this tablespace is created is 8KB, in
this example, the tablespace is created with the extent management declared as local and with
a uniform size of 256KB. Each bit in the bitmap describes 32 blocks (256/8). If the uniform size
clause is omitted, the default is autoallocate. The default size for uniform is 1MB.

NOTE
If you specify local in a create tablespace command, you cannot
specify a default storage clause, minextents, or temporary. If you use
the create temporary tablespace command to create the tablespace,
you can specify extent_management local.

As of Oracle9i, tablespaces are created as locally managed by default, so the extent
management local clause is optional when you create a new tablespace.

NOTE
If you make the SYSTEM tablespace locally managed, you can
only create locally managed tablespaces within the database; any
dictionary-managed tablespaces imported using the transportable
tablespace feature can only be opened read-only.

Identifying Chained Rows
When a data segment is created, a pctfree value is specified. The pctfree parameter tells the
database how much space should be kept free in each data block. The free space is used when
rows that are already stored in the data block extend in length via update operations.

If an update to a row causes that row to no longer completely fit in a single data block, that
row may be moved to another data block, or the row may be chained to another block. If you
are storing rows whose length is greater than the Oracle block size, you will automatically have
chaining.

Chapter 8: Database Tuning 259

Chaining affects performance because it requires Oracle to look in multiple physical locations
for data from the same logical row. By eliminating unnecessary chaining, you reduce the number
of physical reads needed to return data from a datafile.

You can avoid chaining by setting the proper value for pctfree during the creation of data
segments. The default value, 10, should be increased if your application will frequently update
NULL values to non-NULL values, or if long text values are frequently updated.

You can use the analyze command to collect statistics about database objects. The cost-based
optimizer can use these statistics to determine the best execution path to use. The analyze command
has an option that detects and records chained rows in tables. Its syntax is

analyze table TABLE_NAME list chained rows into CHAINED_ROWS;

The analyze command will put the output from this operation into a table called CHAINED_
ROWS in your local schema. The SQL to create the CHAINED_ROWS table is in a file named
utlchain.sql, in the $ORACLE_HOME/rdbms/admin directory. The following query will select the
most significant columns from the CHAINED_ROWS table:

select
 Owner_Name, /*Owner of the data segment*/
 Table_Name, /*Name of the table with the chained rows*/
 Cluster_Name, /*Name of the cluster, if it is clustered*/
 Head_RowID /*Rowid of the first part of the row*/
from CHAINED_ROWS;

The output will show the RowIDs for all chained rows, allowing you to quickly see how many of
the rows in the table are chained. If chaining is prevalent in a table, that table should be rebuilt
with a higher value for pctfree.

You can see the impact of row chaining by querying V$SYSSTAT. The V$SYSSTAT entry for
the “table fetch continued row” statistic will be incremented each time Oracle selects data from
a chained row. This statistic will also be incremented when Oracle selects data from a spanned
row—a row that is chained because it is greater than a block in length. Tables with LONG, BLOB,
CLOB, and NCLOB datatypes are likely to have spanned rows. The “table fetch continued row”
statistic is also available in the AWR reports (or STATSPACK reports in Oracle Database 10g and
earlier).

In addition to chaining rows, Oracle will occasionally move rows. If a row exceeds the space
available to its block, the row may be inserted into a different block. The process of moving a row
from one block to another is called row migration, and the moved row is called a migrated row.
During row migration, Oracle has to dynamically manage space in multiple blocks and access the
freelist (the list of blocks available for insert operations). A migrated row does not appear as
a chained row, but it does impact the performance of your transactions. See Chapter 6 for an
example of using the DBMS_ADVISOR to find and reorganize tables with chained rows.

TIP
Accessing a migrated row increments the count in the “table fetch
continued row” statistic.

Increasing the Oracle Block Size
The effect of increasing the database block size is significant. Doubling the database block size
may improve the performance of query-intensive operations by up to 50 percent.

260 Oracle Database 11g DBA Handbook

The performance benefit has few costs. Because there will be more rows per database block,
there is a greater likelihood of block-level contention during data manipulation commands. To
address the contention problems, increase the settings for freelists and initrans at the table and
index level. In general, setting freelists to greater than 4 will not yield much additional benefit.
The initrans setting should reflect the number of concurrent transactions expected within a block.

Four is a good number for INITRANS for OLTP applications with heavy DML activity. Increasing
the INITRANS value for data warehouse applications does not improve performance. Note also
that freelists are used only for objects in non-ASSM tablespaces.

NOTE
Oracle now automatically allows up to 255 concurrent update
transactions in any data block, depending on the available space
in the block.

When you create a tablespace, you can specify a database block size for the tablespace; by
default, the tablespace will use the database block size you specify via the DB_BLOCK_SIZE
initialization parameter. If you use a non-default database block size for the tablespace, you will
need to create a cache for that block size. For example, if your database block size is 8KB and
you want to create a 4KB database block size tablespace, you must first set a value for DB_4K_
CACHE_SIZE.

To increase the database block size for the entire database, you must rebuild the entire
database and delete all the old database files. The new files can be created in the same location
as the old files, with the same size, but will be managed more efficiently by the database. The
performance savings comes from the way that Oracle manages the block header information.
More space is used by data, improving the ability of multiple users to access the same block of
data in memory. Doubling the size of the Oracle blocks has little effect on the block header;
therefore, a smaller percentage of space is used to store block header information.

To set the block size, modify the DB_BLOCK_SIZE initialization parameter prior to creating a
new database.

Using Index-Organized Tables
An index-organized table (IOT) is an index in which an entire row is stored, rather than just the
key values for the row. Rather than storing a RowID for the row, the primary key for the row is
treated as the row’s logical identifier. Rows in IOTs do not have RowIDs.

Within the IOT, the rows are stored sorted by their primary key values. Thus, any range query
that is based on the primary key may benefit because the rows are stored near each other (see the
section “Tuning SQL” earlier in this chapter for the steps involved in ordering the data within
normal tables). Additionally, any equivalence query based on the primary key may benefit
because the table’s data is all stored in the index. In the traditional table/index combination, an
index-based access requires an index access followed by a table access. In an IOT, only the IOT
is accessed; there is no companion index.

However, the performance gains from a single index access in place of a normal index/table
combination access may be minimal—any index-based access should be fast. To help improve
performance further, index-organized tables offer additional features:

An overflow area By setting the pctthreshold parameter when the IOT is created, you
can store the primary key data apart from the row data. If the row’s data exceeds the
threshold of available space in the block, it will dynamically be moved to an overflow

■

Chapter 8: Database Tuning 261

area. You can designate the overflow area to be in a separate tablespace, improving your
ability to distribute the I/O associated with the table.

Secondary indexes You can create secondary indexes on the IOT. Oracle will use the
primary key values as the logical RowIDs for the rows.

Reduced storage requirements In a traditional table/index combination, the same key
values are stored in two places. In an IOT, they are stored once, reducing the storage
requirements.

TIP
When specifying an overflow area, you can use the including column
clause to specify the column (and all successive columns in the table
definition) that will be stored in the overflow area:

create table ord_iot
 (order_id number,
 order_date date,
 order_notes varchar2(1000), primary key(order_id,order_date))
 organization index including order_date
 overflow tablespace over_ord_tab
 PARTITION BY RANGE (order_date)
 (PARTITION p1 VALUES LESS THAN ('01-JAN-2005')
 TABLESPACE data01,
 PARTITION p2 VALUES LESS THAN (MAXVALUE)
 TABLESPACE data02);

Both order_date and order_notes will be stored in the overflow area.

To create an IOT, use the organization index clause of the create table command. You must
specify a primary key when creating an IOT. Within an IOT, you can drop columns or mark them
as inactive via the set unused clause of the alter table command.

Tuning Issues for Index-Organized Tables
Like indexes, IOTs may become internally fragmented over time, as values are inserted, updated,
and deleted. To rebuild an IOT, use the move clause of the alter table command. In the following
example, the EMPLOYEE_IOT table is rebuilt, along with its overflow area:

alter table EMPLOYEE_IOT
 move tablespace DATA
overflow tablespace DATA_OVERFLOW;

You should avoid storing long rows of data in IOTs. In general, you should avoid using an IOT
if the data is longer than 75 percent of the database block size. If the database block size is 4KB,
and your rows will exceed 3KB in length, you should investigate the use of normal tables and
indexes instead of IOTs. The longer the rows are, and the more transactions are performed against
the IOT, the more frequently it will need to be rebuilt.

NOTE
You cannot use LONG datatypes in IOTs, but you can use LOBs.

■

■

262 Oracle Database 11g DBA Handbook

As noted earlier in this chapter, indexes impact data load rates. For best results, the primary
key index of an index-organized table should be loaded with sequential values to minimize the
costs of index management.

Tuning Data Manipulation
Several data manipulation tasks—usually concerning the manipulation of large quantities of
data—may involve the DBA. You have several options when loading and deleting large volumes
of data, as described in the following sections.

Bulk Inserts: Using the SQL*Loader Direct Path Option
When used in the Conventional Path mode, SQL*Loader reads records from a file, generates
insert commands, and passes them to the Oracle kernel. Oracle then finds places for those rows
in free blocks in the table and updates any associated indexes.

In Direct Path mode, SQL*Loader creates formatted data blocks and writes directly to the
datafiles. This requires occasional checks with the database to get new locations for data blocks,
but no other I/O with the database kernel is required. The result is a data load process that is
dramatically faster than Conventional Path mode.

If the table is indexed, the indexes will be placed in DIRECT PATH state during the load. After
the load is complete, the new keys (index column values) will be sorted and merged with the
existing keys in the index. To maintain the temporary set of keys, the load will create a temporary
index segment that is at least as large as the largest index on the table. The space requirements
for this can be minimized by presorting the data and using the SORTED INDEXES clause in the
SQL*Loader control file.

To minimize the amount of dynamic space allocation necessary during the load, the data
segment that you are loading into should already be created, with all the space it will need
already allocated. You should also presort the data on the columns of the largest index in the
table. Sorting the data and leaving the indexes on the table during a Direct Path load will usually
yield better performance than if you were to drop the indexes before the load and then re-create
them after it completed.

To take advantage of the Direct Path option, the table cannot be clustered, and there can be
no other active transactions against it. During the load, only NOT NULL, UNIQUE, and PRIMARY
KEY constraints will be enforced; after the load has completed, the CHECK and FOREIGN KEY
constraints can be automatically reenabled. To force this to occur, use the

REENABLE DISABLED_CONSTRAINTS

clause in the SQL*Loader control file.
The only exception to this reenabling process is that table insert triggers, when reenabled, are

not executed for each of the new rows in the table. A separate process must manually perform
whatever commands were to have been performed by this type of trigger.

The SQL*Loader Direct Path loading option provides significant performance improvements
over the SQL*Loader Conventional Path loader in loading data into Oracle tables by bypassing
SQL processing, buffer cache management, and unnecessary reads for the data blocks. The
Parallel Data Loading option of SQL*Loader allows multiple processes to load data into the same
table, utilizing spare resources on the system and thereby reducing the overall elapsed times for
loading. Given enough CPU and I/O resources, this can significantly reduce the overall loading
times.

Chapter 8: Database Tuning 263

To use Parallel Data Loading, start multiple SQL*Loader sessions using the parallel keyword
(otherwise, SQL*Loader puts an exclusive lock on the table). Each session is an independent
session requiring its own control file. The following listing shows three separate Direct Path loads,
all using the PARALLEL=TRUE parameter on the command line:

sqlload USERID=ME/PASS CONTROL=PART1.CTL DIRECT=TRUE PARALLEL=TRUE
sqlload USERID=ME/PASS CONTROL=PART2.CTL DIRECT=TRUE PARALLEL=TRUE
sqlload USERID=ME/PASS CONTROL=PART3.CTL DIRECT=TRUE PARALLEL=TRUE

Each session creates its own log, bad, and discard files (part1.log, part2.log, part3.log, part1.
bad, part2.bad, and so on) by default. Because you have multiple sessions loading data into the
same table, only the APPEND option is allowed for Parallel Data Loading. The SQL*Loader
REPLACE, TRUNCATE, and INSERT options are not allowed for Parallel Data Loading. If you need
to delete the table’s data before starting the load, you must manually delete the data (via delete or
truncate commands). You cannot use SQL*Loader to delete the rows automatically if you are
using Parallel Data Loading.

NOTE
If you use Parallel Data Loading, indexes are not maintained by the
SQL*Loader session. Before starting the loading process, you must
drop all indexes on the table and disable all its PRIMARY KEY and
UNIQUE constraints. After the loads complete, you can re-create the
table’s indexes.

In serial Direct Path Loading (PARALLEL=FALSE), SQL*Loader loads data into extents in the
table. If the load process fails before the load completes, some data could be committed to the
table prior to the process failure. In Parallel Data Loading, each load process creates temporary
segments for loading the data. The temporary segments are later merged with the table. If a
Parallel Data Loading process fails before the load completes, the temporary segments will not
have been merged with the table. If the temporary segments have not been merged with the table
being loaded, no data from the load will have been committed to the table.

You can use the SQL*Loader FILE parameter to direct each data loading session to a different
datafile. By directing each loading session to its own datafile, you can balance the I/O load of the
loading processes. Data loading is very I/O intensive and must be distributed across multiple disks
for parallel loading to achieve significant performance improvements over serial loading.

After a Parallel Data Load, each session may attempt to reenable the table’s constraints. As
long as at least one load session is still underway, attempting to reenable the constraints will fail.
The final loading session to complete should attempt to reenable the constraints, and should
succeed. You should check the status of your constraints after the load completes. If the table
being loaded has PRIMARY KEY and UNIQUE constraints, you can create the associated indexes
in parallel prior to enabling the constraints.

Bulk Data Moves: Using External Tables
You can query data from files outside the database via an object called an external table. An
external table’s structure is defined via the organization external clause of the create table
command; its syntax closely resembles the SQL*Loader control file syntax.

You cannot manipulate rows in an external table, and you cannot index it—every access of
the table results in a full table scan (that is, a full scan of the file at the operating system level). As

264 Oracle Database 11g DBA Handbook

a result, the performance of queries against external tables tends to be worse than that of tables
stored within the database. However, external tables offer a couple of potential benefits for
systems that load large sets of data:

Because the data is not stored within the database, the data is only stored once (outside
the database, rather than both outside and inside the database), thus saving space.

Because the data is never loaded into the database, the data-loading time is eliminated.

Given that you cannot index external tables, they are most useful for operations in which
large volumes of data are accessed by batch programs. For example, many data warehousing
environments have a staging area in which data is loaded into temporary tables prior to rows
being inserted into the tables users will query. Instead of loading the data into those temporary
tables, you can access the operating system files directly via external tables, saving time and space.

From an architectural perspective, external tables allow you to focus your database contents
on the objects users will most commonly use—small codes tables, aggregation tables, and
transaction tables—while keeping very large data sets outside the database. You can replace the
files accessed by the external tables at any time without incurring any transaction overhead within
the database.

Bulk Inserts: Common Traps and Successful Tricks
If your data is not being inserted from a flat file, SQL*Loader will not be a useful solution. For
example, if you need to move a large set of data from one table to another, you will likely want to
avoid having to write the data to a flat file and then read it back into the database. The fastest way
to move data in your database is to move it from one table to another without going out to the
operating system.

When you’re moving data from one table to another, there are several common methods for
improving the performance of the data migration:

Tuning the structures (removing indexes and triggers)

Disabling constraints during the data migration

Using hints and options to improve the transaction performance

The first of the tips, tuning the structures, involves disabling any triggers or indexes that are
on the table into which data is being loaded. For example, if you have a row-level trigger on the
target table, that trigger will be executed for every row inserted into the table. If possible, disable
the triggers prior to the data load. If the trigger should be executed for every inserted row, you
may be able to do a bulk operation once the rows have been inserted, rather than a repeated
operation during each insert. If properly tuned, the bulk operation will complete faster than the
repeated trigger executions. You will need to be sure that the bulk operations execute for all rows
that have not already been processed by the triggers.

In addition to disabling triggers, you should disable the indexes on the target table prior to
starting the data load. If the indexes are left on the table, Oracle will dynamically manage the
indexes as each row is inserted. Rather than continuously manage the index, drop it prior to the
start of the load and re-create it when the load has completed.

■

■

■

■

■

Chapter 8: Database Tuning 265

NOTE
Disabling indexes and triggers resolves most of the performance
problems associated with large table-to-table data migration efforts.

In addition to disabling indexes, you should consider disabling constraints on the table. If the
source data is already in a table in the database, you can check that data for its adherence to your
constraints (such as foreign keys or CHECK constraints) prior to loading it into your target table.
Once the data has been loaded, you can reenable the constraints.

If none of those options gives you adequate performance, you should investigate the options
Oracle has introduced for data migration tuning. Those options include the following:

The append hint for insert commands Like the Direct Path Loader, the APPEND hint
loads blocks of data into a table, starting at the high water mark for the table. Use of the
APPEND hint may increase your space usage.

The nologging option If you are performing a create table as select command, use the
nologging option to avoid writing to the redo logs during the operation.

The parallel option Parallel Query uses multiple processes to accomplish a single task.
For a create table as select, you can parallelize both the create table portion and the query.
If you use the parallel option, you should also use the nologging option; otherwise, the
parallel operations will have to wait due to serialized writes to the online redo log files.

Before using any of these advanced options, you should first investigate the target table’s
structures to make sure you’ve avoided the common traps cited earlier in this section.

You can also use programming logic to force inserts to be processed in arrays rather than
as an entire set. For example, COBOL and C support array inserts, thus reducing the size of the
transactions required to process a large set of data.

Bulk Deletes: The truncate Command
Occasionally, users attempt to delete all the rows from a table at once. When they encounter
errors during this process, they complain that the rollback segments are too small, when in fact
their transaction is too large.

A second problem occurs once the rows have all been deleted. Even though the segment no
longer has any rows in it, it still maintains all the space that was allocated to it. Therefore, deleting
all those rows saved not a single byte of allocated space.

The truncate command resolves both of these problems. It is a DDL command, not a DML
command, so it cannot be rolled back. Once you have used the truncate command on a table,
its rows are gone, and none of its delete triggers are executed in the process. However, the table
retains all its dependent objects—such as grants, indexes, and constraints.

The truncate command is the fastest way to delete large volumes of data. Because it will delete
all the rows in a table, this may force you to alter your application design so that no protected
rows are stored in the same table as the rows to be deleted. If you use partitions, you can truncate
one partition of a table without affecting the rest of the table’s partitions (see Chapter 16).

A sample truncate command for a table is shown here:

truncate table EMPLOYEE drop storage;

■

■

■

266 Oracle Database 11g DBA Handbook

This example, in which the EMPLOYEE table’s rows are deleted, shows a powerful feature of
truncate. The drop storage clause is used to deallocate the non-initial space from the table (this
is the default option). Therefore, you can delete all of a table’s rows and reclaim all but its initial
extent’s allocated space, without dropping the table.

The truncate command also works for clusters. In this example, the reuse storage option is
used to leave all allocated space empty within the segment that acquired it:

truncate cluster EMP_DEPT reuse storage;

When this example command is executed, all the rows in the EMP_DEPT cluster will be instantly
deleted.

To truncate a partition, you need to know its name. In the following example, the partition
named PART3 of the EMPLOYEE table is truncated via the alter table command:

alter table EMPLOYEE
truncate partition PART3
drop storage;

The rest of the partitions of the EMPLOYEE table will be unaffected by the truncation of the PART3
partition. See Chapter 16 for details on creating and managing partitions.

As an alternative, you can create a PL/SQL program that uses dynamic SQL to divide a large
delete operation into multiple smaller transactions.

Using Partitions
You can use partitions to isolate data physically. For example, you can store each month’s
transactions in a separate partition of an ORDERS table. If you perform a bulk data load or
deletion on the table, you can customize the partitions to tune the data manipulation operation.
For example:

You can truncate a partition and its indexes without affecting the rest of the table.

You can drop a partition, via the drop partition clause of the alter table command.

You can drop a partition’s local index.

You can set a partition to nologging, reducing the impact of large transactions.

From a performance perspective, the chief advantage of partitions lies in their ability to be
managed apart from the rest of the table. For example, being able to truncate a partition enables
you to delete a large amount of data from a table (but not all of the table’s data) without generating
any redo information. In the short term, the beneficiary of this performance improvement is the
DBA; in the longer term, the entire enterprise benefits from the improved availability of the data.
See Chapter 16 for details on implementing partitions and subpartitions.

You can use the exchange partition option to greatly reduce the impact your data-loading
processes have on system availability. Start by creating an empty table that has the same column
structure as your partitioned table. Load your data into the new table and then analyze the new
table. Create indexes on the new table to match the partitioned table’s indexes; the indexes must
be local, and not global, indexes. When these steps are complete, alter the partitioned table using
the exchange partition clause to exchange an empty partition with the new table you populated.
All the loaded data will now be accessible via the partitioned table. There is little impact to the
system availability during this step because it is a DDL operation.

■

■

■

■

Chapter 8: Database Tuning 267

Tuning Physical Storage
Database I/O should be evenly distributed across as many devices as possible. The standard solution
is called SAME (which stands for stripe and mirror everything). The I/O throughput limits of the disks
are the key limits to overcome, so distributing the I/O needs over many disks allows you to take
advantage of the combined throughputs of many devices. Striping enhances your throughput, which
may improve your performance; mirroring provides support in the case of disk failure.

In addition to that level of physical storage tuning, several other factors should be considered.
The following sections address factors that are external to the database but may have a profound
impact on its ability to access data quickly.

Using Raw Devices
Raw devices are available with most Unix operating systems. When they are used, Oracle bypasses
the Unix buffer cache and eliminates the file system overhead. For I/O-intensive applications,
they may result in a performance improvement of around 20 percent over traditional file systems
(and a slightly smaller improvement over Automatic Storage Management). Recent file system
enhancements have largely overcome this performance difference.

Raw devices cannot be managed with the same commands as file systems. For example, the
tar command cannot be used to back up individual files; instead, the dd command must be used.
This is a much less flexible command to use and limits your recovery capabilities.

NOTE
Oracle files should not reside on the same physical devices as non-
Oracle files, particularly if you use raw devices. Mixing an active
Unix file system with an active Oracle raw device will cause I/O
performance problems.

Most operating systems that support raw devices also provide a logical volume management
layer that allows administrators to perform file system commands for the raw devices. This
approach allows you to have the benefits of file system management along with the performance
benefits of raw devices. If you are planning to use raw devices, you should use a logical volume
management tool to simplify the system management.

Using Automatic Storage Management
As of Oracle 10g, you can use Automatic Storage Management (ASM) to manage your database
storage area. See Chapter 4 for a detailed analysis of how ASM can provide most of the
performance benefits of raw devices with the ease of use of a traditional operating system
file system, along with numerous examples.

When creating a new tablespace or other database structure in an ASM environment, such
as a control file or redo log file, you can specify a disk group as the storage area for the database
structure instead of an operating system file. ASM takes the ease of use of Oracle-Managed Files
(OMF) and combines it with mirroring and striping features to provide a robust file system and
logical volume manager that can even support multiple nodes in an Oracle Real Application
Cluster (RAC). ASM eliminates the need to purchase a third-party logical volume manager.

ASM not only enhances performance by automatically spreading out database objects over
multiple devices, but also increases availability by allowing new disk devices to be added to the
database without shutting down the database; ASM automatically rebalances the distribution of
files with minimal intervention.

268 Oracle Database 11g DBA Handbook

Reducing Network Traffic
As databases and the applications that use them become more distributed, the network that
supports the servers may become a bottleneck in the process of delivering data to the users.
Because DBAs typically have little control over the network management, it is important to use
the database’s capabilities to reduce the number of network packets required for the data to be
delivered. Reducing network traffic will reduce your reliance on the network and thus eliminate
a potential cause of performance problems.

Replication of Data Using Materialized Views
You can manipulate and query data from remote databases. However, it is not desirable to have
large volumes of data constantly sent from one database to another. To reduce the amount of data
being sent across the network, you should consider different data replication options.

In a purely distributed environment, each data element exists in one database. When data is
required, it is accessed from remote databases via database links. This purist approach is similar
to implementing an application strictly in third normal form—an approach that will not easily
support any major production application. Modifying the application’s tables to improve data
retrieval performance involves denormalizing data. The denormalization process deliberately
stores redundant data in order to shorten users’ access paths to the data.

In a distributed environment, replicating data accomplishes this goal. Rather than force
queries to cross the network to resolve user requests, selected data from remote servers is
replicated to the local server. This can be accomplished via a number of means, as described
in the following sections.

Replicated data is out of date as soon as it is created. Replicating data for performance
purposes is therefore most effective when the source data is very infrequently changed or when
the business processes can support the use of old data.

Oracle’s distributed capabilities offer a means of managing the data replication within a
database. Materialized views replicate data from a master source to multiple targets. Oracle
provides tools for refreshing the data and updating the targets at specified time intervals.

Materialized views may be read-only or updatable. The management issues for materialized
views are covered in Chapter 17; in this section, you will see their performance-tuning aspects.

Before creating a materialized view for replication, you should first create a database link to
the source database. The following example creates a private database link called HR_LINK,
using the LOC service name:

create database link HR_LINK
connect to HR identified by ESNOTHR1968
using 'loc';

The create database link command, as shown in this example, has several parameters:

The name of the link (HR_LINK, in this case).

The account to connect to.

The service name of the remote database (as found in the tnsnames.ora file for the
server). In this case, the service name is LOC.

Materialized views automate the data replication and refresh processes. When materialized
views are created, a refresh interval is established to schedule refreshes of replicated data. Local

■

■

■

Chapter 8: Database Tuning 269

updates can be prevented, and transaction-based refreshes can be used. Transaction-based
refreshes, available for many types of materialized views, send from the master database only
those rows that have changed for the materialized view. This capability, described later in this
chapter, may significantly improve the performance of your refreshes.

The syntax used to create the materialized view on the local server is shown in the following
example, where the materialized view is given a name (LOCAL_EMP) and its storage parameters
are specified. Its base query is given as well as its refresh interval. In this case, the materialized
view is told to immediately retrieve the master data and then to perform the refresh operation
again in seven days (SYSDATE+7).

create materialized view LOCAL_EMP
pctfree 5
tablespace data_2
storage (initial 100K next 100K pctincrease 0)
refresh fast
 start with SysDate
 next SysDate+7
as select * from EMPLOYEE@HR_LINK;

The refresh fast clause tells the database to use a materialized view log to refresh the local
materialized view. The ability to use materialized view logs during refreshes is only available if
the materialized view’s base query is simple enough that Oracle can determine which row in the
materialized view will change when a row changes in the source tables.

When a materialized view log is used, only the changes to the master table are sent to the
targets. If you use a complex materialized view, you must use the refresh complete clause in
place of the refresh fast clause. In a complete refresh, the refresh completely replaces the existing
data in the materialized view’s underlying table.

Materialized view logs must be created in the master database, via the create materialized
view log command. An example of the create materialized view log command is shown here:

create materialized view log on EMPLOYEE
tablespace DATA
storage (initial 500k next 100k pctincrease 0);

The materialized view log is always created in the same schema as the master table.
You can use simple materialized views with materialized view logs to reduce the amount of

network traffic involved in maintaining the replicated data. Because only the changes to the data
will be sent via a materialized view log, the maintenance of simple materialized views should use
fewer network resources than complex materialized views require, particularly if the master tables
are large, fairly static tables. If the master tables are not static, the volume of transactions sent via
the materialized view log may not be any less than would be sent to perform a complete refresh.
For details on the refresh capabilities of materialized views, see Chapter 17.

Regardless of the refresh option chosen, you should index the materialized view’s base table
to optimize queries against the materialized view. From a performance perspective, your goal is
to present the users with the data they want in the format they want it as quickly as possible. By
creating materialized views on remote data, you can avoid traversing database links during
queries. By creating materialized views on local data, you can prevent users from repeatedly
aggregating large volumes of data, presenting them instead with pre-aggregated data that answers
their most common queries.

270 Oracle Database 11g DBA Handbook

Using Remote Procedure Calls
When using procedures in a distributed database environment, you can use one of two options:
to create a local procedure that references remote tables or to create a remote procedure that is
called by a local application.

The proper location for the procedure depends on the distribution of the data and the way the
data is to be used. The emphasis should be on minimizing the amount of data that must be sent
through the network in order to resolve the data request. The procedure should reside within the
database that contains most of the data used during the procedure’s operations.

For example, consider this procedure:

create procedure MY_RAISE (My_Emp_No IN NUMBER, Raise IN NUMBER)
as begin
 update EMPLOYEE@HR_LINK
 set Salary = Salary+Raise
 where Empno = My_Emp_No;
end;

In this case, the procedure only accesses a single table (EMPLOYEE) on a remote node (as
indicated by the database link HR_LINK). To reduce the amount of data sent across the network,
move this procedure to the remote database identified by the database link HR_LINK and remove
the reference to that database link from the from clause in the procedure. Then, call the procedure
from the local database by using the database link, as shown here:

execute MY_RAISE@HR_LINK(1234,2000);

In this case, two parameters are passed to the procedure—My_Emp_No is set to 1234, and Raise
is set to 2000. The procedure is invoked using a database link to tell the database where to find
the procedure.

The tuning benefit of performing a remote procedure call is that all of the procedure’s
processing is performed in the database where the data resides. The remote procedure call
minimizes the amount of network traffic necessary to complete the procedure’s processing.

To maintain location transparency, you may create a local synonym that points to the remote
procedure. The database link name will be specified in the synonym so that user requests will
automatically use the remote database:

create synonym MY_RAISE for MY_RAISE@HR_LINK;

A user could then enter the command

execute MY_RAISE(1234,2000);

and it would execute the remote procedure defined by the synonym MY_RAISE.

Using the Automatic Workload Repository
In Oracle Database 10g and earlier, STATSPACK gathers and reports on database statistics, albeit
in a strictly text-based format! As of Oracle 10g, the Automatic Workload Repository (AWR)
provides enhancements to the STATSPACK concept, generating all statistics found in STATSPACK,
and more. In addition, AWR is highly integrated with OEM, making it easy to analyze and fix a
performance problem.

Chapter 8: Database Tuning 271

Like STATSPACK, AWR collects and maintains performance statistics for problem detection
and self-tuning purposes. You can generate reports on the AWR data, and you can access it via
views and through OEM. You can report on recent session activity as well as the overall system
statistics and SQL usage.

AWR captures the system statistics on an hourly basis (taking “snapshots” of the database) and
stores the data in its repository tables. As with STATSPACK, the space requirements of the AWR
repository will increase as the historical retention period is increased or the interval between
snapshots is decreased. By default, seven days worth of data is maintained in the repository. You
can see the snapshots that are stored in the AWR repository via the DBA_HIST_SNAPSHOT view.

To enable AWR, set the STATISTICS_LEVEL initialization parameter to TYPICAL or ALL. If you
set STATISTICS_LEVEL to BASIC, you can take manual snapshots of AWR data, but they will not
be as comprehensive as those performed automatically by AWR. Setting STATISTICS_LEVEL to ALL
adds timed OS statistics and plan execution statistics to those gathered with the TYPICAL setting.

Managing Snapshots
To take a manual snapshot, use the CREATE_SNAPSHOT procedure of the DBMS_WORKLOAD_
REPOSITORY package:

execute DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

To alter the snapshot settings, use the MODIFY_SNAPSHOT_SETTINGS procedure. You can
modify the retention (in minutes) and the interval (in minutes) for snapshots. The following example
changes the interval to 30 minutes for the current database:

execute DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS
(interval => 30);

To drop a range of snapshots, use the DROP_SNAPSHOT_RANGE procedure, specifying the
start and end of the snapshot IDs to drop:

execute DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE
 (low_snap_id => 1, high_snap_id => 10);

Managing Baselines
You can designate a set of snapshots as a baseline for the performance of the system. The baseline
data will be retained for later comparisons with snapshots. Use the CREATE_BASELINE procedure
to specify the beginning and ending snapshots for the baseline:

execute DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE
(start_snap_id => 1, end_snap_id => 10,
baseline_name => 'Monday baseline');

When you create a baseline, Oracle will assign an ID to the baseline; you can view past
baselines via the DBA_HIST_BASELINE view. The snapshots you specify for the beginning and
ending of the baseline are maintained until you drop the baseline. To drop the baseline, use the
DROP_BASELINE procedure:

execute DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE
(baseline_name => 'Monday baseline', cascade => FALSE);

If you set the CASCADE parameter of the DROP_BASELINE procedure to TRUE, the related
snapshots will be dropped when the baseline is dropped.

272 Oracle Database 11g DBA Handbook

You can see the AWR data via OEM or via the data dictionary views listed earlier in this
section. Additional views supporting AWR include V$ACTIVE_SESSION_HISTORY (sampled
every second), DBA_HIST_SQL_PLAN (execution plans), and DBA_HIST_WR_CONTROL (for
the AWR settings).

Generating AWR Reports
You can generate reports from AWR either via OEM or via the reporting scripts provided. The
awrrpt.sql script generates a report based on the differences in statistics between the beginning
and ending snapshots. A second report, awrrpti.sql, displays a report based on the beginning and
ending snapshots for a specified database and instance.

Both awrrpt.sql and awrrpti.sql are located in the $ORACLE_HOME/rdbms/admin directory.
When you execute a report (from any DBA account), you will be prompted for the type of report
(HTML or text), the number of days for which snapshots will be listed, the beginning and ending
snapshot IDs, and the name for the output file.

Running the Automatic Database Diagnostic Monitor Reports
Rather than relying on manual reporting against the AWR table (much as you did with STATSPACK
in previous versions of Oracle), you can use the Automatic Database Diagnostic Monitor (ADDM).
Because it is based on AWR data, ADDM requires that the STATISTICS_LEVEL parameter be set
(either to TYPICAL or ALL, as recommended earlier). You can access ADDM via the Performance
Analysis section of OEM, or you can run an ADDM report manually.

To run ADDM against a set of snapshots, use the addmrpt.sql script located in the $ORACLE_
HOME/rdbms/admin directory.

NOTE
You must have the ADVISOR system privilege in order to execute
ADDM reports.

Within SQL*Plus, execute the addmrpt.sql script. You will be prompted for the beginning and
ending snapshot IDs for the analysis and a name for the output file.

To view the ADDM data, you can use OEM or the advisor data dictionary views. The advisor
views include DBA_ADVISOR_TASKS (existing tasks), DBA_ADVISOR_LOG (status and progress
on tasks), DBA_ADVISOR_RECOMMENDATIONS (completed diagnostic tasks plus
recommendations), and DBA_ADVISOR_FINDINGS. You can implement the recommendations
to address the findings identified via ADDM. Figure 8-1 shows a typical AWR report, generated
from the default baseline; in this example, the snapshot began on 14-Sep-2007 and ended on
22-Sep-2007. This database seems to be lightly loaded with plenty of CPU and memory resources;
for example, latch contention is non-existent, and there is enough memory to perform all sorting
without using disk.

Using the Automatic SQL Tuning Advisor
New to Oracle Database 11g, the Automatic SQL Tuning Advisor runs during the default
maintenance window (using AutoTask) and targets the highest-load SQL statements collected
in the AWR. Once the automatic SQL tuning begins during a maintenance window, the following
steps are performed by the Automatic SQL Tuning Advisor:

 1. Identify repeated high-load SQL from AWR statistics. Recently tuned SQL and recursive
SQL are ignored.

Chapter 8: Database Tuning 273

 2. Tune high-load SQL using calls to the SQL Tuning Advisor.

 3. Create SQL Profiles for the high-load SQL; performance is tested both with and without
the profile.

 4. If the performance is better by at least a factor of three, automatically keep the profile;
otherwise, note the improvement in the tuning report.

Figure 8-2 shows a summary of the Advisor tasks from Advisor Central; in this example, you
can see a summary of the results for the Automatic Database Diagnostic Monitor (ADDM), the
Segment Advisor, and the SQL Tuning Advisor.

FIGURE 8-1 Sample AWR report via OEM

274 Oracle Database 11g DBA Handbook

Clicking the SQL Tuning Advisor result link, you can see the SQL Tuning Result summary in
Figure 8-3. On this low-usage database, the SQL Tuning Advisor found 14 repeating SQL statements
that were classified as high-load, but it did not find a way to improve the performance of these
SQL statements.

FIGURE 8-2 OEM Advisor Central summary

Chapter 8: Database Tuning 275

Tuning Solutions
This chapter does not cover every potential tuning solution. However, there is an underlying
approach to the techniques and tools presented throughout this chapter. Before spending your
time and resources on the implementation of a new feature, you should first stabilize your
environment and architecture—the server, the database, and the application. If the environment
is stable, you should be able to quickly accomplish two goals:

 1. Successfully re-create the performance problem.

 2. Successfully isolate the cause of the problem.

FIGURE 8-3 Automatic SQL Tuning Advisor results

276 Oracle Database 11g DBA Handbook

To achieve these goals, you may need to have a test environment available for your
performance tests. Once the problem has been successfully isolated, you can apply the steps
outlined in this chapter to the problem. In general, your tuning approach should mirror the order
of the sections of this chapter:

 1. Evaluate application design.

 2. Tune SQL.

 3. Tune memory usage.

 4. Tune data storage.

 5. Tune data manipulation.

 6. Tune physical and logical storage.

 7. Tune network traffic.

Depending on the nature of your application, you may choose a different order for the steps,
or you may combine steps.

If the application design cannot be altered and the SQL cannot be altered, you can tune the
memory and disk areas used by the application. As you alter the memory and disk area settings,
you must be sure to revisit the application design and SQL implementation to be sure that your
changes do not adversely impact the application. The need to revisit the application design
process is particularly important if you choose to use a data replication method, because the
timeliness of the replicated data may cause problems within the business process served by the
application.

CHAPTER
9

Database Security
 and Auditing

277

278 Oracle Database 11g DBA Handbook

o protect one of the most vital assets to a company—its data—you as a DBA must
be keenly aware of how Oracle can protect corporate data and the different tools
you have at your disposal. The Oracle-provided tools and mechanisms fall into
three broad categories: authentication, authorization, and auditing.

Authentication includes methods used to identify who is accessing the database, ensuring that
you are who you say you are, regardless of what resources you are requesting of the database. Even
if you are merely trying to access the daily lunch menu at the cafeteria, it is important that you
identify yourself correctly to the database. If, for example, the web-based database application
presents customized content based on the user account, you want to make sure you get the lunch
menu for your branch office in Houston, Texas, and not the one for the home office in Buffalo,
New York!

Authorization provides access to various objects in the database once you are authenticated
by the database. Some users may be authorized to run a report against the daily sales table, some
users may be developers and therefore need to create tables and reports, whereas others may only
be allowed to see the daily lunch menu. Some users may never log in at all, but their schema
may own a number of tables for a particular application, such as payroll or accounts receivable.
Additional authorization methods are provided for database administrators, due to the extreme
power that a database administrator has. Because a DBA can shut down and start up a database,
an additional level of authorization is provided.

Authorization goes well beyond simple access to a table or a report; it also includes the rights
to use system resources in the database as well as privileges to perform certain actions in the
database. A given database user might only be allowed to use 15 seconds of CPU time per session
or can only be idle for five minutes before being disconnected from the database. Another database
user might be granted the privilege to create or drop tables in any other user’s schema, but not be
able to create synonyms or view data dictionary tables. Fine-grained access control gives the DBA
more control over how database objects are accessed. For example, standard object privileges will
either give a user access to an entire row of a table or not at all; using fine-grained access control,
a DBA can create a policy implemented by a stored procedure that restricts access based on time
of day, where the request originates, which column of the table is being accessed, or all three.

At the end of the section on database authorization, we will present a short example of a Virtual
Private Database (VPD) to provide methods for defining, setting, and accessing application attributes
along with the predicates (usually WHERE clauses) to control which data is accessible or returned
to the user of the application.

Auditing in an Oracle database encompasses a number of different levels of monitoring in the
database. At a high level, auditing can record both successful and unsuccessful attempts to log in,
access an object, or perform an action. As of Oracle9i, not only can fine-grained auditing (FGA)
record what objects are accessed, but what columns of a table are accessed when an insert, update,
or delete is being performed on the data in the column. Fine-grained auditing is to auditing what
fine-grained access control is to standard authorization: more precise control and information
about the objects being accessed or actions being performed.

DBAs must use auditing judiciously so as not to be overwhelmed by audit records or create
too much overhead by implementing continuous auditing. On the flip side, auditing can help to
protect company assets by monitoring who is using what resource, at what time, and how often,
as well as whether the access was successful or not. Therefore, auditing is another tool that the
DBA should be using on a continuous basis to monitor the security health of the database.

T

Chapter 9: Database Security and Auditing 279

Non-Database Security
All the methodologies presented later in the chapter are useless if access to the operating system
is not secure or the physical hardware is not in a secure location. In this section, we’ll discuss a
few of the elements outside of the database itself that need to be secure before the database can
be considered secure.

In the following list are a few things that need to be considered outside of the database:

Operating system security Unless the Oracle database is running on its own dedicated
hardware with only the root and oracle user accounts enabled, operating system security
must be reviewed and implemented. Ensure that the software is installed with the oracle
account and not the root account. You may also consider using another account instead
of oracle as the owner of the software and the database files, to eliminate an easy target
for a hacker. Ensure that the software and the database files are readable only by the
oracle account and the group that oracle belongs to. Other than the Oracle executables
that require it, turn off the SUID (set UID, or running with root privileges) bit on files that
don’t require it. Don’t send passwords (operating system or Oracle) to users via e-mail
in plain text. Finally, remove any system services that are not required on the server to
support the database, such as telnet and ftp.

Securing backup media Ensure that the database backup media—whether tape, disk, or
CD/DVD-ROM—is accessible by a limited number of people. A secure operating system
and robust, encrypted passwords on the database are of little value if a hacker can obtain
backup copies of the database and load them onto another server. The same applies to
any server that contains data replicated from your database.

Background security checks Screening of employees that deal with sensitive database
data—whether it be a DBA, auditor, or operating system administrator—is a must.

Security education Ensure that all database users understand the security and usage
policies of the IT infrastructure. Requiring that users understand and follow the security
policies emphasizes the critical nature and value of the data to the company, including
the information in the database. A well-educated user will be more likely to resist
attempts at system access from a hacker’s social-engineering skills.

Controlled access to hardware All computer hardware that houses the database should
be located in a secure environment that is accessible only with badges or security access
codes.

Database Authentication Methods
Before the database can allow a person or application access to objects or privileges in the database,
the person or application must be authenticated; in other words, the identity of who is attempting
access to the database needs to be validated.

In this section, we’ll give an overview of the most basic method used to allow access to the
database—the user account, otherwise known as database authentication. In addition, we’ll show
how to reduce the number of passwords a user needs to remember by allowing the operating system
to authenticate the user and, as a result, automatically connect the user to the database. Using 3-tier

■

■

■

■

■

280 Oracle Database 11g DBA Handbook

authentication via an application server, network authentication, or Oracle’s Identity Management
can reduce the number of passwords even further. Finally, we’ll talk about using a password file to
authenticate DBAs when the database is down and cannot provide authentication services.

Database Authentication
In an environment where the network is protected from the outside environment with firewalls and
the network traffic between the client and the database server uses some method of encryption,
authentication by the database is the most common and easiest method to authenticate the user
with the database. All information needed to authenticate the user is stored in a table within the
SYSTEM tablespace.

Very special database operations, such as starting up or shutting down the database, require a
different and more secure form of authentication, either by using operating system authentication
or by using password files.

Network authentication relies on third-party authentication services such as the Distributed
Computing Environment (DCE), Kerberos, Public Key Infrastructure (PKI), and Remote Authentication
Dial-In User Service (RADIUS). 3-tier authentication, although at first glance appears to be a network
authentication method, is different in that a middle tier, such as Oracle Application Server,
authenticates the user while maintaining the client’s identity on the server. In addition, the middle
tier provides connection pooling services as well as implements business logic for the client.

Later in this chapter, in the section titled “User Accounts,” we’ll go through all the options
available to the DBA for setting up accounts in the database for authentication.

Database Administrator Authentication
The database is not always available to authenticate a database administrator, such as when it is
down because of an unplanned outage or for an offline database backup. To address this situation,
Oracle uses a password file to maintain a list of database users who are allowed to perform
functions such as starting up and shutting down the database, initiating backups, and so forth.

Alternatively, a database administrator can use operating system authentication, which we
discuss in the next section. The flow chart shown in Figure 9-1 identifies the options for a database
administrator when deciding what method will work the best in their environment.

FIGURE 9-1 Authentication method flowchart

Chapter 9: Database Security and Auditing 281

For connecting locally to the server, the main consideration is the convenience of using the
same account for both the operating system and the Oracle server versus maintaining a password
file. For a remote administrator, the security of the connection is the driving factor when choosing
an authentication method. Without a secure connection, a hacker could easily impersonate a user
with the same account as that of an administrator on the server itself and gain full access to the
database with OS authentication.

NOTE
When using a password file for authentication, ensure that the
password file itself is in a directory location that is only accessible
by the operating system administrators and the user or group that
owns the Oracle software installation.

We will discuss system privileges in greater detail later in this chapter. For now, though, you
need to know that there are three particular system privileges that give administrators special
authentication in the database: SYSDBA, SYSOPER, and SYSASM. An administrator with the
SYSOPER privilege can start up and shut down the database, perform online or offline backups,
archive the current redo log files, and connect to the database when it is in RESTRICTED SESSION
mode. The SYSDBA privilege contains all the rights of SYSOPER, with the addition of being able
to create a database and grant the SYSDBA or SYSOPER privilege to other database users. New to
Oracle Database 11g, the SYSASM privilege is specific to an ASM instance to manage database
storage.

To connect to the database from a SQL*Plus session, you append AS SYSDBA or AS SYSOPER
to your connect command. Here’s an example:

[oracle@dw ~]$ sqlplus /nolog

SQL*Plus: Release 11.1.0.6.0 - Production on Fri Aug 10 20:57:30 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

SQL> connect rjb/rjb as sysdba
Connected.
SQL> show user
USER is "SYS"
SQL>

Other than the additional privileges available to the users who connect as SYSDBA or SYSOPER,
the default schema is also different for these users when they connect to the database. Users who
connect with the SYSDBA or SYSASM privilege connect as the SYS user; the SYSOPER privilege
sets the user to PUBLIC:

SQL> show user
USER is "SYS"

As with any database connection request, you have the option to specify the username and
password on the same line as the sqlplus command, along with the SYSDBA or SYSOPER keyword:

[oracle@dw ~]$ sqlplus rjb/rjb as sysdba

Although a default installation of the Oracle Database using the Oracle Universal Installer with
a seed database or using the Database Creation Assistant will automatically create a password file,

282 Oracle Database 11g DBA Handbook

there are occasions when you may need to re-create one if it is accidentally deleted or damaged.
The orapwd command will create a password file with a single entry for the SYS user and other
options, as noted, when you run the orapwd command without any options:

[oracle@dw ~]$ orapwd
Usage: orapwd file=<fname> password=<password>
 entries=<users> force=<y/n> ignorecase=<y/n> nosysdba=<y/n>

 where
 file - name of password file (required),
 password - password for SYS (optional),
 entries - maximum number of distinct DBA (required),
 force - whether to overwrite existing file (optional),
 ignorecase - passwords are case-insensitive (optional),
 nosysdba - whether to shut out the SYSDBA logon
 (optional Database Vault only).

 There must be no spaces around the equal-to (=) character.
[oracle@dw ~]$

Once you re-create the password file, you will have to grant the SYSDBA and SYSOPER
privileges to those database users who previously had those privileges. In addition, if the password
you provided in the orapwd command is not the same password that the SYS account has in the
database, this is not a problem: when you connect using connect / as sysdba, you’re using operating
system authentication, and if you use connect sys/syspassword as sysdba, the password syspassword
is the password for SYS in the database. And just to reiterate, if the database is down or in MOUNT
mode, you must use operating system authentication or the password file. Also worth noting is
that operating system authentication takes precedence over password file authentication, so as
long as you fulfill the requirements for operating system authentication, the password file will
not be used for authentication if it exists.

CAUTION
As of Oracle Database 11g, database passwords are case sensitive.
To disable case sensitivity, set the SEC_CASE_SENSITIVE_LOGON
intitialization parameter to FALSE.

The system initialization parameter REMOTE_LOGIN_PASSWORDFILE controls how the
password file is used for the database instance. It has three possible values: NONE, SHARED,
and EXCLUSIVE.

If the value is NONE, then Oracle ignores any password file that exists. Any privileged users
must be authenticated by other means, such as by operating system authentication, which is
discussed in the next section.

With a value of SHARED, multiple databases can share the same password file, but only the
SYS user is authenticated with the password file, and the password for SYS cannot be changed.
As a result, this method is not the most secure, but it does allow a DBA to maintain more than
one database with a single SYS account.

Chapter 9: Database Security and Auditing 283

TIP
If a shared password file must be used, ensure that the password for
SYS is at least eight characters long and includes a combination of
upper- and lowercase alphabetic, numeric, and special characters to
fend off a brute-force attack.

A value of EXCLUSIVE binds the password file to only one database, and other database user
accounts can exist in the password file. As soon as the password file is created, use this value to
maximize the security of SYSDBA or SYSOPER connections.

The dynamic performance view V$PWFILE_USERS lists all the database users who have either
SYSDBA or SYSOPER privileges, as shown here:

SQL> select * from v$pwfile_users;

USERNAME SYSDB SYSOP SYSAS
------------------------------ ----- ----- -----
SYS TRUE TRUE FALSE
RJB TRUE FALSE FALSE

Operating System Authentication
If a DBA chooses to implement operating system authentication, a database user is automatically
connected to the database when they use the following SQL*Plus syntax:

SQL> sqlplus /

This method is similar to how an administrator connects to the database, without the as sysdba or
as sysoper clause. The main difference is that the operating system account authorization methods
are used instead of an Oracle-generated and maintained password file.

In fact, administrators can also use operating system authentication to connect using as sysdba
or as sysoper. If the administrator’s operating system login account is in the Unix group dba (or
the Windows group ORA_DBA), the administrator can connect to the database using as sysdba.
Similarly, if the operating system login account is in the Unix group oper (or the Windows group
ORA_OPER), the administrator can connect to the database using as sysoper without the need for
an Oracle password file.

The Oracle Server makes the assumption that if the user is authenticated by an operating
system account, then the user is also authenticated for the database. With operating system
authentication, Oracle does not need to maintain passwords in the database, but it still maintains
the usernames. The usernames are still needed to set the default schema and tablespaces in
addition to providing information for auditing.

In a default Oracle 11g installation, as well as in previous releases of Oracle, operating system
authentication is enabled for user accounts if you create database users with the identified externally
clause. The prefix for the database username must match the value of the initialization parameter
OS_AUTHENT_PREFIX; the default value is OPS$. Here’s an example:

SQL> create user ops$corie identified externally;

284 Oracle Database 11g DBA Handbook

When the user logs into the operating system with the account CORIE, she is automatically
authenticated in the Oracle database as if the account OPS$CORIE was created with database
authentication.

Setting the value of OS_AUTHENT_PREFIX to a null string allows the database administrator
and the operating system account administrator to use identical usernames when using external
authentication.

Using identified globally is similar to using identified externally in that the authentication is
done outside of the database. However, with a globally identified user, authentication is performed
by an enterprise directory service such as Oracle Internet Directory (OID). OID facilitates ease of
account maintenance for database administrators and the convenience of single sign-on for
database users who need to access more than just a single database or service.

Network Authentication
Authentication by a network service is another option available to the DBA to authenticate users
in the database. Although a complete treatment is beyond the scope of this book, we will give a
brief summary of each method and its components. These components include Secure Sockets
Layer (SSL), Distributed Computing Environment (DCE), Kerberos, PKI, RADIUS, and directory-
based services.

Secure Sockets Layer Protocol
Secure Sockets Layer (SSL) is a protocol originally developed by Netscape Development Corporation
for use in web browsers. Because it is a public standard and open source, it faces continuous
scrutiny by the programming community to ensure that there are no holes or “back doors” that
can compromise its robustness.

At a minimum, a server-side certificate is required for authentication. Client authentication
is also doable with SSL to validate the client, but setting up certificates may become a large
administrative effort.

Using SSL over TCP/IP requires only slight changes to the listener configuration by adding
another protocol (TCPS) at a different port number in the listener.ora file. In the following excerpt,
configured with Oracle Net Configuration Assistant (netca), the listener named LISTENER on the
server dw10g will accept traffic via TCP on port 1521 and SSL TCP traffic on port 2484:

listener.ora Network Configuration File:
 /u01/app/oracle/product/10.1.0/network/admin/listener.ora
Generated by Oracle configuration tools.
SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /u01/app/oracle/product/10.1.0)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (GLOBAL_DBNAME = dw.world)
 (ORACLE_HOME = /u01/app/oracle/product/10.1.0)
 (SID_NAME = dw)
)
)

Chapter 9: Database Security and Auditing 285

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dw10g)(PORT = 1521))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCPS)(HOST = dw10g)(PORT = 2484))
)
)
)

Distributed Computing Environment
The Distributed Computing Environment (DCE) provides a number of services, such as remote
procedure calls, distributed file services, and distributed time service, in addition to a security
service. DCE supports distributed applications in a heterogeneous environment on all major
software and hardware platforms.

DCE is one of the protocols that support single sign-on (SSO); once a user authenticates with
DCE, they can securely access any Oracle database configured with DCE without specifying a
username or password.

Kerberos
Kerberos is another trusted third-party authentication system that, like DCE, provides SSO
capabilities. Oracle fully supports Kerberos version 5 with Oracle Advanced Security under
the Enterprise Edition of Oracle Database 10g and 11g.

As with other middleware authentication solutions, the basic premise is that passwords should
never be sent across the network; all authentication is brokered by the Kerberos server. In Kerberos
terminology, a password is a “shared secret.”

Public Key Infrastructure
Public Key Infrastructure (PKI) comprises a number of components. It is implemented using the SSL
protocol and is based on the concept of secret private keys and related public keys to facilitate
secure communications between the client and server.

To provide identification and authentication services, PKI uses certificates and certificate
authorities (CAs). In a nutshell, a certificate is an entity’s public key validated by a trusted third
party (a certificate authority), and it contains information such as the certificate user’s name, an
expiration date, the public key, and so forth.

RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a lightweight protocol used for
authentication as well as authorization and accounting services. In an Oracle environment,
the Oracle Server acts as the client to a RADIUS server when an authorization request is
sent from an Oracle client.

Any authentication method that supports the RADIUS standard—whether it be token cards,
smart cards, or SecurID ACE—can easily be added to the RADIUS server as a new authentication
method without any changes being made on the client or server configuration files, such as
sqlnet.ora.

286 Oracle Database 11g DBA Handbook

3-Tier Authentication
In a 3-tier or multitier environment, an application server can provide authentication services for
a client and provide a common interface to the database server, even if the clients use a variety of
different browsers or “thick” client applications. The application server, in turn, is authenticated
with the database and demonstrates that the client is allowed to connect to the database, thus
preserving the identity of the client in all tiers.

In multitier environments, both users and middle tiers are given the fewest possible privileges
necessary to do their jobs. The middle tier is granted permission to perform actions on behalf of a
user with a command such as the following:

alter user kmourgos
 grant connect through oes_as
 with role all except ordmgmt;

In this example, the application server service OES_AS is granted permission to perform
actions on behalf of the database user KMOURGOS. The user KMOURGOS has been assigned
a number of roles, and they can all be enabled through the application server, except for the
ORDMGMT role. As a result, when KMOURGOS connects through the application server, he is
permitted to access, via the web, all tables and privileges granted to him via roles, except for the
order management functions. Because of the business rules in place at his company, all access to
the order management applications must be done via a direct connection to the database. Roles
are discussed in detail in the section titled “Assigning and Maintaining Roles” later in this chapter.

Client-Side Authentication
Client-side authentication is one way to authenticate users in a multitier environment, but Oracle
strongly discourages this method unless all clients are on a secure network, inside a firewall, with
no connections allowed to the database from outside the firewall. In addition, users should not
have any administrative rights on any workstation that can connect to the database.

If an Oracle user is created with the IDENTIFIED EXTERNALLY attribute, and the initialization
parameter REMOTE_OS_AUTHENT is set to TRUE, then an attacker can easily authenticate himself
on the workstation with a local user account that matches the Oracle user account, and as a result
gain access to the database.

As a result, it is strongly recommended that the REMOTE_OS_AUTHENT parameter be set to
FALSE. The database will have to be stopped and restarted for this change to take effect.

NOTE
As of Oracle Database 11g, the parameter REMOTE_OS_AUTHENT
is deprecated. There are several other, more secure ways to allow
remote access to the database.

Oracle Identity Management
Oracle Identity Management (IM), a component of Oracle Application Server 10g and 11g, provides
a complete end-to-end framework for centrally managing user accounts, from account creation to
resource authorization to account deletion. It centralizes the management of accounts along with

Chapter 9: Database Security and Auditing 287

the devices, applications, web services, or any other networked entity that uses authentication
and authorization.

IM saves money and time. Because the user accounts and the associated resources are
centralized, administration is the same regardless of the application being maintained.

In addition, IM enhances the security of the enterprise. Because users only use one username
and password to access all enterprise resources, they are less prone to write down or forget their
password. When a user leaves the company, all access to applications and services can be removed
quickly and easily in one place.

Although a complete treatment of Oracle Identity Management is beyond the scope of this
book, it’s important for the DBA to understand how the components of IM will impact the
performance and security of the Oracle database. The user account information and other metadata
needs to be stored somewhere, and stored redundantly, in an Oracle database. In addition, the
requests for authentication and authorization services must be processed within a reasonable
amount of time, defined most likely within the Service Level Agreements (SLAs) in effect for one
or more of the applications.

For example, Oracle Internet Directory (OID), one of the major components of Oracle Identity
Management, requires database tuning somewhat like tuning for an OLTP system, with many short
transactions from a large number of users with widely varying loads depending on the time of
day. But that is where the similarity ends! In Table 9-1 are some general guidelines for setting
various system-initialization parameters for the database that will be maintaining the Lightweight
Directory Access Protocol (LDAP) directory information.

It is assumed that this database’s only job is to maintain OID directory information. In addition
to tuning basic database parameters, overall throughput will depend on factors such as network
bandwidth available between the server and the user community, the location of shared disk
resources, disk throughput, and so forth. A typical IM deployment with 500,000 directory entries
will require approximately 3GB of disk space, and how fast or how slow the entries can be written
to or read from disk can easily become the throughput bottleneck.

Database Parameter 500 Concurrent Users 2000 Concurrent Users

OPEN_CURSORS 200 200

SESSIONS 225 1200

DB_BLOCK_SIZE 8K 8K

DB_CACHE_SIZE 250MB 250MB

SHARED_POOL_SIZE 40MB 40MB

PROCESSES 400 1500

SORT_AREA_SIZE 256KB 256KB

LOG_BUFFER 512KB 512KB

TABLE 1-1 Database Initialization Parameter Sizing for OID

288 Oracle Database 11g DBA Handbook

User Accounts
In order to gain access to the database, a user must provide a username to access the resources
associated with that account. Each username must have a password and is associated with one
and only one schema in the database; some accounts may have no objects in the schema, but
instead would have the privileges granted to that account to access objects in other schemas.

In this section, we’ll explain the syntax and give examples for creating, altering, and dropping
users. In addition, we’ll show you how to become another user without explicitly knowing the
password for the user.

Creating Users
The create user command is fairly straightforward. It has a number of parameters, which are listed
in Table 9-2 along with a brief description of each one.

In the following example, we are creating a user (SKING) to correspond with the user Steven
King, employee number 100 in the HR.EMPLOYEES table from the sample schemas installed with
the database:

SQL> create user sking identified by sking901
 2 account unlock
 3 default tablespace users
 4 temporary tablespace temp;
User created.

Parameter Usage

username The name of the schema, and therefore the user, to
be created. The username can be up to 30 characters
long and cannot be a reserved word unless it is quoted
(which is not recommended).

IDENTIFIED { BY password |
EXTERNALLY | GLOBALLY AS
‘extname’ }

Specifies how the user will be authenticated: by the
database with a password, by the operating system
(local or remote), or by a service (such as Oracle
Internet Directory).

DEFAULT TABLESPACE tablespace The tablespace where permanent objects are created,
unless a tablespace is explicitly specified during creation.

TEMPORARY TABLESPACE
tablespace

The tablespace where temporary segments are created
during sort operations, index creation, and so forth.

QUOTA { size | UNLIMITED } ON
tablespace

The amount of space allowed for objects created on
the specified tablespace. Size is in kilobytes (K) or
megabytes (M).

PROFILE profile The profile assigned to this user. Profiles are discussed
later in this chapter. If a profile is not specified, the
DEFAULT profile is used.

PASSWORD EXPIRE At first logon, the user must change their password.

ACCOUNT {LOCK | UNLOCK} Specifies whether the account is locked or unlocked.
By default, the account is unlocked.

TABLE 9-2 The Options for the CREATE USER Command

Chapter 9: Database Security and Auditing 289

The user SKING is authenticated by the database with an initial password of SKING901. The
second line is not required; all accounts are created unlocked by default. Both the default permanent
tablespace and default temporary tablespace are defined at the database level, so the last two
lines of the command aren’t required unless you want a different default permanent tablespace
or a different temporary tablespace for the user.

Even though the user SKING has been either explicitly or implicitly assigned a default permanent
tablespace, he cannot create any objects in the database until we provide both a quota and the
rights to create objects in their own schema.

A quota is simply a space limit, by tablespace, for a given user. Unless a quota is explicitly
assigned or the user is granted the UNLIMITED TABLESPACE privilege (privileges are discussed
later in this chapter), the user cannot create objects in their own schema. In the following
example, we’re giving the SKING account a quota of 250MB in the USERS tablespace:

SQL> alter user sking quota 250M on users;
User altered.

Note that we could have granted this quota at the time the account was created, along with
almost every other option in the create user command. A default role, however, can only be
assigned after the account is created. (Role management is discussed later in this chapter.)

Unless we grant some basic privileges to a new account, the account cannot even log in;
therefore, we need to grant at least the CREATE SESSION privilege or the CONNECT role (roles
are discussed in detail later in this chapter). For Oracle Database 10g Release 1 and earlier, the
CONNECT role contains the CREATE SESSION privilege, along with other basic privileges, such
as CREATE TABLE and ALTER SESSION; as of Oracle Database 10g Release 2, the CONNECT role
only has the CREATE SESSION privilege and therefore is deprecated. In the following example,
we grant SKING the CREATE SESSION and CREATE TABLE privileges:

SQL> grant create session, create table to sking;
Grant succeeded.

Now the user SKING has a quota on the USERS tablespace as well as the privileges to create
objects in that tablespace.

All these options for create user are available in the web-based Oracle Enterprise Manager
interface, as demonstrated in Figure 9-2.

As with any Enterprise Manager operation, the Show SQL button shows the actual SQL
commands, such as create and grant, that will be run when the user is created. This is a great
way to take advantage of the web interface’s ease of use, while at the same time brushing up
on your SQL command syntax!

In Figure 9-3, you can see that it’s also very easy to pick an existing user and create a new
user with the same characteristics except for the password.

Other options available in the Enterprise Manager interface include expiring a user account,
generating the DDL used to create the account, and locking or unlocking the account.

Altering Users
Changing the characteristics of a user is accomplished by using the alter user command. The
syntax for alter user is nearly identical to that of create user, except that alter user allows you to
assign roles as well as grant rights to a middle-tier application to perform functions on behalf of
the user.

290 Oracle Database 11g DBA Handbook

FIGURE 9-2 Creating users with Enterprise Manager

FIGURE 9-3 Copying users with Enterprise Manager

Chapter 9: Database Security and Auditing 291

In this example, we’ll change user SKING to use a different default permanent tablespace:

SQL> alter user sking
 2 default tablespace users2
 3 quota 500M on users2;
User altered.

Note that the user SKING still can create objects in the USERS tablespace, but he must
explicitly specify USERS in any create table and create index commands.

Dropping Users
Dropping users is very straightforward and is accomplished with the drop user command. The
only parameters are the username to be dropped and the cascade option; any objects owned by
the user must be explicitly dropped or moved to another schema if the cascade option is not used.
In the following example, the user QUEENB is dropped, and if there are any objects owned by
QUEENB, they are automatically dropped as well:

SQL> drop user queenb cascade;
User dropped.

If any other schema objects, such as views or packages, rely on objects dropped when the
user is dropped, the other schema objects are marked INVALID and must be recoded to use other
objects and then recompiled. In addition, any object privileges that were granted by the first user
to a second user via the with grant option clause are automatically revoked from the second user
if the first user is dropped.

Becoming Another User
To debug an application, a DBA sometimes needs to connect as another user to simulate the
problem. Without knowing the actual plain-text password of the user, the DBA can retrieve
the encrypted password from the database, change the password for the user, connect with the
changed password, and then change back the password using an undocumented clause of the alter
user command. It is assumed that the DBA has access to the DBA_USERS table, along with the
ALTER USER privilege. If the DBA has the DBA role, then these two conditions are satisfied.

The first step is to retrieve the encrypted password for the user, which is stored in the table
DBA_USERS:

SQL> select password from dba_users
 2 where username = 'SKING';

PASSWORD

83C7CBD27A941428

1 row selected.

Save this password using cut and paste in a GUI environment, or save it in a text file to
retrieve later. The next step is to temporarily change the user’s password and then log in using
the temporary password:

SQL> alter user sking identified by temp_pass;
User altered.
SQL> connect sking/temp_pass@dw;
Connected.

292 Oracle Database 11g DBA Handbook

At this point, you can debug the application from SKING’s point of view. Once you are done
debugging, change the password back using the undocumented by values clause of alter user:

SQL> alter user sking identified by values '83C7CBD27A941428';
User altered.

User-Related Data Dictionary Views
A number of data dictionary views contain information related to users and characteristics of
users. Table 9-3 lists the most common views and tables.

Database Authorization Methods
Once a user is authenticated with the database, the next step is to determine what types of objects,
privileges, and resources the user is permitted to access or use. In this section, we’ll review how
profiles can control not only how passwords are managed but also how profiles can put limits on
various types of system resources.

In addition, we’ll review the two types of privileges in an Oracle database: system privileges
and object privileges. Both of these privileges can be assigned directly to users, or indirectly through
roles, another mechanism that can make a DBA’s job easier when assigning privileges to users.

At the end of this section, we’ll cover the Virtual Private Database (VPD) features of Oracle
and how it can be used to provide more precise control over what parts of a table can be seen by
a user based on a set of DBA-defined credentials assigned to the user. To help make the concepts
clearer, we’ll step through an implementation of a VPD from beginning to end.

Profile Management
There never seems to be enough CPU power or disk space or I/O bandwidth to run a user’s query.
Because all these resources are inherently limited, Oracle provides a mechanism to control how
much of these resources a user can use. An Oracle profile is a named set of resource limits
providing this mechanism.

Data Dictionary View Description

DBA_USERS Contains usernames, encrypted passwords, account status,
and default tablespaces.

DBA_TS_QUOTAS Disk space usage and limits by user and tablespace, for
users who have quotas that are not UNLIMITED.

DBA_PROFILES Profiles that can be assigned to users with resource limits
assigned to the profiles.

USER_HISTORY$ Password history with usernames, encrypted passwords,
and datestamps. Used to enforce password reuse rules
if you set the initialization parameter RESOURCE_LIMIT
to TRUE and limit password reuse using the alter profile
parameters password_reuse_*.

TABLE 9-3 User-Related Data Dictionary Views and Tables

Chapter 9: Database Security and Auditing 293

In addition, profiles can be used as an authorization mechanism to control how user passwords
are created, reused, and validated. For example, we may wish to enforce a minimum password
length, along with a requirement that at least one upper- and lowercase letter appear in the
password. In this section, we’ll talk about how profiles manage passwords and resources.

The CREATE PROFILE command
The create profile command does double duty; we can create a profile to limit the connect time
for a user to 120 minutes:

create profile lim_connect limit
 connect_time 120;

Similarly, we can limit the number of consecutive times a login can fail before the account is
locked:

create profile lim_fail_login limit
 failed_login_attempts 8;

Or, we can combine both types of limits in a single profile:

create profile lim_connectime_faillog limit
 connect_time 120
 failed_login_attempts 8;

How Oracle responds to one of the resource limits being exceeded depends on the type of
limit. When one of the connect time or idle time limits is reached (such as CPU_PER_SESSION),
the transaction in progress is rolled back, and the session is disconnected. For most other resource
limits (such as PRIVATE_SGA), the current transaction is rolled back, an error is returned to the
user, and the user has the option to commit or roll back the transaction. If an operation exceeds a
limit for a single call (such as LOGICAL_READS_PER_CALL), the operation is aborted, the current
statement is rolled back, and an error is returned to the user. The rest of the transaction remains
intact; the user can then roll back, commit, or attempt to complete the transaction without
exceeding statement limits.

Oracle provides the DEFAULT profile, which is applied to any new user if no other profile is
specified. This query against the data dictionary view DBA_PROFILES reveals the limits for the
DEFAULT profile:

SQL> select * from dba_profiles
 2 where profile = 'DEFAULT';

PROFILE RESOURCE_NAME RESOURCE LIMIT
---------------- ------------------------- -------- -------------
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180

294 Oracle Database 11g DBA Handbook

DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7

16 rows selected.

The only real restrictions in the DEFAULT profile limit the number of consecutive unsuccessful
login attempts (FAILED_LOGIN_ATTEMPTS) to ten before the account is locked and the number
of days before a password must be changed (PASSWORD_LIFE_TIME) to 180. In addition, no
password verification function is enabled.

Profiles and Password Control
In Table 9-4 are the password-related profile parameters. All units of time are specified in days (to
specify any of these parameters in minutes, for example, divide by 1440):

SQL> create profile lim_lock limit password_lock_time 5/1440;
Profile created.

Password Parameter Description

FAILED_LOGIN_ATTEMPTS The number of failed login attempts before the account is
locked.

PASSWORD_LIFE_TIME The number of days the password can be used before it
must be changed. If it is not changed within PASSWORD_
GRACE_TIME, the password must be changed before logins
are allowed.

PASSWORD_REUSE_TIME The number of days a user must wait before reusing a
password; this parameter is used in conjunction with
PASSWORD_REUSE_MAX.

PASSWORD_REUSE_MAX The number of password changes that have to occur
before a password can be reused; this parameter is used in
conjunction with PASSWORD_REUSE_TIME.

PASSWORD_LOCK_TIME How many days the account is locked after FAILED_
LOGIN_ATTEMPTS attempts. After this time period, the
account is automatically unlocked.

PASSWORD_GRACE_TIME The number of days after which an expired password must
be changed. If it is not changed within this time period,
the account is expired and the password must be changed
before the user can log in successfully.

PASSWORD_VERIFY_
FUNCTION

A PL/SQL script to provide an advanced password-
verification routine. If NULL is specified (the default), no
password verification is performed.

TABLE 9-4 Password-Related Profile Parameters

Chapter 9: Database Security and Auditing 295

In this example, an account will only be locked for five minutes after the specified number of
login failures.

A parameter value of unlimited means that there is no bound on how much of the given
resource can be used. default means that this parameter takes its values from the DEFAULT profile.

The parameters password_reuse_time and password_reuse_max must be used together;
setting one without the other has no useful effect. In the following example, we create a profile
that sets password_reuse_time to 20 days and password_reuse_max to 5:

create profile lim_reuse_pass limit
 password_reuse_time 20
 password_reuse_max 5;

For users with this profile, their password can be reused after 20 days if the password has been
changed at least five times. If you specify a value for either of these, and UNLIMITED for the
other, a user can never reuse a password.

As with most other operations, profiles can easily be managed with Oracle Enterprise Manager.
Figure 9-4 shows an example of changing the DEFAULT profile to disconnect the user after only
15 minutes of inactivity.

If we wanted to provide tighter control over how passwords are created and reused, such as a
mixture of upper- and lowercase characters in every password, we need to enable the PASSWORD_
VERIFY_FUNCTION limit in each applicable profile. Oracle provides a template for enforcing an

FIGURE 9-4 Changing password limits with Oracle Enterprise Manager

296 Oracle Database 11g DBA Handbook

organization’s password policy. It’s located in $ORACLE_HOME/rdbms/admin/utlpwdmg.sql.
Some key sections of this script follow:

CREATE OR REPLACE FUNCTION verify_function_11G
(username varchar2,
 password varchar2,
 old_password varchar2)
 RETURN boolean IS
 n boolean;
 m integer;
 differ integer;
 isdigit boolean;
 ischar boolean;
 ispunct boolean;
 db_name varchar2(40);
 digitarray varchar2(20);
 punctarray varchar2(25);
 chararray varchar2(52);
 i_char varchar2(10);
 simple_password varchar2(10);
 reverse_user varchar2(32);

BEGIN
 digitarray:= '0123456789';
 chararray:= 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ';
. . .
 -- Check if the password is same as the username reversed
 FOR i in REVERSE 1..length(username) LOOP
 reverse_user := reverse_user || substr(username, i, 1);
 END LOOP;
 IF NLS_LOWER(password) = NLS_LOWER(reverse_user) THEN
 raise_application_error(-20003, 'Password same as username reversed');
 END IF;
. . .
 -- Everything is fine; return TRUE ;
 RETURN(TRUE);
END;
/

-- This script alters the default parameters for Password Management
-- This means that all the users on the system have Password Management
-- enabled and set to the following values unless another profile is
-- created with parameter values set to different value or UNLIMITED
-- is created and assigned to the user.

ALTER PROFILE DEFAULT LIMIT
PASSWORD_LIFE_TIME 180
PASSWORD_GRACE_TIME 7
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED

Chapter 9: Database Security and Auditing 297

FAILED_LOGIN_ATTEMPTS 10
PASSWORD_LOCK_TIME 1 PASSWORD_VERIFY_FUNCTION verify_function_11G;

The script provides the following functionality for password complexity:

Ensures that the password is not the same as the username

Ensures that the password is at least four characters long

Checks to make sure the password is not a simple, obvious word, such as ORACLE or
DATABASE

Requires that the password contains one letter, one digit, and one punctuation mark

Ensures that the password is different from the previous password by at least three
characters

To use this policy, the first step is to make your own custom changes to this script. For example,
you may wish to have several different verify functions, one for each country or business unit, to
match the database password complexity requirements to that of the operating systems in use in a
particular country or business unit. Therefore, you can rename this function as VERIFY_FUNCTION_
US_MIDWEST, for example. In addition, you might want to change the list of simple words to
include names of departments or buildings at your company.

Once the function is successfully compiled, you can either alter an existing profile to use this
function with the alter profile command, or you can create a new profile that uses this function.
In the following example, we’re changing the DEFAULT profile to use the function VERIFY_
FUNCTION_US_MIDWEST:

SQL> alter profile default limit
 2 password_verify_function verify_function_us_midwest;
Profile altered.

For all existing users who are using the DEFAULT profile, or for any new users who use the
DEFAULT profile, their password will be checked by the function VERIFY_FUNCTION_US_
MIDWEST. If the function returns a value other than TRUE, the password is not allowed, and the
user must specify a different password. If a user has a current password that does not conform to
the rules in this function, it is still valid until the password is changed, at which time the new
password must be validated by the function.

Profiles and Resource Control
The list of resource-control profile options that can appear after CREATE PROFILE profilename
LIMIT are explained in Table 9-5. Each of these parameters can either be an integer, UNLIMITED,
or DEFAULT.

As with the password-related parameters, UNLIMITED means that there is no bound on how
much of the given resource can be used. DEFAULT means that this parameter takes its values from
the DEFAULT profile.

The COMPOSITE_LIMIT parameter allows you to control a group of resource limits when the
types of resources typically used varies widely by type; it allows a user to use a lot of CPU time
but not much disk I/O during one session, and vice versa during another session, without being
disconnected by the policy.

■

■

■

■

■

298 Oracle Database 11g DBA Handbook

By default, all resource costs are zero:

SQL> select * from resource_cost;

RESOURCE_NAME UNIT_COST
-------------------------------- ----------
CPU_PER_SESSION 0
LOGICAL_READS_PER_SESSION 0
CONNECT_TIME 0
PRIVATE_SGA 0

4 rows selected.

To adjust the resource cost weights, use the ALTER RESOURCE COST command. In this
example, we change the weightings so that CPU_PER_SESSION favors CPU usage over connect
time by a factor of 25 to 1; in other words, a user is more likely to be disconnected because of
CPU usage than connect time:

SQL> alter resource cost
 2 cpu_per_session 50
 3 connect_time 2;
Resource cost altered.

Resource Parameter Description

SESSIONS_PER_USER The maximum number of sessions a user can
simultaneously have

CPU_PER_SESSION The maximum CPU time allowed per session, in
hundredths of a second

CPU_PER_CALL Maximum CPU time for a statement parse, execute, or
fetch operation, in hundredths of a second

CONNECT_TIME Maximum total elapsed time, in minutes

IDLE_TIME Maximum continuous inactive time in a session, in
minutes, while a query or other operation is not in
progress

LOGICAL_READS_PER_SESSION Total number of data blocks read per session, either from
memory or disk

LOGICAL_READS_PER_CALL Maximum number of data blocks read for a statement
parse, execute, or fetch operation

COMPOSITE_LIMIT Total resource cost, in service units, as a composite
weighted sum of CPU_PER_SESSION, CONNECT_TIME,
LOGICAL_READS_PER_SESSION, and PRIVATE_SGA

PRIVATE_SGA Maximum amount of memory a session can allocate in
the shared pool, in bytes, kilobytes, or megabytes

TABLE 9-5 Resource-Related Profile Parameters

Chapter 9: Database Security and Auditing 299

SQL> select * from resource_cost;

RESOURCE_NAME UNIT_COST
-------------------------------- ----------
CPU_PER_SESSION 50
LOGICAL_READS_PER_SESSION 0
CONNECT_TIME 2
PRIVATE_SGA 0

4 rows selected.

The next step is to create a new profile or modify an existing profile to use a composite limit:

SQL> create profile lim_comp_cpu_conn limit
 2 composite_limit 250;

Profile created.

As a result, users assigned to the profile LIM_COMP_CPU_CONN will have their session
resources limited using the following formula to calculate cost:

composite_cost = (50 * CPU_PER_SESSION) + (2 * CONNECT_TIME);

In Table 9-6, we provide some examples of resource usage to see if the composite limit of 250
is exceeded.

The parameters PRIVATE_SGA and LOGICAL_READS_PER_SESSION are not used in this
particular example, so unless they are specified otherwise in the profile definition, they default
to whatever their value is in the DEFAULT profile. The goal of using composite limits is to give
users some leeway in the types of queries or DML they run. On some days, they may run a lot
of queries that perform numerous calculations but don’t access a lot of table rows; on other days,
they may do a lot of full table scans but don’t stay connected very long. In these situations, we
don’t want to limit a user by a single parameter, but instead by total resource usage weighted by
the availability of each resource on the server.

System Privileges
A system privilege is a right to perform an action on any object in the database, as well as other
privileges that do not involve objects at all, but rather things like running batch jobs, altering
system parameters, creating roles, and even connecting to the database itself. There are 206

CPU (Seconds) Connect (Seconds) Composite Cost Exceeded?

0.05 100 (50*5) + (2*100) = 450 Yes

0.02 30 (50*2) + (2*30) = 160 No

0.01 150 (50*1) + (2*150) = 350 Yes

0.02 5 (50*2) + (2*5) = 110 No

TABLE 9-6 Resource Usage Scenarios

300 Oracle Database 11g DBA Handbook

system privileges in Release 1 of Oracle 11g. All of them can be found in the data dictionary
table SYSTEM_PRIVILEGE_MAP:

SQL> select * from system_privilege_map;

PRIVILEGE NAME PROPERTY
---------- -- ----------
 -3 ALTER SYSTEM 0
 -4 AUDIT SYSTEM 0
 -5 CREATE SESSION 0
 -6 ALTER SESSION 0
 -7 RESTRICTED SESSION 0
 -10 CREATE TABLESPACE 0
 -11 ALTER TABLESPACE 0
 -12 MANAGE TABLESPACE 0
 -13 DROP TABLESPACE 0
 -15 UNLIMITED TABLESPACE 0
 -20 CREATE USER 0
 -21 BECOME USER 0
 -22 ALTER USER 0
 -23 DROP USER 0
. . .
 -318 INSERT ANY MEASURE FOLDER 0
 -319 CREATE CUBE BUILD PROCESS 0
 -320 CREATE ANY CUBE BUILD PROCESS 0
 -321 DROP ANY CUBE BUILD PROCESS 0
 -322 UPDATE ANY CUBE BUILD PROCESS 0
 -326 UPDATE ANY CUBE DIMENSION 0
 -327 ADMINISTER SQL MANAGEMENT OBJECT 0
 -350 FLASHBACK ARCHIVE ADMINISTER 0

206 rows selected.

Table 9-7 lists some of the more common system privileges, along with a brief description
of each.

Granting System Privileges
Privileges are granted to a user, role, or PUBLIC using the grant command; privileges are revoked
using the revoke command. PUBLIC is a special group that includes all database users, and it’s
convenient shorthand for granting privileges to everyone in the database.

To grant the user SCOTT the ability to create stored procedures and synonyms, you can use a
command like the following:

SQL> grant create procedure, create synonym to scott;
Grant succeeded.

Revoking privileges is just as easy:

SQL> revoke create synonym from scott;
Revoke succeeded.

Chapter 9: Database Security and Auditing 301

System Privilege Capability

ALTER DATABASE Make changes to the database, such as changing the state of
the database from MOUNT to OPEN, or recover a database.

ALTER SYSTEM Issue ALTER SYSTEM statements: Switch to the next redo log
group and change system-initialization parameters in the
SPFILE.

AUDIT SYSTEM Issue AUDIT statements.

CREATE DATABASE LINK Create database links to remote databases.

CREATE ANY INDEX Create an index in any schema; CREATE INDEX is granted
along with CREATE TABLE for the user’s schema.

CREATE PROFILE Create a resource/password profile.

CREATE PROCEDURE Create a function, procedure, or package in your own
schema.

CREATE ANY PROCEDURE Create a function, procedure, or package in any schema.

CREATE SESSION Connect to the database.

CREATE SYNONYM Create a private synonym in your own schema.

CREATE ANY SYNONYM Create a private synonym in any schema.

CREATE PUBLIC SYNONYM Create a public synonym.

DROP ANY SYNONYM Drop a private synonym in any schema.

DROP PUBLIC SYNONYM Drop a public synonym.

CREATE TABLE Create a table in your own schema.

CREATE ANY TABLE Create a table in any schema.

CREATE TABLESPACE Create a new tablespace in the database.

CREATE USER Create a user account/schema.

ALTER USER Make changes to a user account/schema.

CREATE VIEW Create a view in your own schema.

SYSDBA Create an entry in the external password file, if enabled;
also, perform startup/shutdown, alter a database, create a
database, recover a database, create an SPFILE, and connect
when the database is in RESTRICTED SESSION mode.

SYSOPER Create an entry in the external password file, if enabled;
also, perform startup/shutdown, alter a database, recover a
database, create an SPFILE, and connect when the database
is in RESTRICTED SESSION mode.

TABLE 9-7 Common System Privileges

302 Oracle Database 11g DBA Handbook

If you wish to allow grantees the right to grant the same privilege to someone else, you
include with admin option when you grant the privilege. In the preceding example, we want the
user SCOTT to be able to grant the CREATE PROCEDURE privilege to other users. To accomplish
this, we need to re-grant the CREATE PROCEDURE privilege:

SQL> grant create procedure to scott with admin option;
Grant succeeded.

Now the user SCOTT may issue the grant create procedure command. Note that if SCOTT’s
permission to grant his privileges to others is revoked, the users he granted the privileges to retain
the privileges.

System Privilege Data Dictionary Views
Table 9-8 contains the data dictionary views related to system privileges.

Object Privileges
In contrast to a system privilege, an object privilege is a right to perform a particular type of action
on a specific object, such as a table or a sequence, that is not in the user’s own schema. As with
system privileges, you use the grant and revoke commands to grant and revoke privileges on objects.

As with system privileges, you can grant object privileges to PUBLIC or a specific user; a user
with the object privilege may pass it on to others by granting the object privilege with the with
grant option clause.

CAUTION
Only grant object or system privileges to PUBLIC when the privilege is
truly required by all current and future users of the database.

Some schema objects, such as clusters and indexes, rely on system privileges to control
access. In these cases, the user can change these objects if they own the objects or have the
ALTER ANY CLUSTER or ALTER ANY INDEX system privilege.

A user with objects in their own schema automatically has all object privileges on those
objects and can grant any object privilege on these objects to any user or another role, with or
without the grant option clause.

In Table 9-9 are the object privileges available for different types of objects; some privileges
are only applicable to certain types of objects. For example, the INSERT privilege only makes
sense with tables, views, and materialized views; the EXECUTE privilege, on the other hand, is
applicable to functions, procedures, and packages, but not tables.

Data Dictionary View Description

DBA_SYS_PRIVS System privileges assigned to roles and users

SESSION_PRIVS All system privileges in effect for this user for the
session, granted directly or via a role

ROLE_SYS_PRIVS Current session privileges granted to a user via a role

TABLE 9-8 System Privilege Data Dictionary Views

Chapter 9: Database Security and Auditing 303

It’s worth noting that DELETE, UPDATE, and INSERT privileges cannot be granted to materialized
views unless they are updatable. Some of these object privileges overlap with system privileges;
for example, if you don’t have the FLASHBACK object privilege on a table, you can still perform
flashback queries if you have the FLASHBACK ANY TABLE system privilege.

In the following example, the DBA grants SCOTT full access to the table HR.EMPLOYEES, but
only allows SCOTT to pass on the SELECT object privilege to other users:

SQL> grant insert, update, delete on hr.employees to scott;
Grant succeeded.
SQL> grant select on hr.employees to scott with grant option;
Grant succeeded.

Note that if the SELECT privilege on the table HR.EMPLOYEES is revoked from SCOTT, the
SELECT privilege is also revoked from anyone he granted the privilege.

Object Privilege Capability

ALTER Can alter a table or sequence definition.

DELETE Can delete rows from a table, view, or materialized view.

EXECUTE Can execute a function or procedure, with or without a package.

DEBUG Allowed to view PL/SQL code in triggers defined on a table,
or SQL statements that reference a table. For object types, this
privilege allows access to all public and private variables,
methods, and types defined on the object type.

FLASHBACK Allows flashback queries on tables, views, and materialized views
using retained undo information.

INDEX Can create an index on a table.

INSERT Can insert rows into a table, view, or materialized view.

ON COMMIT REFRESH Can create a refresh-on-commit materialized view based on a table.

QUERY REWRITE Can create a materialized view for query rewrite based on a table.

READ Can read the contents of an operating system directory using an
Oracle DIRECTORY definition.

REFERENCES Can create a foreign key constraint that references another table’s
primary key or unique key.

SELECT Can read rows from a table, view, or materialized view, in
addition to reading current or next values from a sequence.

UNDER Can create a view based on an existing view.

UPDATE Can update rows in a table, view, or materialized view.

WRITE Can write information to an operating system directory using an
Oracle DIRECTORY definition.

TABLE 9-9 Object Privileges

304 Oracle Database 11g DBA Handbook

Table Privileges
The types of privileges that can be granted on a table fall into two broad categories: DML operations
and DDL operations. DML operations include delete, insert, select, and update, whereas DDL
operations include adding, dropping, and changing columns in the table as well as creating
indexes on the table.

When granting DML operations on a table, it is possible to restrict those operations only to
certain columns. For example, we may want to allow SCOTT to see and update all the rows and
columns in the HR.EMPLOYEES table, except for the SALARY column. To do this, we first need to
revoke the existing SELECT privilege on the table:

SQL> revoke update on hr.employees from scott;
Revoke succeeded.

Next, we will let SCOTT update all the columns except for the SALARY column:

SQL> grant update (employee_id, first_name, last_name, email,
 2 phone_number, hire_date, job_id, commission_pct,
 3 manager_id, department_id)
 4 on hr.employees to scott;

Grant succeeded.

SCOTT will be able to update all columns in the HR.EMPLOYEES table except for the SALARY
column:

SQL> update hr.employees set first_name = 'Stephen' where employee_id = 100;
1 row updated.
SQL> update hr.employees set salary = 50000 where employee_id = 203;
update hr.employees set salary = 50000 where employee_id = 203
 *
ERROR at line 1:
ORA-01031: insufficient privileges

This operation is also easy to perform with the web-based OEM tool, as demonstrated in
Figure 9-5.

View Privileges
Privileges on views are similar to those granted on tables. Rows in a view can be selected,
updated, deleted, or inserted, assuming that the view is updatable. To create a view, first you
need either the CREATE VIEW system privilege (to create a view in your own schema) or the
CREATE ANY VIEW system privilege (to create a view in any schema). Even to create the view,
you must also have at least SELECT object privileges on the underlying tables of the view, along
with INSERT, UPDATE, and DELETE, if you wish to perform those operations on the view and
the view is updatable. Alternatively, you can have the SELECT ANY TABLE, INSERT ANY TABLE,
UPDATE ANY TABLE, or DELETE ANY TABLE privileges if the underlying objects are not in your
schema.

To allow others to use your view, you must also have permissions on the view’s base tables
with the GRANT OPTION, or you must have the system privileges with the ADMIN OPTION.
For example, if you are creating a view against the HR.EMPLOYEES table, you must have been
granted the SELECT object privilege WITH GRANT OPTION on HR.EMPLOYEES, or you must
have the SELECT ANY TABLE system privilege WITH ADMIN OPTION.

Chapter 9: Database Security and Auditing 305

Procedure Privileges
For procedures, functions, and the packages that contain procedures and functions, the EXECUTE
privilege is the only object privilege that can be applied. Since Oracle8i, procedures and functions
can be run either from the perspective of the definer, the creator of the procedure or function, or
from the invoker, the user who is running the procedure or function.

A procedure with definer’s rights is run as if the definer was running the procedure, with all
privileges of the definer in effect against objects referenced in the procedure. This is a good way
to enforce restrictions on private database objects: Other users are granted EXECUTE permissions
on the procedure and no permissions on the referenced objects. As a result, the definer can control
how other users access the objects.

Conversely, an invoker’s rights procedure requires that the invoker has direct rights, such as
SELECT and UPDATE, to any objects referenced in the procedure. The procedure could reference
an unqualified table named ORDERS, and if all users of the database have an ORDERS table, the
same procedure could be used by any user who has their own ORDERS table. Another advantage
to using invoker’s rights procedures is that roles are enabled within them. Roles are discussed in
depth later in this chapter.

By default, a procedure is created with definer’s rights. To specify that a procedure uses
invoker’s rights, you must include the keywords authid current_user in the procedure definition,
as in the following example:

create or replace procedure process_orders (order_batch_date date)
authid current_user as
begin
 -- process user's ORDERS table here using invoker's rights,
 -- all roles are in effect
end;

FIGURE 9-5 Granting column privileges in Oracle Enterprise Manager

306 Oracle Database 11g DBA Handbook

To create a procedure, a user must have either the CREATE PROCEDURE or CREATE ANY
PROCEDURE system privilege. For the procedure to compile correctly, the user must have direct
privileges against all objects referenced in the procedure, even though roles are enabled at runtime
in an invoker’s rights procedure to obtain these same privileges. To allow other users to access a
procedure, you grant EXECUTE privileges on the procedure or package.

Object Privilege Data Dictionary Views
A number of data dictionary views contain information about object privileges assigned to users.
Table 9-10 lists the most important views containing object privilege information.

Creating, Assigning, and Maintaining Roles
A role is a named group of privileges, either system privileges or object privileges or a combination
of the two, that helps to ease the administration of privileges. Rather than granting system or
object privileges individually to each user, you can grant the group of system or object privileges
to a role, and in turn the role can be granted to the user instead. This reduces tremendously the
amount of administrative overhead involved in maintaining privileges for users. Figure 9-6 shows
how a role can reduce the number of grant commands (and ultimately revoke commands) that
need to be executed when roles are used to group privileges.

If the privileges for a group of people authorized by a role need to change, only the privileges
of the role need to be changed, and the capabilities of the users with that role automatically use
the new or changed privileges. Roles may selectively be enabled by a user; some roles may
automatically be enabled at login. In addition, passwords can be used to protect a role, adding
another level of authentication to the capabilities in the database.

In Table 9-11 are the most common roles that are automatically provided with the database,
along with a brief description of what privileges come with each role.

The roles CONNECT, RESOURCE, and DBA are provided mainly for compatibility with previous
versions of Oracle; they may not exist in future versions of Oracle. The database administrator
should create custom roles using the privileges granted to these roles as a starting point.

Data Dictionary View Description

DBA_TAB_PRIVS Table privileges granted to roles and users. Includes the user who
granted the privilege to the role or user, with or without GRANT
OPTION.

DBA_COL_PRIVS Column privileges granted to roles or users, containing the column
name and the type of privilege on the column.

SESSION_PRIVS All system privileges in effect for this user for the session, granted
directly or via a role.

ROLE_TAB_PRIVS For the current session, privileges granted on tables via roles.

TABLE 9-10 Object Privilege Data Dictionary Views

Chapter 9: Database Security and Auditing 307

FIGURE 9-6 Using roles to manage privileges

Role Name Privileges

CONNECT Previous to Oracle Database 10g Release 2: ALTER SESSION,
CREATE CLUSTER, CREATE DATABASE LINK, CREATE
SEQUENCE, CREATE SESSION, CREATE SYNONYM, CREATE
TABLE, CREATE VIEW. These privileges are typically those given
to a general user of the database, allowing them to connect and
create tables, indexes, and views. Oracle Database 10g Release
2 and later: CREATE SESSION only.

RESOURCE CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR,
CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE,
CREATE TRIGGER, CREATE TYPE. These privileges are typically
used for application developers who may be coding PL/SQL
procedures and functions.

DBA All system privileges WITH ADMIN OPTION. Allows a person
with the DBA role to grant system privileges to others.

DELETE_CATALOG_ROLE Does not have any system privileges, but only object privileges
(DELETE) on SYS.AUD$ and FGA_LOG$. In other words, this
role allows a user to remove audit records from the audit trail for
regular or fine-grained auditing.

EXECUTE_CATALOG_ROLE Execute privileges on various system packages, procedures, and
functions, such as DBMS_FGA and DBMS_RLS.

SELECT_CATALOG_ROLE SELECT object privilege on 1,638 data dictionary tables.

EXP_FULL_DATABASE EXECUTE_CATALOG_ROLE, SELECT_CATALOG_ROLE, and
system privileges such as BACKUP ANY TABLE and RESUMABLE.
Allows a user with this role to export all objects in the database.

TABLE 9-11 Predefined Oracle Roles

308 Oracle Database 11g DBA Handbook

Creating or Dropping a Role
To create a role, you use the create role command, and you must have the CREATE ROLE system
privilege. Typically, this is granted only to database administrators or application administrators.
Here’s an example:

SQL> create role hr_admin not identified;
Role created.

By default, no password or authentication is required to enable or use an assigned role; therefore,
the not identified clause is optional.

As with creating users, you can authorize use of a role by a password (database authorization
with identified by password), by the operating system (identified externally), or by the network or
directory service (identified globally).

In addition to these familiar methods, a role can be authorized by the use of a package: This
is known as using a secure application role. This type of role uses a procedure within the package
to enable the role. Typically, the role is enabled only under certain conditions: The user is
connecting via a web interface or from a certain IP address, or it’s a certain time of day. Here
is a role that is enabled using a procedure:

SQL> create role hr_clerk identified using hr.clerk_verif;
Role created.

The procedure HR.CLERK_VERIF need not exist when the role is created; however, it must be
compiled and valid when a user who is granted this role needs to enable it. Typically, with secure
application roles, the role is not enabled by default for the user. To specify that all roles are enabled
by default, except for the secure application role, use the following command:

Role Name Privileges

IMP_FULL_DATABASE Similar to EXP_FULL_DATABASE, with many more system
privileges, such as CREATE ANY TABLE, to allow the import of a
previously exported full database.

AQ_USER_ROLE Execute access for routines needed with Advanced Queuing,
such as DBMS_AQ.

AQ_ADMINISTRATOR_ROLE Manager for Advanced Queuing queues.

SNMPAGENT Used by the Enterprise Manager Intelligent Agent.

RECOVERY_CATALOG_OWNER Used to create a user who owns a recovery catalog for RMAN
backup and recovery.

HS_ADMIN_ROLE Provides access to the tables HS_* and the package DBMS_HS
for administering Oracle Heterogeneous Services.

SCHEDULER_ADMIN Provides access to the DBMS_SCHEDULER package, along with
privileges to create batch jobs.

TABLE 9-11 Predefined Oracle Roles (continued)

Chapter 9: Database Security and Auditing 309

SQL> alter user kshelton default role all except hr_clerk;
User altered.

In this way, when the HR application starts, it can enable the role by performing a set role hr_
clerk command, thus calling the procedure HR.CLERK_VERIF. The user need not know about the
role or the procedure that enables the role; therefore, no access to the objects and privileges
provided by the role are available to the user outside of the application.

Dropping a role is just as easy as creating a role:

SQL> drop role keypunch_operator;
Role dropped.

Any users assigned to this role will lose the privileges assigned to this role the next time they
connect to the database. If they are currently logged in, they will retain the privileges until they
disconnect from the database.

Granting Privileges to a Role
Assigning a privilege to a role is very straightforward; you use the grant command to assign the
privilege to a role, just as you would assign a privilege to a user:

SQL> grant select on hr.employees to hr_clerk;
Grant succeeded.
SQL> grant create table to hr_clerk;
Grant succeeded.

In this example, we’ve assigned an object privilege and a system privilege to the HR_CLERK
role. In Figure 9-7, we can use the web-enabled OEM to add more object or system privileges to
the role.

FIGURE 9-7 Granting privileges to roles with OEM

310 Oracle Database 11g DBA Handbook

Assigning or Revoking Roles
Once we have the desired system and object privileges assigned to the role, we can assign the
role to a user, using familiar syntax:

SQL> grant hr_clerk to smavris;
Grant succeeded.

Any other privileges granted to the HR_CLERK role in the future will automatically be usable by
SMAVRIS because SMAVRIS has been granted the role.

Roles may be granted to other roles; this allows a DBA to have a hierarchy of roles, making
role administration easier. For example, we may have roles named DEPT30, DEPT50, and DEPT100,
each having object privileges to tables owned by each of those departments. An employee in
department 30 would be assigned the DEPT30 role, and so forth. The president of the company
would like to see tables in all departments; but rather than assigning individual object privileges
to the role ALL_DEPTS, we can assign the individual department roles to ALL_DEPTS:

SQL> create role all_depts;
Role created.
SQL> grant dept30, dept50, dept100 to all_depts;
Grant succeeded.
SQL> grant all_depts to sking;
Grant succeeded.

The role ALL_DEPTS may also contain individual object and system privileges that do not apply
to individual departments, such as object privileges on order entry tables or accounts receivable
tables.

Revoking a role from a user is very similar to revoking privileges from a user:

SQL> revoke all_depts from sking;
Revoke succeeded.

The privileges revoked will no longer be available to the user the next time they connect to the
database. However, it is worth noting that if another role contains privileges on the same objects as
the dropped role, or privileges on the objects are granted directly, the user retains these privileges
on the objects until these and all other grants are explicitly revoked.

Default Roles
By default, all roles granted to a user are enabled when the user connects. If a role is going to be
used only within the context of an application, the role can start out disabled when the user is
logged in; then it can be enabled and disabled within the application. If the user SCOTT has
CONNECT, RESOURCE, HR_CLERK, and DEPT30 roles, and we want to specify that HR_CLERK
and DEPT30 are not enabled by default, we can use something like the following:

SQL> alter user scott default role all
 2> except hr_clerk, dept30;
User altered.

When SCOTT connects to the database, he automatically has all privileges granted with all
roles except for HR_CLERK and DEPT30. SCOTT may explicitly enable a role in his session by
using set role:

Chapter 9: Database Security and Auditing 311

SQL> set role dept30;
Role set.

When he’s done accessing the tables for department 30, he can disable the role in his session:

SQL> set role all except dept30;
Role set.

NOTE
The initialization parameter MAX_ENABLED_ROLES is deprecated
as of Oracle 10g. It is retained for compatibility with previous
versions only.

Password-Enabled Roles
To enhance security in the database, the DBA can assign a password to a role. The password is
assigned to the role when it’s created:

SQL> create role dept99 identified by d99secretpw;
Role created.
SQL> grant dept99 to scott;
Grant succeeded.
SQL> alter user scott default role all except hr_clerk, dept30, dept99;
User altered.

When the user SCOTT is connected to the database, either the application he is using will
provide or prompt for a password, or he can enter the password when he enables the role:

SQL> set role dept99 identified by d99secretpw;
Role set.

Role Data Dictionary Views
In Table 9-12 are listed the data dictionary views related to roles.

Data Dictionary View Description

DBA_ROLES All roles and whether they require a password.

DBA_ROLE_PRIVS Roles granted to users or other roles.

ROLE_ROLE_PRIVS Roles granted to other roles.

ROLE_SYS_PRIVS System privileges that have been granted to roles.

ROLE_TAB_PRIVS Table and table column privileges that have been granted to roles.

SESSION_ROLES Roles currently in effect for the session. Available to every user
session.

TABLE 9-12 Role-Related Data Dictionary Views

312 Oracle Database 11g DBA Handbook

The view DBA_ROLE_PRIVS is a good way to find out what roles are granted to a user as well
as whether they can pass this role to another user (ADMIN_OPTION) and whether this role is
enabled by default (DEFAULT_ROLE):

SQL> select * from dba_role_privs
 2 where grantee = 'SCOTT';

GRANTEE GRANTED_ROLE ADMIN_OPTION DEFAULT_ROLE
------------ -------------------- ------------ ------------
SCOTT DEPT30 NO NO
SCOTT DEPT50 NO YES
SCOTT DEPT99 NO YES
SCOTT CONNECT NO YES
SCOTT HR_CLERK NO NO
SCOTT RESOURCE NO YES
SCOTT ALL_DEPTS NO YES
SCOTT DELETE_CATALOG_ROLE NO YES

8 rows selected.

Similarly, we can find out which roles we assigned to the ALL_DEPTS role:

SQL> select * from dba_role_privs
 2> where grantee = 'ALL_DEPTS';

GRANTEE GRANTED_ROLE ADMIN_OPTION DEFAULT_ROLE
------------ -------------------- ------------ ------------
ALL_DEPTS DEPT30 NO YES
ALL_DEPTS DEPT50 NO YES
ALL_DEPTS DEPT100 NO YES

3 rows selected.

The data dictionary view ROLE_ROLE_PRIVS can also be used to get this information; it only
contains information about roles assigned to roles, and it does not have the DEFAULT_ROLE
information.

To find out privileges granted to users on a table or table columns, we can write two queries:
one to retrieve privileges granted directly, and another to retrieve privileges granted indirectly via
a role. Retrieving privileges granted directly is straightforward:

SQL> select dtp.grantee, dtp.owner, dtp.table_name,
 2 dtp.grantor, dtp.privilege, dtp.grantable
 3 from dba_tab_privs dtp
 4 where dtp.grantee = 'SCOTT';

GRANTEE OWNER TABLE_NAME GRANTOR PRIVILEGE GRANTABLE
------------ ---------- --------------- ------------ ------------ ----------
SCOTT HR EMPLOYEES HR SELECT YES
SCOTT HR EMPLOYEES HR DELETE NO
SCOTT HR EMPLOYEES HR INSERT NO

4 rows selected.

Chapter 9: Database Security and Auditing 313

To retrieve table privileges granted via roles, we need to join DBA_ROLE_PRIVS and ROLE_
TAB_PRIVS. DBA_ROLE_PRIVS has the roles assigned to the user, and ROLE_TAB_PRIVS has the
privileges assigned to the roles:

SQL> select drp.grantee, rtp.owner, rtp.table_name,
 2 rtp.privilege, rtp.grantable, rtp.role
 3 from role_tab_privs rtp
 4 join dba_role_privs drp on rtp.role = drp.granted_role
 5 where drp.grantee = 'SCOTT';

GRANTEE OWNER TABLE_NAME PRIVILEGE GRANTABLE ROLE
---------- -------- --------------- ------------ ---------- ---------------
SCOTT HR EMPLOYEES SELECT NO HR_CLERK
SCOTT HR JOBS SELECT NO JOB_MAINT
SCOTT HR JOBS UPDATE NO JOB_MAINT
SCOTT SYS AUD$ DELETE NO DELETE_CATA
 LOG_ROLE
SCOTT SYS FGA_LOG$ DELETE NO DELETE_CATA
 LOG_ROLE

5 rows selected.

In the case of SCOTT’s privileges, notice that he has the SELECT privilege on the HR.EMPLOYEES
table both via a direct grant and via a role. Revoking either one of the privileges will still leave
him with access to the HR.EMPLOYEES table until both privileges have been removed.

Using a VPD to Implement Application Security Policies
A Virtual Private Database (VPD) combines server-enforced fine-grained access control with a
secure application context. The context-aware functions return a predicate—a where clause—that
is automatically appended to all select statements or other DML statements. In other words, a
select statement on a table, view, or synonym controlled by a VPD will return a subset of rows
based on a where clause generated automatically by the security policy function in effect by the
application context. The major component of a VPD is row-level security (RLS), also known as
fine-grained access control (FGAC).

Because a VPD generates the predicates transparently during statement parse, the security
policy is enforced consistently regardless of whether the user is running ad hoc queries, retrieving
the data from an application, or viewing the data from Oracle Forms. Because the Oracle Server
applies the predicate to the statement at parse time, the application need not use special tables,
views, and so forth to implement the policy. As a result, Oracle can optimize the query using
indexes, materialized views, and parallel operations where it otherwise might not be able.
Therefore, using a VPD may incur less overhead than a query whose results are filtered using
applications or other means.

From a maintenance point of view, security policies can be defined within a policy function
that would be difficult to create using roles and privileges. Similarly, an Application Server
Provider (ASP) may only need to set up one database to service multiple customers for the same
application, with a VPD policy to ensure that employees of one customer can see only their data.
The DBA can maintain one larger database with a small number of VPD policies instead of an
individual database for each customer.

314 Oracle Database 11g DBA Handbook

New to Oracle Database 10g are column-level VPD operations. Using column-level VPD, a
DBA can restrict access to a particular column or columns in a table. The query returns the same
number of rows, but if the user’s context does not allow access to the column or columns, NULL
values are returned in the restricted column or columns.

VPD policies can be static, context sensitive, or dynamic. Static and context-sensitive
policies, new to Oracle Database 10g, can improve performance dramatically because they
do not need to call the policy function every time a query is run because it is cached for use
later in the session. Before Oracle Database 10g, all policies were dynamic; in other words, the
policy function was run every time a SQL statement containing the target VPD table was parsed.
Static policies are evaluated once during login and remain cached throughout the session,
regardless of application context. With context-sensitive policies, the policy function is called
at statement parse time if the application context changes—for example, a policy that enforces
the business rule that “employees only see their own salary history, but managers can see all the
salaries of their employees.” If the employee executing the statement has not changed, the policy
function need not be called again, thus reducing the amount of overhead due to VPD policy
enforcement.

You create application contexts using the create context command, and the package DBMS_
RLS manages VPD policies. The function used to return the predicates to enforce the policy is
created like any other function, except that the function has two required parameters and returns
a VARCHAR2. Later in this chapter, we’ll go into more detail on these functions and we’ll step
through a VPD example using the sample schemas provided during the installation of the Oracle
database.

Application Context
Using the create context command, you can create the name of application-defined attributes
that will be used to enforce your security policy, along with the package name for the functions
and procedures used to set the security context for the user session. Here’s an example:

create context hr_security using vpd.emp_access;

create or replace package emp_access as
 procedure set_security_parameters;
end;

In this example, the context name is HR_SECURITY, and the package used to set up the
characteristics or attributes for the user during the session is called EMP_ACCESS. The procedure
SET_SECURITY_PARAMETERS will be called in the logon trigger. Because the context HR_
SECURITY is bound only to EMP_ACCESS, no other procedures can change the session attributes.
This ensures a secure application context that can’t be changed by the user or any other process
after connecting to the database.

In a typical package used to implement application context, you use the built-in context
USERENV to retrieve information about the user session itself. In Table 9-13 are a few of the
more common parameters in the USERENV context.

Chapter 9: Database Security and Auditing 315

For example, the following calls to SYS_CONTEXT will retrieve the username and IP_ADDRESS
of the database session:

declare
 username varchar2(30);
 ip_addr varchar2(30);
begin
 username := SYS_CONTEXT('USERENV','SESSION_USER');
 ip_addr := SYS_CONTEXT('USERENV','IP_ADDRESS');
 -- other processing here
end;

Similarly, the SYS_CONTEXT function can be used within a SQL select statement:

SQL> select SYS_CONTEXT('USERENV','SESSION_USER') username from dual;

USERNAME

KSHELTON

Using some combination of the USERENV context and authorization information in the
database, we use DBMS_SESSION.SET_CONTEXT to assign values to parameters in the application
context that we create:

dbms_session.set_context('HR_SECURITY','SEC_LEVEL','HIGH');

In this example, the application context variable SEC_LEVEL is set to HIGH in the HR_SECURITY
context. The value can be assigned based on a number of conditions, including a mapping table
that assigns security levels based on user ID.

Parameter Return Value

CURRENT_SCHEMA The default schema for the session

DB_NAME The name of the database as specified in the initialization
parameter DB_NAME

HOST The name of the host machine from which the user connected

IP_ADDRESS The IP address from which the user connected

OS_USER The operating system account that initiated the database session

SESSION_USER The authenticated database user’s name

TABLE 9-13 Common USERENV Context Parameters

316 Oracle Database 11g DBA Handbook

To ensure that the context variables are set for each session, we can use a logon trigger to call
the procedure associated with the context. As mentioned earlier, the variables in the context can
only be set or changed within the assigned package. Here is a sample logon trigger that calls the
procedure to set up the context:

create or replace trigger vpd.set_security_parameters
 after logon on database
begin
 vpd.emp_access.set_security_parameters;
end;

In this example, the procedure SET_SECURITY_PARAMETERS would make the necessary calls to
DBMS_SESSION.SET_CONTEXT.

Within Oracle Enterprise Manager, you can use Policy Manager to set up contexts and policy
groups, as demonstrated in Figure 9-8.

Security Policy Implementation
Once the infrastructure is in place to set up the security environment, the next step is to define the
function or functions used to generate the predicate that will be attached to every select statement
or DML command against the protected tables. The function used to implement the predicate
generation has two arguments: the owner of the object being protected, and the name of the
object within the owner’s schema. One function may handle predicate generation for just one
type of operation, such as select, or may be applicable to all DML commands, depending on how
this function is associated with the protected table. The following example shows a package body

FIGURE 9-8 Oracle Policy Manager

Chapter 9: Database Security and Auditing 317

containing two functions—one that will be used to control access from select statements, and the
other for any other DML statements:

create or replace package body get_predicates is

 function emp_select_restrict(owner varchar2, object_name varchar2)
 return varchar2 is
 ret_predicate varchar2(1000); -- part of WHERE clause
 begin
 -- only allow certain employees to see rows in the table
 -- . . . check context variables and build predicate
 return ret_predicate;
 end emp_select_restrict;

 function emp_dml_restrict(owner varchar2, object_name varchar2)
 return varchar2 is
 ret_predicate varchar2(1000); -- part of WHERE clause
 begin
 -- only allow certain employees to make changes to the table
 -- . . . check context variables and build predicate
 return ret_predicate;
 end emp_dml_restrict;

end; -- package body

Each function returns a string containing an expression that is added to a where clause for a select
statement or a DML command. The user or application never sees the value of this WHERE clause;
it is automatically added to the command at parse time.

The developer must ensure that the functions always return a valid expression. Otherwise,
any access to a protected table will always fail, as in the following example:

SQL> select * from hr.employees;
select * from hr.employees
 *
ERROR at line 1:
ORA-28113: policy predicate has error

The error message does not say what the predicate is, and all users are locked out of the table
until the predicate function is fixed. Tips on how to debug a predicate function are presented later
in this chapter.

Using DBMS_RLS
The built-in package DBMS_RLS contains a number of subprograms that a DBA uses to maintain
the security policies associated with tables, views, and synonyms. In Table 9-14 are the subprograms
available in the DBMS_RLS package. Any user who needs to create or administer policies must
have EXECUTE privileges granted on the package SYS.DBMS_RLS.

318 Oracle Database 11g DBA Handbook

In this chapter, we’ll cover the most commonly used subprograms, ADD_POLICY and DROP_
POLICY. The syntax of ADD_POLICY follows:

DBMS_RLS.ADD_POLICY
(
 object_schema IN varchar2 null,
 object_name IN varchar2,
 policy_name IN varchar2,
 function_schema IN varchar2 null,
 policy_function IN varchar2,
 statement_types IN varchar2 null,
 update_check IN boolean false,
 enable IN boolean true,
 static_policy IN boolean false,
 policy_type IN binary_integer null,
 long_predicate IN in Boolean false,
 sec_relevant_cols IN varchar2,
 sec_relevant_cols_opt IN binary_integer null
);

Note that some of the parameters have BOOLEAN default values and that the less commonly
used parameters are near the end of the argument list. This makes the syntax for any particular
call to DBMS_RLS.ADD_POLICY easier to write and understand for the vast majority of cases.
The description and usage for each parameter are provided in Table 9-15.

Subprogram Description

ADD_POLICY Adds a fine-grained access control policy to an object

DROP_POLICY Drops an FGAC policy from an object

REFRESH_POLICY Reparses all cached statements associated with the policy

ENABLE_POLICY Enables or disables an FGAC policy

CREATE_POLICY_GROUP Creates a policy group

ADD_GROUPED_POLICY Adds a policy to a policy group

ADD_POLICY_CONTEXT Adds the context for the current application

DELETE_POLICY_GROUP Deletes a policy group

DROP_GROUPED_POLICY Drops a policy from a policy group

DROP_POLICY_CONTEXT Drops a context for the active application

ENABLE_GROUPED_POLICY Enables or disables a group policy

DISABLE_GROUPED_POLICY Disables a group policy

REFRESH_GROUPED_POLICY Reparses all cached statements associated with the
policy group

TABLE 9-14 DBMS_RLS Package Subprograms

Chapter 9: Database Security and Auditing 319

Parameter Description

object_schema The schema containing the table, view, or synonym to be protected
by the policy. If this value is NULL, the schema of the user calling
the procedure is used.

object_name The name of the table, view, or synonym to be protected by the policy.

policy_name The name of the policy to be added to this object. It must be unique
for each object being protected.

function_schema The schema that owns the policy function; if this value is NULL, the
schema of the user calling the procedure is used.

policy_function The name of the function that will generate the predicate for
the policy against the object_name. If the function is part of the
package, the package name must also be specified here to qualify
the policy function name.

statement_types The statement types to which the policy applies. The allowable
values, separated by commas, can be any combination of SELECT,
INSERT, UPDATE, DELETE, and INDEX. By default, all types are
applied except for INDEX.

update_check For INSERT or UPDATE types, this parameter is optional, and
it defaults to FALSE. If it is TRUE, the policy is also checked for
INSERT or UPDATE statements when a SELECT or DELETE operation
is being checked.

enable This parameter defaults to TRUE and indicates if the policy is
enabled when it is added.

static_policy If this parameter is TRUE, the policy produces the same predicate
string for anyone accessing the object, except for the SYS user or any
user with the EXEMPT ACCESS POLICY privilege. The default is FALSE.

policy_type Overrides static_policy if this value is not NULL. Allowable values
are STATIC, SHARED_STATIC, CONTEXT_SENSITIVE, SHARED_
CONTEXT_SENSITIVE, and DYNAMIC.

long_predicate This parameter defaults to FALSE. If it is TRUE, the predicate string
can be up to 32K bytes long. Otherwise, the limit is 4000 bytes.

sec_relevant_cols Enforces column-level VPD, new to Oracle 10g. Applies to tables
and views only. Protected columns are specified in a list with either
commas or spaces as delimiters. The policy is applied only if the
specified sensitive columns are in the query or DML statement. By
default, all columns are protected.

sec_relevant_cols_opt Allows rows in a column-level VPD filtered query to still appear in
the result set, with NULL values returned for the sensitive columns.
The default for this parameter is NULL; otherwise, you must specify
DBMS_RLS.ALL_ROWS to show all columns with NULLs for the
sensitive columns.

TABLE 9-15 DBMS_RLS.ADD_POLICY Parameters

320 Oracle Database 11g DBA Handbook

Using the parameter sec_relevant_cols is handy when you don’t mind if users see part of a
row, just not the columns that might contain confidential information, such as a Social Security
Number or a salary. In our example later in this chapter, we’ll build on the first security policy we
define to filter out sensitive data for most employees of the company.

In the following example, we’re applying a policy named EMP_SELECT_RESTRICT to the table
HR.EMPLOYEES. The schema VPD owns the policy function get_predicates.emp_select_restrict.
The policy explicitly applies to SELECT statements on the table; however, with UPDATE_CHECK
set to TRUE, update or delete commands will also be checked when rows are updated or inserted
into the table.

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',
 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE
);

Because we did not set static_policy, it defaults to FALSE, meaning that the policy is dynamic and
is checked every time a select statement is parsed. This is the only behavior available before
Oracle Database 10g.

Using the subprogram ENABLE_POLICY is an easy way to disable the policy temporarily
without having to rebind the policy to the table later:

dbms_rls.enable_policy(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 enable => FALSE
);

If multiple policies are specified for the same object, an AND condition is added between
each predicate. If you need to have an OR condition between predicates for multiple policies
instead, the policy most likely needs to be revised. The logic for each policy needs to be
combined within a single policy with an OR condition between each part of the predicate.

Creating a VPD
In this section, we’ll step through a complete implementation of a VPD from beginning to end.
This example relies on the sample schemas installed with Oracle Database 10g and 11g. To be
specific, we are going to implement an FGAC policy on the HR.EMPLOYEES table to restrict
access based on manager status and the employee’s department number. If you are an employee,
you can see your own row in HR.EMPLOYEES; if you are a manager, you can see the rows for all
the employees who report directly to you.

TIP
If you do not have the sample schemas installed in your database, you
can create them using the scripts found in $ORACLE_HOME/demo/
schema.

Chapter 9: Database Security and Auditing 321

Once the sample schemas are in place, we need to create some users in the database who
want to see rows from the table HR.EMPLOYEES.

create user smavris identified by smavris702;
grant connect, resource to smavris;

create user dgrant identified by dgrant507;
grant connect, resource to dgrant;

create user kmourgos identified by kmourgos622;
grant connect, resource to kmourgos;

The user KMOURGOS is the manager for all the stocking clerks, and DGRANT is one of
KMOURGOS’s employees. The user SMAVRIS is the HR_REP for the company.

In the following three steps, we will grant SELECT privileges on the HR.EMPLOYEES table to
everyone in the database, and we will create a lookup table that maps employee ID numbers to
their database account. The procedure that sets the context variables for the user session will use
this table to assign the employee ID number to the context variable that will be used in the policy
function to generate the predicate.

grant select on hr.employees to public;

create table hr.emp_login_map (employee_id, login_acct)
 as select employee_id, email from hr.employees;

grant select on hr.emp_login_map to public;

Next, we will create a user account called VPD that has the privileges to create contexts and
maintains the policy functions:

create user vpd identified by vpd439;
grant connect, resource, create any context, create public synonym to vpd;

Connecting to the VPD schema, we will create a context called HR_SECURITY and define the
package and procedure used to set the context for the application:

connect vpd/vpd439@dw;

create context hr_security using vpd.emp_access;

create or replace package vpd.emp_access as
 procedure set_security_parameters;
end;

Remember that the procedures in the package VPD.EMP_ACCESS are the only procedures
that can set the context variables. The package body for VPD.EMP_ACCESS follows:

create or replace package body vpd.emp_access is

--
-- At user login, run set_security_parameters to
-- retrieve the user login name, which corresponds to the EMAIL
-- column in the table HR.EMPLOYEES.

322 Oracle Database 11g DBA Handbook

--
-- context USERENV is pre-defined for user characteristics such
-- as username, IP address from which the connection is made,
-- and so forth.
--
-- for this procedure, we are only using SESSION_USER
-- from the USERENV context.
--

 procedure set_security_parameters is
 emp_id_num number;
 emp_login varchar2(50);
 begin

 -- database username corresponds to email address in HR.EMPLOYEES
 emp_login := sys_context('USERENV','SESSION_USER');

 dbms_session.set_context('HR_SECURITY','USERNAME',emp_login);

 -- get employee id number, so manager rights can be established
 -- but don't bomb out other DB users who are not in the
 -- EMPLOYEES table
 begin
 select employee_id into emp_id_num
 from hr.emp_login_map where login_acct = emp_login;

 dbms_session.set_context('HR_SECURITY','EMP_ID',emp_id_num);
 exception
 when no_data_found then
 dbms_session.set_context('HR_SECURITY','EMP_ID',0);
 end;

 -- Future queries will restrict rows based on emp_id

 end; -- procedure

end; -- package body

A few things are worth noting about this procedure. We retrieve the user’s schema by looking
in the USERENV context, which is enabled by default for all users, and assigning it to the variable
USERNAME in the newly created context HR_SECURITY. The other HR_SECURITY context
variable EMP_ID is determined by doing a lookup in the mapping table HR.EMP_LOGIN_MAP.
We don’t want the procedure to terminate with an error if the logged-in user is not in the mapping
table; instead, we assign an EMP_ID of 0, which will result in no access to the table HR.EMPLOYEES
when the predicate is generated in the policy function.

In the next steps, we grant everyone in the database EXECUTE privileges on the package, and
we create a synonym for it to save a few keystrokes any time we need to call it:

grant execute on vpd.emp_access to PUBLIC;
create public synonym emp_access for vpd.emp_access;

Chapter 9: Database Security and Auditing 323

To ensure that the context is defined for each user when they log on, we will connect as
SYSTEM and create a logon trigger to set up the variables in the context:

connect system/nolongermanager@dw as sysdba;

create or replace trigger vpd.set_security_parameters
 after logon on database
begin
 vpd.emp_access.set_security_parameters;
end;

Because this trigger is fired for every user who connects to the database, it is vitally important that
the code be tested for every class of user, if not every user in the database! If the trigger fails with
an error, regular users cannot log in.

So far, we have our context defined, the procedure used to set up the context variables, and a
trigger that automatically calls the procedure. Logging in as one of our three users defined previously,
we can query the contents of the context:

SQL> connect smavris/smavris702@dw
Connected.

SQL> select * from session_context;

NAMESPACE ATTRIBUTE VALUE
------------------------ ------------------------- ---------------------
HR_SECURITY USERNAME SMAVRIS
HR_SECURITY EMP_ID 203

2 rows selected.

Notice what happens when SMAVRIS tries to impersonate another employee:

SQL> begin
 2 dbms_session.set_context('HR_SECURITY','EMP_ID',100);
 3 end;

begin
*
ERROR at line 1:
ORA-01031: insufficient privileges
ORA-06512: at "SYS.DBMS_SESSION", line 94
ORA-06512: at line 2

Only the package VPD.EMP_ACCESS is allowed to set or change variables in the context.
The final steps include defining the procedures that will generate the predicate and assigning

one or more of these procedures to the HR.EMPLOYEES table. As the user VPD, which already
owns the context procedures, we’ll set up the package that determines the predicates:

connect vpd/vpd439@dw;

create or replace package vpd.get_predicates as

 -- note -- security function ALWAYS has two parameters,

324 Oracle Database 11g DBA Handbook

 -- table owner name and table name

 function emp_select_restrict
 (owner varchar2, object_name varchar2) return varchar2;

 -- other functions can be written here for INSERT, DELETE, and so forth.

end get_predicates;

create or replace package body vpd.get_predicates is

 function emp_select_restrict
 (owner varchar2, object_name varchar2) return varchar2 is

 ret_predicate varchar2(1000); -- part of WHERE clause

 begin
 -- only allow employee to see their row or immediate subordinates
 ret_predicate := 'EMPLOYEE_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID') ||
 ' OR MANAGER_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID');
 return ret_predicate;
 end emp_select_restrict;

end; -- package body

Once we attach the function to a table with DBMS_RLS, it will generate a text string that can
be used in a WHERE clause every time the table is accessed. The string will always look
something like this:

EMPLOYEE_ID = 124 OR MANAGER_ID = 124

As with the packages that set up the context environment, we need to allow users access to
this package:

grant execute on vpd.get_predicates to PUBLIC;
create public synonym get_predicates for vpd.get_predicates;

Last, but certainly not least, we will attach the policy function to the table using the DBMS_
RLS.ADD_POLICY procedure:

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',
 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE
);

Chapter 9: Database Security and Auditing 325

An employee can access the HR.EMPLOYEES table as before, but they will only see their row
and the rows of the employees who work for them, if any. Logging in as KMOURGOS, we try to
retrieve all the rows of the HR.EMPLOYEES table, but we only see KMOURGOS and the employees
who report directly to him:

SQL> connect kmourgos/kmourgos622@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 124 Kevin Mourgos KMOURGOS ST_MAN 5800 100
 141 Trenna Rajs TRAJS ST_CLERK 3500 124
 142 Curtis Davies CDAVIES ST_CLERK 3100 124
 143 Randall Matos RMATOS ST_CLERK 2600 124
 144 Peter Vargas PVARGAS ST_CLERK 2500 124
 196 Alana Walsh AWALSH SH_CLERK 3100 124
 197 Kevin Feeney KFEENEY SH_CLERK 3000 124
 198 Donald OConnell DOCONNEL SH_CLERK 2600 124
 199 Douglas Grant DGRANT SH_CLERK 2600 124

9 rows selected.

For the user DGRANT, it’s a different story:

SQL> connect dgrant/dgrant507@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

DGRANT gets to see only his own row, because he does not manage anyone else in the company.
In the case of SMAVRIS, we see similar results from the query:

SQL> connect smavris/smavris702@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ------------ ---------- ---------- ------- ----------
 203 Susan Mavris SMAVRIS HR_REP 6500 101

1 row selected.

But wait, SMAVRIS is in the HR department and should be able to see all rows from the table.
In addition, SMAVRIS should be the only person to see the salary information for all employees.

326 Oracle Database 11g DBA Handbook

As a result, we need to change our policy function to give SMAVRIS and other employees in the
HR department full access to the HR.EMPLOYEES table; in addition, we can use column-level
restrictions in the policy assignment to return the same number of rows, but with the sensitive
data returned as NULL values.

To facilitate access to the HR.EMPLOYEES table by HR department employees, we first need
to change our mapping table to include the JOB_ID column. If the JOB_ID column has a value
of HR_REP, the employee is in the HR department. We will first disable the policy in effect and
create the new mapping table:

SQL> begin
 2 dbms_rls.enable_policy(
 3 object_schema => 'HR',
 4 object_name => 'EMPLOYEES',
 5 policy_name => 'EMP_SELECT_RESTRICT',
 6 enable => FALSE
 7);
 8 end;
PL/SQL procedure successfully completed.

SQL> drop table hr.emp_login_map;
Table dropped.

SQL> create table hr.emp_login_map (employee_id, login_acct, job_id)
 2 as select employee_id, email, job_id from hr.employees;
Table created.

SQL> grant select on hr.emp_login_map to public;
Grant succeeded.

The procedure we’re using to set up the context variables, VPD.EMP_ACCESS, needs another
context variable added that indicates the security level of the user accessing the table. We will
change the SELECT statement and make another call to DBMS_SESSION.SET_CONTEXT, as follows:

. . .
 emp_job_id varchar2(50);
. . .
 select employee_id, job_id into emp_id_num, emp_job_id
 from hr.emp_login_map where login_acct = emp_login;

 dbms_session.set_context('HR_SECURITY','SEC_LEVEL',
 case emp_job_id when 'HR_REP' then 'HIGH' else 'NORMAL' end);
. . .

Whenever the employee has a job title of HR_REP, the context variable SEC_LEVEL is set to
HIGH instead of NORMAL. In our policy function, we need to check for this new condition as
follows:

create or replace package body vpd.get_predicates is

 function emp_select_restrict

Chapter 9: Database Security and Auditing 327

 (owner varchar2, object_name varchar2) return varchar2 is

 ret_predicate varchar2(1000); -- part of WHERE clause

 begin
 -- only allow employee to see their row or immediate subordinates,
 -- unless they have high security clearance
 if sys_context('HR_SECURITY','SEC_LEVEL') = 'HIGH' then
 ret_predicate := ''; -- no restrictions in WHERE clause
 else
 ret_predicate := 'EMPLOYEE_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID') ||
 ' OR MANAGER_ID = ' ||
 sys_context('HR_SECURITY','EMP_ID');
 end if;
 return ret_predicate;
 end emp_select_restrict;

end; -- package body

Because the policy is dynamic, the predicate is generated each time a SELECT statement is
executed, so we don’t have to do a policy refresh. When the user SMAVRIS, the HR representative,
runs the query now, she sees all rows in the HR.EMPLOYEES table:

SQL> connect smavris/smavris702@dw;
Connected.
SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ----------- ----------- ---------- ---------- ------- ----------
 100 Steven King SKING AD_PRES 24000
 101 Neena Kochhar NKOCHHAR AD_VP 17000 100
. . .
 204 Hermann Baer HBAER PR_REP 10000 101
 205 Shelley Higgins SHIGGINS AC_MGR 12000 101
 206 William Gietz WGIETZ AC_ACCOUNT 8300 205

107 rows selected.

As you might expect, SMAVRIS’s security level within the HR_SECURITY context is HIGH:

SQL> connect smavris/smavris702
Connected.

SQL> select sys_context('HR_SECURITY','SEC_LEVEL') from dual;

SYS_CONTEXT('HR_SECURITY','SEC_LEVEL')
--
HIGH

SQL>

328 Oracle Database 11g DBA Handbook

However, DGRANT can still only see his row in the table because his security level within the
HR_SECURITY context is NORMAL:

SQL> connect dgrant/dgrant507@dw;
Connected.

SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ---------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

SQL> select sys_context('HR_SECURITY','SEC_LEVEL') from dual;

SYS_CONTEXT('HR_SECURITY','SEC_LEVEL')
--
NORMAL

To enforce the requirement that only HR employees can see salary information, we would
need to make a slight change to the policy function and enable the policy with column-level
restrictions:

dbms_rls.add_policy (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'EMP_SELECT_RESTRICT',
 function_schema => 'VPD',
 policy_function => 'get_predicates.emp_select_restrict',
 statement_types => 'SELECT',
 update_check => TRUE,
 enable => TRUE,
 sec_relevant_cols => 'SALARY',
 sec_relevant_cols_opt => dbms_rls.all_rows
);

The last parameter, SEC_RELEVANT_COLS_OPT, specifies the package constant DBMS_RLS.
ALL_ROWS to indicate that we still want to see all rows in our query results, but with the relevant
columns (in this case SALARY) returning NULL values. Otherwise, we would not see any rows
from queries that contain the SALARY column.

Debugging a VPD Policy
Even if you’re not getting an “ORA-28113: policy predicate has error” or an “ORA-00936: missing
expression,” it can be very useful to see the actual predicate being generated at statement parse
time. There are a couple of ways to debug your predicates, both have their advantages and
disadvantages.

The first method uses the dynamic performance views V$SQLAREA and V$VPD_POLICY. As
the names imply, V$SQLAREA contains the SQL statements currently in the shared pool, along
with current execution statistics. The view V$VPD_POLICY lists all the policies currently being

Chapter 9: Database Security and Auditing 329

enforced in the database, along with the predicate. Joining the two tables, as in the following
example, gives us the information we need to help debug any problems we’re having with the
query results:

SQL> select s.sql_text, v.object_name, v.policy, v.predicate
 2 from v$sqlarea s, v$vpd_policy v
 3 where s.hash_value = v.sql_hash;

SQL_TEXT OBJECT_NAM POLICY PREDICATE
------------------------- ---------- ------------------- -------------------
select employee_id, first EMPLOYEES EMP_SELECT_RESTRICT EMPLOYEE_ID = 199
_name, last_name, email, OR MANAGER_ID = 199
job_id, salary, manager_i
d from hr.employees

select employee_id, first EMPLOYEES EMP_SELECT_RESTRICT
_name, last_name, email,
job_id, salary, manager_i
d from hr.employees

SQL>

If we add a join to V$SESSION in this query, we can identify which user was running the SQL.
This is especially important in the second SQL statement: there is no predicate applied to the SQL
statement; therefore, all we can infer is that one of the HR employees ran the query. There is a
downside to this method: If the database is extremely busy, the SQL commands may be flushed from
the shared pool for other SQL commands before you get a chance to run this query.

The other method uses the alter session command to generate a plain-text trace file containing
much of the information from the previous query. Here are the commands to set up tracing:

SQL> begin
 2 dbms_rls.refresh_policy;
 3 end;
PL/SQL procedure successfully completed.

SQL> alter session set events '10730 trace name context forever, level 12';
Session altered.

Event 10730 is defined for tracing RLS policy predicates. Other common events that can be
traced are 10029 and 10030 for session logon/logoff, 10710 to trace bitmap index access, and
10253 for simulating write errors to the redo log, among others. Once the session is altered, the
user DGRANT runs his query:

SQL> select employee_id, first_name, last_name,
 2 email, job_id, salary, manager_id from hr.employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL JOB_ID SALARY MANAGER_ID
----------- ----------- ----------- ---------- ---------- ------- ----------
 199 Douglas Grant DGRANT SH_CLERK 2600 124

1 row selected.

330 Oracle Database 11g DBA Handbook

Here’s a look at the bottom part of the trace file located in the directory specified by the
initialization parameter USER_DUMP_DEST (DIAGNOSTIC_DEST in Oracle Database 11g):

Trace file
/u01/app/oracle/diag/rdbms/dw/dw/trace/dw_ora_31128.trc
Oracle Database 11g Enterprise Edition
 Release 11.1.0.6.0 – Production
With the Partitioning, OLAP, Data Mining and
 Real Application Testing options
ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1
System name: Linux
Node name: dw
Release: 2.6.9-55.0.2.0.1.EL
Version: #1 Mon Jun 25 14:24:38 PDT 2007
Machine: i686
Instance name: dw
Redo thread mounted by this instance: 1
Oracle process number: 40
Unix process pid: 31128, image: oracle@dw (TNS V1-V3)

*** 2007-08-12 12:48:37.852
*** SESSION ID:(120.9389) 2007-08-12 12:48:37.852
*** CLIENT ID:() 2007-08-12 12:48:37.852
*** SERVICE NAME:(SYS$USERS) 2007-08-12 12:48:37.852
*** MODULE NAME:(SQL*Plus) 2007-08-12 12:48:37.852
*** ACTION NAME:() 2007-08-12 12:48:37.852

Logon user : DGRANT
Table/View : HR.EMPLOYEES
Policy name : EMP_SELECT_RESTRICT
Policy function: VPD.GET_PREDICATES.EMP_SELECT_RESTRICT
RLS view :
SELECT "EMPLOYEE_ID","FIRST_NAME","LAST_NAME",
"EMAIL","PHONE_NUMBER",
"HIRE_DATE","JOB_ID","SALARY","COMMISSION_PCT","MANAGER_ID",
"DEPARTMENT_ID" FROM "HR"."EMPLOYEES"
"EMPLOYEES" WHERE (EMPLOYEE_ID = 199 OR MANAGER_ID = 199)

The user’s original SQL statement plus the appended predicate are clearly shown in the trace
file. The downside to using this method is that while a user may be able to access dynamic
performance views, a developer might not normally have access to the user dump directory on
the server itself. As a result, the DBA may need to be involved when trying to debug predicate
problems.

Be sure to turn off tracing when you’re done debugging to reduce the overhead and disk
space associated with tracing operations (or just log off!):

SQL> alter session set events '10730 trace name context off';
Session altered.

Chapter 9: Database Security and Auditing 331

Auditing
Oracle uses a number of different auditing methods to monitor what kinds of privileges are being
used as well as what objects are being accessed. Auditing does not prevent the use of these
privileges, but it can provide useful information to uncover abuse or misuse of privileges.

In Table 9-16, we summarize the different types of auditing in an Oracle database.
In the next few sections, we’ll review how a DBA can manage audits of both system and

object privilege use. When the granularity is required, a DBA can use fine-grained auditing to
monitor access to certain rows or columns of a table, not just whether the table was accessed.

Auditing Locations
Audit records can be sent to either the SYS.AUD$ database table or an operating system file.
To enable auditing and specify the location where audit records are recorded, the initialization
parameter AUDIT_TRAIL is set to one of the following values:

Parameter Value Action

NONE, FALSE Disable auditing.

OS Enable auditing. Send audit records to an operating system file.

DB, TRUE Enable auditing. Send audit records to the SYS.AUD$ table.

DB_EXTENDED Enable auditing. Send audit records to the SYS.AUD$ table, and record
additional information in the CLOB columns SQLBIND and SQLTEXT

XML Enable auditing and write all audit records in XML format.

EXTENDED Enable auditing and record all columns in the audit trail, including
SqlText and SqlBind values.

Auditing Type Description

Statement auditing Audits SQL statements by the type of statement regardless of the
specific schema objects being accessed. One or more users can
also be specified in the database to be audited for a particular
statement.

Privilege auditing Audits system privileges, such as CREATE TABLE or ALTER
INDEX. As with statement auditing, privilege auditing can
specify one or more particular users as the target of the audit.

Schema object auditing Audits specific statements operating on a specific schema
object (for example, UPDATE statements on the DEPARTMENTS
table). Schema object auditing always applies to all users in the
database.

Fine-grained auditing Audits table access and privileges based on the content of the
objects being accessed. Uses the package DBMS_FGA to set up
a policy on a particular table.

TABLE 9-16 Auditing Types

332 Oracle Database 11g DBA Handbook

The parameter AUDIT_TRAIL is not dynamic; the database must be shut down and restarted
for a change in the AUDIT_TRAIL parameter to take effect. When auditing to the SYS.AUD$ table,
the size of the table should be carefully monitored so as not to impact the space requirements for
other objects in the SYS tablespace. It is recommended that the rows in SYS.AUD$ be periodically
archived and the table truncated. Oracle provides the role DELETE_CATALOG_ROLE to use with
a special account in a batch job to archive and truncate the audit table.

Statement Auditing
All types of auditing use the audit command to turn on auditing and noaudit to turn off auditing.
For statement auditing, the format of the audit command looks something like the following:

AUDIT sql_statement_clause BY {SESSION | ACCESS}
 WHENEVER [NOT] SUCCESSFUL;

The sql_statement_clause contains a number of different pieces of information, such as the type
of SQL statement we want to audit and who we are auditing.

In addition, we want to either audit the action every time it happens (by access) or only once
(by session). The default is by session.

Sometimes we want to audit successful actions—statements that did not generate an error
message. For these statements, we add whenever successful. Other times we only care if the
commands using the audited statements fail, either due to privilege violations, running out of
space in the tablespace, or syntax errors. For these we use whenever not successful.

For most categories of auditing methods, we can specify all instead of individual statement
types or objects if we truly want all types of access to a table or any privileges by a certain user
to be audited.

The types of statements we can audit, with a brief description of what statements are covered
in each category, are listed in Table 9-17. If all is specified, any statement in this list is audited.
However, the types of statements in Table 9-18 do not fall into the all category when enabling
auditing; they must be explicitly specified in any audit commands.

Some examples will help make all these options a lot clearer. In our sample database, the user
KSHELTON has privileges on all of the tables in the HR schema and other schemas. KSHELTON
is allowed to create indexes on some of these tables, but we want to know when the indexes are
created in case we have some performance issues related to execution plans changing. We can
audit index creation by KSHELTON with the following command:

SQL> audit index by kshelton;
Audit succeeded.

Later that day, KSHELTON creates an index on the HR.JOBS table:

SQL> create index job_title_idx on hr.jobs(job_title);
Index created.

Chapter 9: Database Security and Auditing 333

Statement Option SQL Operations

ALTER SYSTEM All ALTER SYSTEM options such as dynamically altering
instance parameters, switching to the next log file group, and
terminating user sessions.

CLUSTER CREATE, ALTER, DROP, or TRUNCATE a cluster.

CONTEXT CREATE or DROP a CONTEXT.

DATABASE LINK CREATE or DROP a database link.

DIMENSION CREATE, ALTER, or DROP a dimension.

DIRECTORY CREATE or DROP a dimension.

INDEX CREATE, ALTER, or DROP an index.

MATERIALIZED VIEW CREATE, ALTER, or DROP a materialized view.

NOT EXISTS Failure of SQL statement due to nonexistent referenced objects.

PROCEDURE CREATE or DROP FUNCTION, LIBRARY, PACKAGE, PACKAGE
BODY, or PROCEDURE.

PROFILE CREATE, ALTER, or DROP a profile.

PUBLIC DATABASE LINK CREATE or DROP a public database link.

PUBLIC SYNONYM CREATE or DROP a public synonym.

ROLE CREATE, ALTER, DROP, or SET a role.

ROLLBACK SEGMENT CREATE, ALTER, or DROP a rollback segment.

SEQUENCE CREATE or DROP a sequence.

SESSION Logons and logoffs.

SYNONYM CREATE or DROP synonyms.

SYSTEM AUDIT AUDIT or NOAUDIT of system privileges.

SYSTEM GRANT GRANT or REVOKE system privileges and roles.

TABLE CREATE, DROP, or TRUNCATE a table.

TABLESPACE CREATE, ALTER, or DROP a tablespace.

TRIGGER CREATE, ALTER (enable/disable), DROP triggers; ALTER TABLE
with either ENABLE ALL TRIGGERS or DISABLE ALL TRIGGERS.

TYPE CREATE, ALTER and DROP types and type bodies.

USER CREATE, ALTER or DROP a user.

VIEW CREATE or DROP a view.

TABLE 9-17 Auditable Statements Included in the ALL Category

334 Oracle Database 11g DBA Handbook

Checking the audit trail in the data dictionary view DBA_AUDIT_TRAIL, we see that
KSHELTON did indeed create an index at 5:15 P.M. on August 12th:

SQL> select username, to_char(timestamp,'MM/DD/YY HH24:MI') Timestamp,
 2 obj_name, action_name, sql_text from dba_audit_trail
 3 where username = 'KSHELTON';

USERNAME TIMESTAMP OBJ_NAME ACTION_NAME SQL_TEXT
---------- -------------- ---------------- ---------------- ----------------
KSHELTON 08/12/07 17:15 JOB_TITLE_IDX CREATE INDEX create index hr.
 job_title_idx on
 hr.jobs(job_title)

1 row selected.

Statement Option SQL Operations

ALTER SEQUENCE Any ALTER SEQUENCE command.

ALTER TABLE Any ALTER TABLE command.

COMMENT TABLE Add a comment to a table, view, materialized view, or any of their
columns.

DELETE TABLE Delete rows from a table or view.

EXECUTE
PROCEDURE

Execute a procedure, function, or any variables or cursors within a
package.

GRANT
DIRECTORY

GRANT or REVOKE a privilege on a DIRECTORY object.

GRANT
PROCEDURE

GRANT or REVOKE a privilege on a procedure, function, or package.

GRANT
SEQUENCE

GRANT or REVOKE a privilege on a sequence.

GRANT TABLE GRANT or REVOKE a privilege on a table, view, or materialized view.

GRANT TYPE GRANT or REVOKE a privilege on a TYPE.

INSERT TABLE INSERT INTO a table or view.

LOCK TABLE LOCK TABLE command on a table or view.

SELECT SEQUENCE Any command referencing the sequence’s CURRVAL or NEXTVAL.

SELECT TABLE SELECT FROM a table, view, or materialized view.

UPDATE TABLE Execute UPDATE on a table or view.

TABLE 9-18 Explicitly Specified Statement Types

Chapter 9: Database Security and Auditing 335

NOTE
Starting with Oracle Database 11g, the columns SQL_TEXT and SQL_
BIND in DBA_AUDIT_TRAIL are populated only if the initialization
parameter AUDIT_TRAIL is set to DB_EXTENDED. By default, the
value of AUDIT_TRAIL is DB.

To turn off auditing for KSHELTON on the HR.JOBS table, we use the noaudit command, as
follows:

SQL> noaudit index by kshelton;
Noaudit succeeded.

We also may wish to routinely audit both successful and unsuccessful logins. This requires
two audit commands:

SQL> audit session whenever successful;
Audit succeeded.
SQL> audit session whenever not successful;
Audit succeeded.

Reviewing the audit trail reveals one failed login attempt by the user RJB on August 10th:

SQL> select username, to_char(timestamp,'MM/DD/YY HH24:MI') Timestamp,
 2 obj_name, returncode, action_name, sql_text from dba_audit_trail
 3 where action_name in ('LOGON','LOGOFF')
 4 and username in ('SCOTT','RJB','KSHELTON')
 5 order by timestamp desc;

USERNAME TIMESTAMP OBJ_NAME RETURNCODE ACTION_NAME SQL_TEXT
---------- -------------- ---------- ---------- ---------------- ----------
KSHELTON 08/12/07 17:04 0 LOGON
SCOTT 08/12/07 16:10 0 LOGOFF
RJB 08/12/07 11:35 0 LOGON
RJB 08/12/07 11:35 0 LOGON
RJB 08/11/07 22:51 0 LOGON
RJB 08/11/07 22:51 0 LOGOFF
RJB 08/11/07 21:55 0 LOGOFF
RJB 08/11/07 21:40 0 LOGOFF
RJB 08/10/07 22:52 0 LOGOFF
RJB 08/10/07 22:52 0 LOGOFF
RJB 08/10/07 22:52 1017 LOGON
RJB 08/10/07 12:23 0 LOGOFF
SCOTT 08/03/07 04:18 0 LOGOFF

13 rows selected.

The RETURNCODE represents the ORA error message. An ORA-1017 message indicates that an
incorrect password was entered. Note that if we are just interested in logons and logoffs, we could
use the DBA_AUDIT_SESSION view instead.

336 Oracle Database 11g DBA Handbook

Statement auditing also includes startup and shutdown operations. Although we can audit
the command shutdown immediate in the SYS.AUD$ table, it is not possible to audit the startup
command in SYS.AUD$ because the database has to be started before rows can be added to
this table. For these cases, we can look in the directory specified in the initialization parameter
AUDIT_FILE_DEST to see a record of a startup operation performed by a system administrator (by
default this parameter contains $ORACLE_HOME/admin/dw/adump). Here is a text file created
when the database was started with the startup command:

Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 – Production
With the Partitioning, OLAP, Data Mining
 and Real Application Testing options
ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1
System name: Linux
Node name: dw
Release: 2.6.9-55.0.2.0.1.EL
Version: #1 Mon Jun 25 14:24:38 PDT 2007
Machine: i686
Instance name: dw
Redo thread mounted by this instance: 1
Oracle process number: 44
Unix process pid: 28962, image: oracle@dw (TNS V1-V3)

Sun Aug 12 11:57:36 2007
ACTION : 'CONNECT'
DATABASE USER: '/'
PRIVILEGE : SYSDBA
CLIENT USER: oracle
CLIENT TERMINAL: pts/2
STATUS: 0

In this example, the database was started by a user connected as oracle on the host system
and connected to the instance with operating system authentication. We will cover additional
system administrator auditing issues in the next section.

Privilege Auditing
Auditing system privileges has the same basic syntax as statement auditing, except that system
privileges are specified in the sql_statement_clause instead of statements.

For example, we may wish to grant the ALTER TABLESPACE privilege to all our DBAs, but
we want to generate an audit record when this happens. The command to enable auditing on
this privilege looks similar to statement auditing:

SQL> audit alter tablespace by access whenever successful;
Audit succeeded.

Every time the ALTER TABLESPACE privilege is successfully used, a row is added to SYS.AUD$.
Special auditing is available for system administrators who use the SYSDBA and SYSOPER

privileges or connect with the SYS user. To enable this extra level of auditing, set the initialization
parameter AUDIT_SYS_OPERATIONS to TRUE. The audit records are sent to the same location as
the operating system audit records; therefore, this location is operating system dependent. All SQL
statements executed while using one of these privileges, as well as any SQL statements executed
as the user SYS, are sent to the operating system audit location.

Chapter 9: Database Security and Auditing 337

Schema Object Auditing
Auditing access to various schema objects looks similar to statement and privilege auditing:

AUDIT schema_object_clause BY {SESSION | ACCESS}
 WHENEVER [NOT] SUCCESSFUL;

The schema_object_clause specifies a type of object access and the object being accessed.
Fourteen different types of operations on specific objects can be audited; they are listed in
Table 9-19.

If we wish to audit all insert and update commands on the HR.JOBS table, regardless of who
is doing the update, and every time the action occurs, we can use the audit command as follows:

SQL> audit insert, update on hr.jobs by access whenever successful;
Audit successful.

The user KSHELTON decides to add two new rows to the HR.JOBS table:

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 2 values ('IN_CFO','Internet Chief Fun Officer', 7500, 50000);
1 row created.

SQL> insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 2 values ('OE_VLD','Order Entry CC Validation', 5500, 20000);
1 row created.

Object Option Description

ALTER Alters a table, sequence, or materialized view

AUDIT Audits commands on any object

COMMENT Adds comments to tables, views, or materialized views

DELETE Deletes rows from a table, view, or materialized view

EXECUTE Executes a procedure, function, or package

FLASHBACK Performs flashback operation on a table or view

GRANT Grants privileges on any type of object

INDEX Creates an index on a table or materialized view

INSERT Inserts rows into a table, view, or materialized view

LOCK Locks a table, view, or materialized view

READ Performs a read operation on the contents of a DIRECTORY object

RENAME Renames a table, view, or procedure

SELECT Selects rows from a table, view, sequence, or materialized view

UPDATE Updates a table, view, or materialized view

TABLE 9-19 Object Auditing Options

338 Oracle Database 11g DBA Handbook

Looking in the DBA_AUDIT_TRAIL view, we see the two insert commands in KSHELTON’s
session:

USERNAME TIMESTAMP OWNER OBJ_NAME ACTION_NAME
SQL_TEXT
---------- -------------- -------- ---------- ---------------

KSHELTON 08/12/07 22:54 HR JOBS INSERT
insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 values ('IN_CFO','Internet Chief Fun Officer', 7500, 50000);
KSHELTON 08/12/07 22:53 HR JOBS INSERT
insert into hr.jobs (job_id, job_title, min_salary, max_salary)
 values ('OE_VLD','Order Entry CC Validation', 5500, 20000);
KSHELTON 08/12/07 22:51 LOGON

3 rows selected.

Fine-Grained Auditing
Starting with Oracle9i, auditing became much more focused and precise with the introduction of
fine-grained object auditing, or FGA. FGA is implemented by a PL/SQL package called DBMS_FGA.

With standard auditing, you can easily find out what objects were accessed and by whom,
but you don’t know which columns or rows were accessed. Fine-grained auditing addresses this
problem by not only specifying a predicate, or where clause, for which rows need to be accessed,
but also by specifying a column or columns in the table being accessed. This can dramatically
reduce the number of audit table entries by only auditing access to the table if it accesses certain
rows and columns.

The package DBMS_FGA has four procedures:

ADD_POLICY Adds an audit policy using a predicate and audit column

DROP_POLICY Drops the audit policy

DISABLE_POLICY Disables the audit policy but keeps the policy associated with the table
or view

ENABLE_POLICY Enables a policy

The user TAMARA usually accesses the HR.EMPLOYEES table on a daily basis to look up
employee e-mail addresses. The system administrators suspect that TAMARA is viewing salary
information for managers, so they set up an FGA policy to audit any access to the SALARY
column for anyone who is a manager:

begin
 dbms_fga.add_policy(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'SAL_SELECT_AUDIT',
 audit_condition => 'instr(job_id,''_MAN'') > 0',
 audit_column => 'SALARY'
);
end;

Chapter 9: Database Security and Auditing 339

Audit records for fine-grained auditing can be accessed with the data dictionary view DBA_
FGA_AUDIT_TRAIL. If you typically need to see both standard audit rows and fine-grained
auditing rows, the data dictionary view DBA_COMMON_AUDIT_TRAIL combines rows from
both types of audits.

To continue our example, the user TAMARA runs two SQL queries as follows:

SQL> select employee_id, first_name, last_name, email from hr.employees
 2 where employee_id = 114;

EMPLOYEE_ID FIRST_NAME LAST_NAME EMAIL
----------- -------------------- ------------------------- --------------
 114 Den Raphaely DRAPHEAL

1 row selected.

SQL> select employee_id, first_name, last_name, salary from hr.employees
 2 where employee_id = 114;

EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY
----------- -------------------- ------------------------- ----------
 114 Den Raphaely 11000

1 row selected.

The first query accesses a manager, but not the SALARY column. The second query is the
same as the first, but does access the SALARY column and therefore triggers the FGA policy, thus
generating one, and only one, row in the audit trail:

SQL> select to_char(timestamp,'mm/dd/yy hh24:mi') timestamp,
 2 object_schema, object_name, policy_name, statement_type
 3 from dba_fga_audit_trail
 4 where db_user = 'TAMARA';

TIMESTAMP OBJECT_SCHEMA OBJECT_NAME POLICY_NAME STATEMENT_TYPE
-------------- -------------- -------------- ---------------- --------------
08/12/07 18:07 HR EMPLOYEES SAL_SELECT_AUDIT SELECT

1 row selected.

Because we set up fine-grained access control in our VPD example earlier in this chapter to
prevent unauthorized use of the SALARY column, we need to double-check our policy functions
to make sure that SALARY information is still being restricted correctly. Fine-grained auditing,
along with standard auditing, is a good way to ensure that our authorization policies are set up
correctly in the first place.

Auditing-Related Data Dictionary Views
Table 9-20 contains the data dictionary views related to auditing.

340 Oracle Database 11g DBA Handbook

Protecting the Audit Trail
The audit trail itself needs to be protected, especially if non-system users must access the table
SYS.AUD$. The built-in role DELETE_ANY_CATALOG is one of the ways that non-SYS users can
have access to the audit trail (for example, to archive and truncate the audit trail to ensure that it
does not impact the space requirements for other objects in the SYS tablespace).

To set up auditing on the audit trail itself, connect as SYSDBA and run the following command:

SQL> audit all on sys.aud$ by access;
Audit succeeded.

Now, all actions against the table SYS.AUD$, including select, insert, update, and delete,
will be recorded in SYS.AUD$ itself. But, you may ask, what if someone deletes the audit records
identifying access to the table SYS.AUD$? The rows in the table are deleted, but then another
row is inserted, recording the deletion of the rows. Therefore, there will always be some evidence
of activity, intentional or accidental, against the SYS.AUD$ table. In addition, if AUDIT_SYS_
OPERATIONS is set to true, any sessions using as sysdba, as sysoper, or connecting as SYS itself
will be logged in the operating system audit location, which presumably even the Oracle DBAs
would not have access to. As a result, we have many safeguards in place to ensure that we record
all privileged activity in the database, along with any attempts to hide this activity!

Enabling Enhanced Auditing
As of Oracle Database 11g, the Database Configuration Assistant (DBCA) makes it easy
to enable default (enhanced) auditing. Although there is some overhead to record auditing

Data Dictionary View Description

AUDIT_ACTIONS Contains descriptions for audit trail action type codes, such
as INSERT, DROP VIEW, DELETE, LOGON, and LOCK.

DBA_AUDIT_OBJECT Audit trail records related to objects in the database.

DBA_AUDIT_POLICIES Fine-grained auditing policies in the database.

DBA_AUDIT_SESSION All audit trail records related to CONNECT and
DISCONNECT.

DBA_AUDIT_STATEMENT Audit trail entries related to GRANT, REVOKE, AUDIT,
NOAUDIT, and ALTER SYSTEM commands.

DBA_AUDIT_TRAIL Contains standard audit trail entries. USER_AUDIT_TRAIL
contains audit rows for connected user only.

DBA_FGA_AUDIT_TRAIL Audit trail entries for fine-grained auditing policies.

DBA_COMMON_AUDIT_TRAIL Combines standard and fine-grained auditing rows into
one view.

DBA_OBJ_AUDIT_OPTS Auditing options in effect for database objects.

DBA_PRIV_AUDIT_OPTS Auditing options in effect for system privileges.

DBA_STMT_AUDIT_OPTS Auditing options in effect for statements.

TABLE 9-20 Auditing-Related Data Dictionary Views

Chapter 9: Database Security and Auditing 341

information, compliance requirements such as those defined in the Sarbanes-Oxley act
require strict monitoring of all business operations, including security-related operations
in the database.

You can use DBCA to configure default auditing either when you create a database or after
the database is already created. Using DBCA to configure default auditing after a database has
already been created is useful if you’ve changed many of your auditing settings and want to reset
auditing options to baseline values.

In addition to setting the value of the initialization parameter AUDIT_TRAIL to DB, the
default auditing settings audit the audit role command itself. In addition, you can see the
privileges audited by default in the Oracle Enterprise Manager Audit Settings page on the Audited
Privileges tab; Figure 9-9 shows the default audited privileges plus two others created earlier in
this chapter.

FIGURE 9-9 Displaying audited privileges using OEM

342 Oracle Database 11g DBA Handbook

Data Encryption Techniques
Data encryption can enhance security both inside and outside the database. A user may have a
legitimate need for access to most columns of a table, but if one of the columns is encrypted and
the user does not know the encryption key, the information is not usable. The same concern is
true for information that needs to be sent securely over a network. The techniques I presented so
far in this chapter, including authentication, authorization, and auditing, ensure legitimate access
to data from a database user but do not prevent access to an operating system user that may have
access to the operating system files that compose the database itself.

Users can leverage one of two methods for data encryption: using the package DBMS_
CRYPTO, an Oracle Database 10g replacement for the package DBMS_OBFUSCATION_
TOOLKIT found in Oracle9i, and transparent data encryption, which stores encryption keys
globally and includes methods for encrypting entire tablespaces.

DBMS_CRYPTO Package
New to Oracle 10g, the package DBMS_CRYPTO replaces the DBMS_OBFUSCATION_TOOLKIT
and includes the Advanced Encryption Standard (AES) encryption algorithm, which replaces the
Data Encryption Standard (DES).

Procedures within DBMS_CRYPTO can generate private keys for you, or you can specify and
store the key yourself. In contrast to DBMS_OBFUSCATION_TOOLKIT, which could only encrypt
RAW or VARCHAR2 datatypes, DBMS_CRYPTO can encrypt BLOB and CLOB types.

Transparent Data Encryption
Transparent data encryption is a key-based access control system that relies on an external
module for enforcing authorization. Each table with encrypted columns has its own encryption
key, which in turn is encrypted by a master key created for the database and stored encrypted
within the database; the master key is not stored in the database itself. The emphasis is on the
word transparent—authorized users do not have to specify passwords or keys when accessing
encrypted columns in a table or in an encrypted tablespace.

Although transparent data encryption has been significantly enhanced in Oracle Database
11g, there are still a few restrictions on its use; for example, you cannot encrypt columns
using foreign key constraints, since every table has a unique column encryption key. This
should typically not be an issue, since keys used in foreign key constraints should be
system-generated, unique, and unintelligent. Business keys and other business attributes of
a table are more likely candidates for encryption and usually do not participate in foreign
key relationships with other tables. Other database features and types are also not eligible
for transparent data encryption:

Index types other than B-tree

Range-scan searching of indexes

BFILEs (external objects)

Materialized view logs

Synchronous Change Data Capture

■

■

■

■

■

■

Chapter 9: Database Security and Auditing 343

Transportable tablespaces

Original import/export utilties (Oracle9i and earlier)

Alternatively, you can use DBMS_CRYPTO to manually encrypt these types and features.

NOTE
As of Oracle Database 11g, internal large objects such as BLOB and
CLOB types can now be encrypted.

Creating an Oracle Wallet
You can create a wallet for Transparent Data Encryption using Oracle Enterprise Manager. Select
the Server tab, and then click the Transparent Data Encryption link under the Security Heading.
You will see the page in Figure 9-10. In this example, there is no wallet created yet. The file
sqlnet.ora stores the location of the wallet using the ENCRYPTION_WALLET_LOCATION
variable. If this variable does not exist in sqlnet.ora, the wallet is created in $ORACLE_HOME/
admin/database_name/wallet, which in this example is /u01/app/oracle/admin/dw/wallet.

To create the encryption key and place it in the wallet, create a wallet password that is at least
ten characters long, a mix of upper- and lowercase letters, numbers, and punctuation. Clicking
OK creates the wallet, and you see the page in Figure 9-11.

■

■

FIGURE 9-10 Transparent Data Encryption: creating a wallet

344 Oracle Database 11g DBA Handbook

If your master key becomes compromised, you can use the page in Figure 9-10 to recreate the
master key. You can also close the wallet—disabling Transparent Data Encryption—and prevent
access to any encrypted table columns or tablespaces.

The equivalent SQL commands to create, open, and close a wallet are very straightforward
and probably take less time to type than using Oracle Enterprise Manager! To create a new key,
and create the wallet if it does not already exist, use the alter system command as follows:

SQL> alter system set encryption key identified by "Uni123#Lng";
System altered.
SQL>

Note the importance of putting the wallet key within double quotes; otherwise, the password
will map all lowercase characters and the wallet will not open. After the database instance is shut
down and restarted, you need to open the wallet with the alter system command if this task is not
automated otherwise:

SQL> alter system set encryption wallet open identified by "Uni123#Lng";
System altered.
SQL>

Finally, you can easily disable access to all encrypted columns in the database at any time by
closing the wallet:

FIGURE 9-11 Transparent Data Encryption: wallet is open

Chapter 9: Database Security and Auditing 345

SQL> alter system set encryption wallet close;
System altered.
SQL>

Make frequent backups of your wallet and don’t forget the wallet key (or the security
administrator—which can be a separate role from the DBA’s role—should not forget the wallet
key), because losing the wallet or the password to the wallet will prevent decryption of any
encrypted columns or tablespaces.

Encrypting a Table
You can encrypt a column or columns in one or more tables simply by adding the encrypt
keyword after the column’s datatype in a create table command or after the column name in
an existing column. For example, to encrypt the SALARY column of the EMPLOYEES table, use
this command:

SQL> alter table employees modify (salary encrypt);
Table altered.
SQL>

Any users who had the privileges to access this column in the past still have the same access
to the SALARY column—it’s completely transparent to the users. The only difference is that the
SALARY column is indecipherable to anyone accessing the operating system file containing the
EMPLOYEES table.

Encrypting a Tablespace
To encrypt an entire database, the COMPATIBLE initialization parameter must be set to
11.1.0.0.0—the default for Oracle Database 11g. If the database has been upgraded from
an earlier release, and you change the COMPATIBLE parameter to 11.1.0.0.0, the change
is irreversible.

An existing tablespace cannot be encrypted; to encrypt the contents of an existing tablespace,
you must create a new tablespace with the ENCRYPTION option and copy or move existing
objects to the new tablespace. Oracle Enterprise Manager makes it easy to create a new encrypted
tablespace. In Figure 9-12, you create a new tablespace called USERS_CRYPT with a size of
500MB, located in an ASM disk group.

Clicking the Encryption Options button, you see the status of the wallet you created earlier (it
must be open to create an encrypted tablespace), and you can select the encryption algorithm
you want to use for the tablespace. After you click Continue, as shown in Figure 9-13, you return
to the Create Tablespace page.

Clicking Show SQL, you can see the SQL command Oracle Enterprise Manager will use to
create the tablespace:

CREATE SMALLFILE TABLESPACE "USERS_CRYPT"
DATAFILE'+DATA' SIZE 500M LOGGING EXTENT MANAGEMENT LOCAL
SEGMENT SPACE MANAGEMENT AUTO NOCOMPRESS ENCRYPTION
USING 'AES256' DEFAULT STORAGE(ENCRYPT)

Click Return and then OK; Oracle Enterprise Manager creates the tablespace.

346 Oracle Database 11g DBA Handbook

FIGURE 9-12 Creating an encrypted tablespace

FIGURE 9-13 Specifying encrypted tablespace options

PART
III

High Availability

This page intentionally left blank

CHAPTER
10

Real Application Clusters

349

350 Oracle Database 11g DBA Handbook

n Chapter 4, we presented an overview of Automatic Storage Management (ASM)
and Oracle Managed Files (OMF) and how they can ease administration, enhance
performance, and improve availability. You can add one or more disk volumes to
a rapidly growing VLDB without bringing down the instance.

In Chapter 6, we talked about bigfile tablespaces and how they not only allow the total size of
the database to be much larger than in previous versions of Oracle, but also ease administration by
moving the maintenance point from the datafile to the tablespace. Chapter 15 will focus on Oracle
Net, providing you with the basics for ensuring that your clients can reach the database servers in
an efficient and prompt manner. Chapter 16 will expand our coverage of bigfile tablespaces in
addition to presenting other tools to make large database management easier, such as partitioned
table support, transportable tablespaces, and new to Oracle 10g, Oracle Data Pump.

As your databases get larger, and the number of users increases, the need for availability becomes
even more critical. Real Application Clusters (RAC) will tie together OMF, bigfile tablespaces, a
robust network infrastructure, and ASM into key elements of the RAC architecture. In this chapter, we
will revisit many of these database features, but with an emphasis on how they can be leveraged in
a RAC environment.

This chapter focuses on a number of RAC topics, including how to set up your operating
system environment—kernel parameters, network configuration, and user accounts. You will
perform the requisite installations to support RAC, such as Cluster Ready Services (CRS) for
creating a clustered environment, along with the various installation options within the Oracle
Universal Installer (OUI) to configure your network, shared storage, and database software
installation for both CRS and the Oracle 11g database itself.

During the installation of a RAC, you can configure the Enterprise Manager agent and Enterprise
Manager Database Control to manage your cluster. EM Database Control extends the functionality
available to manage a single instance by providing a cluster-aware layer; you can manage both
the Oracle instances and the underlying cluster configuration from a single web interface.

In subsequent chapters, we will present other ways to ensure high database availability and
recoverability: Chapter 13 will give a detailed look at Oracle Data Guard for near-real-time
failover capabilities, and Chapter 17 will cover Oracle Streams for advanced replication. In
Chapter 14, we’ll finish up our discussion on Flashback options started in Chapter 7 by showing
you how to perform Flashback Drop and Flashback Database as well as how to use LogMiner to
undo individual transactions.

Overview of Real Application Clusters
A Real Application Cluster is highly available and scalable. The failure of one node in the cluster
does not affect client sessions or the availability of the cluster itself until the last node in the
cluster fails; the only impact a lost node has on the cluster is a slight degradation in response
time, depending on the total number of nodes in the cluster.

A RAC database has a few disadvantages. Licensing costs are higher, because each node in
the cluster has to have its own Oracle license. The close physical proximity of the nodes in the
cluster due to the high-speed requirements of the cluster interconnect means that a natural disaster
can take out the entire cluster; using a remote standby database can help alleviate some of these
concerns. You will have to weigh the cost of high availability (or the lack thereof) compared to
the increased cost and slight increase in maintenance of a RAC.

I

Chapter 10: Real Application Clusters 351

NOTE
A “stretch cluster”, or a cluster using RAC technology over a wide-area
network (WAN), protects against the loss of an entire data center, but
it increases the cost of the infrastructure, since the already-redundant
storage systems must be duplicated across the sites and the network
bandwidth must be high enough to keep up with synchronization
tasks during peak transaction periods.

In the next few sections, we’ll cover some of the hardware and software requirements for a
RAC database as well as detail the network configuration and disk storage requirements to build
a successful cluster.

Hardware Configuration
A complete discussion of all possible RAC hardware configurations is beyond the scope of this
book. You want to have at least two and preferably three nodes for a RAC, each with redundant
power supplies, network cards, dual CPUs, and error-correcting memory; these are desirable
characteristics for any type of server, not just an Oracle server! The higher the number of nodes
configured in the cluster, the lower the performance hit you will take when one of the cluster’s
nodes fails.

The shared disk subsystem should also have hardware redundancy built in—multiple power
supplies, RAID-enabled disks, and so forth. You will balance the redundancy built into the shared
disk with the types of disk groups you will create for the RAC. The higher redundancy built into
the disk subsystem hardware can potentially reduce the amount of software redundancy you
specify when you create the database’s disk groups.

Software Configuration
Although Oracle clustering solutions have been available since version 6, not until version 10g
has there been a native clusterware solution that more tightly couples the database to the volume
management solution. Cluster Ready Services (CRS) is the clustering solution that can be used on
all major platforms instead of an OS vendor or third-party clusterware.

CRS is installed before the RDBMS and must be in its own home directory, referred to as the
CRS_HOME. If you are only using a single instance in the near future but plan to cluster at a later
date, it is useful to install CRS first so that the components of CRS that are needed for ASM and
RAC are in the RDBMS directory structure. If you do not install CRS first, you will have to perform
some extra steps later to remove the CRS-related process executables from the RDBMS home
directory.

After CRS is installed, you install the database software in the home directory, referred to as
the ORACLE_HOME. On some platforms, such as Microsoft Windows, this directory can be a
directory common to all nodes, whereas other platforms, such as Linux, require OCFS version
2.x or later. Otherwise, each node will have its own copy of the binary executables.

Network Configuration
Each node in a RAC has a minimum of three IP addresses: one for the public network, one for the
private network interconnect, and a virtual IP address to support faster failover in the event of a
node failure. As a result, a minimum of two physical network cards are required to support RAC;

352 Oracle Database 11g DBA Handbook

additional network cards are used to provide redundancy on the public network and thus an
alternate network path for incoming connections. For the private network, additional network
cards can boost performance by providing more total bandwidth for interconnect traffic. Figure
10-1 shows a two-node RAC with one network card on each node for the private interconnect
and one network card on each node to connect to the public network.

The public network is used for all routine connections to and from the server; the interconnect
network, or private network, supports communication between the nodes in the cluster, such as
node status information and the actual data blocks shared between the nodes. This interface
should be as fast as possible, and no other types of communication between the nodes should
occur on the private interface; otherwise, the performance of the RAC may suffer.

The virtual IP address is the address assigned to the Oracle listener process and supports rapid
connect-time failover, which is able to switch the network traffic and Oracle connection to a different
instance in the RAC much faster than a third-party high-availability solution.

Disk Storage
The shared disk drive may or may not be a RAID device to support redundancy; more importantly
the disk controllers and connections to the shared storage should be multiplexed to ensure high
availability. If the disks in the shared drive are not mirrored, you can use the mirroring capabilities
of ASM to provide performance and availability benefits.

For the purposes of the examples in this chapter, I will use a Linux server with the device
configuration listed in Table 10-1. These disks reside on a shared SCSI storage device and have
the same device name on each node in the cluster.

There are five raw disks that are 512MB in size reserved for the voting disk, the OCR disk,
and their mirrors (one mirror for the OCR disk and two mirrors for the voting disk); I will present
the uses for these disks in the section “Cluster Ready Services.” The shared file system /u01 uses
Oracle Cluster File System (OCFS2) to share the Oracle executable files among all nodes in the

FIGURE 10-1 RAC network configuration

Chapter 10: Real Application Clusters 353

cluster, saving installation time and duplication of the same Oracle executables on each node in
the cluster.

Installation and Setup
For the examples in this chapter, we will use Oracle Enterprise Linux (based on Red Hat Enterprise
Linux) to install the RAC and demonstrate its features. However, most, if not all, the installation
tips, techniques, and methods presented in this chapter will be applicable to other Unix-like
platforms and even Windows-based installations.

TIP
Oracle Enterprise Linux bundles many features not automatically
available with the corresponding Red Hat distributions, such as
OCFS2 and the ASMlib library. More importantly, Oracle Enterprise
Linux is supported and tightly integrated with Oracle Unbreakable
Linux, a support program for Oracle on Linux solutions through
Oracle MetaLink.

We will show you how to set up a three-node RAC; although a two-node RAC can
demonstrate most the features of a RAC, you will need a three-node RAC to see how the
remaining nodes in the cluster can still operate as a RAC and recover from the loss of a single
node in the cluster. In practice, the more nodes in the cluster, the less impact there is to
throughput when one node in the cluster fails.

On each node, the Oracle software will reside in a shared ORACLE_HOME; the database and
recovery files will use ASM disks configured with Oracle ASMLib, and the OCR and voting disks
will use raw devices.

Raw Device, ASM,
or File System Name

Physical Device Name Capacity Purpose

DVOL1 /dev/sdc1 10GB ASM Disk #1: +DATA1

DVOL2 /dev/sdd1 10GB ASM Disk #1: +DATA1

RVOL1 /dev/sde1 10GB ASM Disk #2: +RECOV1

RVOL2 /dev/sdf1 10GB ASM Disk #2: +RECOV1

/dev/raw/raw5 /dev/sdg1 512MB OCR Disk

/dev/raw/raw6 /dev/sdh1 512MB Voting Disk

/dev/raw/raw7 /dev/sdi1 512MB OCR Disk Mirror

/dev/raw/raw8 /dev/sdj1 512MB Voting Disk Mirror

/u01 /dev/sdk1 8GB Shared Oracle binaries

/dev/raw/raw9 /dev/sdl1 512MB Second Voting Disk Mirror

TABLE 10-1 Raw Disks for ASM Disk Groups, the Voting Disk, and the OCR Disk

354 Oracle Database 11g DBA Handbook

NOTE
As an alternative to ASM and raw disks, Oracle Cluster File System
(OCFS) version 2.x, available at http://oss.oracle.com, can be used
to store both database files and Oracle executables on a common,
shared file system.

Finally, I will assume that the shared disks are accessible via the same node name in the /dev
directory and that each node in the cluster can access the shared disk simultaneously; the ASM
instance on each node will automatically coordinate access to the shared disk.

Operating System Configuration
The first step is to prepare the operating system. Install Oracle Enterprise Linux, and install every
option! The small amount of disk space you might save otherwise is quickly offset when you are
missing a component later and must find the installation CDs to obtain the missing component.
Once everything is installed, be sure to apply all patches from the Oracle Unbreakable Linux
Network to take advantage of all security and performance enhancements, although Oracle 11g
will run as advertised on Red Hat Enterprise Linux versions 4 and 5.

Memory and Disk Requirements
For each node in the cluster, a minimum of 1GB is recommended. The swap space should be at
least twice this value, or 2GB. For a successful installation, there should be at least 400MB free in
the /tmp file system.

The Oracle software itself requires approximately 4GB of disk space, and the default database
files require another 1.5GB; the growth of your database depends, of course, on the applications
you use.

On your shared disk subsystem, you need two special partitions: one for a voting disk and
one for the Oracle Cluster Registry (OCR). The voting disk is used by Oracle’s clustering software,
Cluster Ready Services (CRS), to arbitrate ownership of the cluster in case of a private network
failure. The OCR disk is used to maintain all metadata about the cluster: the cluster configuration
and the cluster database configuration.

Kernel Parameters
Most of the “out of the box” kernel parameters are set correctly for Oracle except a few; ensure
that the kernel parameters in Table 10-2 are set to the values provided in the table.

NOTE
For 64-bit platforms, if your SGA will be larger than 2GB, the value
for kernel.shmall should be at least as large as the value of the
initialization parameter SGA_MAX_SIZE.

http://oss.oracle.com

Chapter 10: Real Application Clusters 355

You can confirm that these values are in effect using the following command:

[root@oc1 ~]# /sbin/sysctl -a |
 egrep 'sem|shm|file-max|ip_local|rmem|wmem'
net.ipv4.ip_local_port_range = 1024 65000
net.core.rmem_default = 4194304
net.core.wmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_max = 262144
vm.hugetlb_shm_group = 0
kernel.sem = 250 32000 100 128
kernel.shmmni = 4096
kernel.shmall = 2097152
kernel.shmmax = 2147483648
fs.file-max = 65536
[root@oc1 ~]#

In a default Oracle Enterprise Linux installation, some of these parameters are already set. For
those values that vary from Table 10-2, simply append the parameter name and the value from
the previous sample output to the file /etc/sysctl.conf and then run the /sbin/sysctl -p command
to change the values immediately. After the next reboot, the values specified in /etc/sysctl.conf
will be set automatically.

Kernel Parameter Value

kernel.shmall 2097152

kernel.shmmax Minimum of half the size of physical memory and 4GB

kernel.shmmni 4096

kernel.sem 250 32000 100 128

fs.file-max Minimum of 512 * PROCESSES

net.ipv4.ip_local_port_range 1024 65000

rmem_default 4194304

rmem_max 4194304

wmem_default 262144

wmem_max 262144

TABLE 10-2 Oracle Database 11g Minimum Kernel Parameter Values

356 Oracle Database 11g DBA Handbook

Network Configuration
Each node in a RAC requires at least two network cards; one card is to connect to the public
network for client communication, and the other is used for private network traffic between the
nodes in the cluster. For the examples in this chapter, I will use the following /etc/hosts file:

Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost

192.168.2.95 dw
192.168.2.91 oe4 # Oracle Linux Enterprise 4

192.168.2.81 asmw
192.168.2.82 asinfra

192.168.2.68 phpxe # with Oracle Database XE
192.168.2.65 officedesktop # some good shares are here

192.168.2.101 oc1 #public1
192.168.1.101 poc1 #private1
192.168.2.176 voc1 #virtual1

192.168.2.102 oc2 #public2
192.168.1.102 poc2 #private2
192.168.2.177 voc2 #virtual2

192.168.2.103 oc3 #public3
192.168.1.103 poc3 #private3
192.168.2.178 voc3 #virtual3

A couple things are worth noting at this point. I only need two network cards on each server;
why is there a “virtual” address for each node? The virtual addresses support rapid connect-time
failover, a concept I will explore in more detail later in this chapter. All client connections use
these virtual addresses for their connections, and each RAC node’s listener will be listening on the
virtual nodes instead of the public node names. Note also that each virtual address must be on
the same subnet as the public address; the private interconnect network, however, is on its own
private subnet.

TIP
Before proceeding with any Oracle software installations, be sure that
you can connect from each node in the cluster to every other node
using the ssh command that does not prompt for a password for the
oracle user; in addition, ensure that ssh <hostname> <command>
does not return a login banner.

User Accounts
Other than the root account, the only other account needed on your Linux server is the oracle
account; in fact, in a production environment, you may not want any other user accounts on
the server to prevent any inadvertent or intentional access of critical database files, control files,
executables, or password files.

Chapter 10: Real Application Clusters 357

The groups oinstall and dba must exist on each node in the cluster, in addition to the oracle
user. Use the following commands to create these if they do not already exist, and assign the
oracle user to both groups, with oinstall as the primary group:

[root@oc1 ~]# /usr/sbin/groupadd oinstall
[root@oc1 ~]# /usr/sbin/groupadd dba
[root@oc1 ~]# /usr/sbin/useradd -g oinstall -G dba oracle
[root@oc1 ~]# passwd oracle
Changing password for user oracle.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
[root@oc1 ~]#

For the oracle user, set up the default environment in the logon script; this sample logon script
assumes the bash shell (Bourne Again Shell) on Oracle Enterprise Linux:

.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/bin
export PATH
unset USERNAME
umask 022
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME is set after installation with OUI.
ORACLE_HOME=$ORACLE_BASE/product/11.1.0/db_1
ORACLE_SID different on each node;
same database, different instance.
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=$ORACLE_BASE/product/11.1.0/db_1
ORACLE_SID=rac1
PATH=$ORACLE_HOME/bin:$PATH
export ORACLE_BASE ORACLE_HOME ORACLE_SID PATH

Make sure that the value for ORACLE_SID is unique on each node! As I install additional
products such as CRS and create the RAC instances, I will make changes to this logon script as
appropriate.

To set up user equivalence between nodes in the cluster, use either the .rhosts or /etc/hosts.
equiv file to support the rsh and rcp commands; better yet, and more secure, ensure that ssh and
scp are configured for all nodes in the cluster. Starting with Oracle 10g, the OUI will use ssh and
scp if possible, and fall back to rsh and rcp if necessary. Configuring ssh using the ssh-keygen
utility is beyond the scope of this book; consult with your Unix or Linux system administrator
to configure ssh and scp.

358 Oracle Database 11g DBA Handbook

Software Directories
Because I am using ASM in these examples for RAC storage, only one directory, /u01/app/oracle,
needs to be created on the local storage to hold the Oracle Database and the CRS software. The
disk volume on which this directory resides must have at least 4GB of space for the database and
CRS software. Use these commands to create this directory and assign the correct permissions:

[root@oc1 ~]# mkdir -p /u01/app/oracle
[root@oc1 ~]# chown -R oracle:oinstall /u01/app /u01/app/oracle
[root@oc1 ~]# chmod -R 775 /u01/app/oracle
[root@oc1 ~]# chown –R oracle:oinstall /u01/app

ASMLib Library
The ASMLib library for Linux is a support library for ASM instances in Oracle Database 10g and
later. Although you can reference raw disks directly when creating ASM diskgroups within an
ASM instance, ASMLib provides a number of benefits:

You can manage ASM disks at the operating system level; you don’t have to refer to raw
disks from installer.

Using ASMLib reduces ASM instance startup time.

Volume names are consistent across servers, whereas raw device names can differ from
server to server; a volume name more easily identifies the disk device on a given node.

Performance of ASM diskgroups is improved.

After installation of the ASMLib oracleasm packages, configure each node in your cluster
using the oracleasm command as follows:

[root@oc1 ~]# /etc/init.d/oracleasm configure
Configuring the Oracle ASM library driver.

This will configure the on-boot properties of the Oracle ASM library
driver. The following questions will determine whether the driver is
loaded on boot and what permissions it will have. The current values
will be shown in brackets ('[]'). Hitting <ENTER> without typing an
answer will keep that current value. Ctrl-C will abort.

Default user to own the driver interface []: oracle
Default group to own the driver interface []: oinstall
Start Oracle ASM library driver on boot (y/n) [n]: y
Fix permissions of Oracle ASM disks on boot (y/n) [y]: y
Writing Oracle ASM library driver configuration: [OK]
Loading module "oracleasm": [OK]
Mounting ASMlib driver filesystem: [OK]
Scanning system for ASM disks: [OK]
[root@oc1 ~]#

Be sure to remove or comment out the raw disk definitions on each node of the cluster from /
etc/sysconfig/rawdevices for the raw disks that will be used for ASM disk groups:

raw device bindings
format: <rawdev> <major> <minor>
<rawdev> <blockdev>

■

■

■

■

Chapter 10: Real Application Clusters 359

example: /dev/raw/raw1 /dev/sda1
/dev/raw/raw2 8 5
#/dev/raw/raw1 /dev/sdc1
#/dev/raw/raw2 /dev/sdd1
#/dev/raw/raw3 /dev/sde1
#/dev/raw/raw4 /dev/sdf1
/dev/raw/raw5 /dev/sdg1
/dev/raw/raw6 /dev/sdh1
/dev/raw/raw7 /dev/sdi1
/dev/raw/raw8 /dev/sdj1
/dev/raw/raw9 /dev/sdl1

The remaining raw devices will be used for the OCR disk, voting disk, and mirrors for each and
are not managed through the oracleasm library.

On any node in the cluster, mark the disks using the oracleasm createdisk command; use the
oracleasm listdisks command to see the available ASM disks:

[root@oc1 ~]# /etc/init.d/oracleasm createdisk DVOL1 /dev/sdc1
Marking disk "/dev/sdc1" as an ASM disk: [OK]
[root@oc1 ~]# /etc/init.d/oracleasm createdisk DVOL2 /dev/sdd1
Marking disk "/dev/sdd1" as an ASM disk: [OK]
[root@oc1 ~]# /etc/init.d/oracleasm createdisk RVOL1 /dev/sde1
Marking disk "/dev/sde1" as an ASM disk: [OK]
[root@oc1 ~]# /etc/init.d/oracleasm createdisk RVOL2 /dev/sdf1
Marking disk "/dev/sdf1" as an ASM disk: [OK]
[root@oc1 ~]# /etc/init.d/oracleasm listdisks
DVOL1
DVOL2
RVOL1
RVOL2
[root@oc1 ~]#

For the remaining nodes in the cluster, you can automatically detect and register the ASM
disks using the ASMLib oracleasm scandisks command:

[root@oc2 ~]# /etc/init.d/oracleasm scandisks
Scanning system for ASM disks: [OK]
[root@oc2 ~]# /etc/init.d/oracleasm listdisks
DVOL1
DVOL2
RVOL1
RVOL2
[root@oc2 ~]#

The ASMLib driver automatically scans the available devices for ASM-registered disks when the
oracleasm service starts during system boot.

Here is a short summary of the oracleasm command options:

start, stop, restart Start, stop, or restart the oracleasm service.

enable, disable Enable or disable automatic loading of the oracleasm driver at
system boot.

configure Reconfigure the startup options or oracleasm driver owner.

■

■

■

360 Oracle Database 11g DBA Handbook

createdisk Mark a disk device for use with the oracleasm driver.

deletedisk Unmark a disk device. Do not unmark a device that is currently in an ASM
disk group!

querydisk Determine if a specific disk is marked by the oracleasm driver.

listdisks List all disks attached to the server that are marked for use by oracleasm.

scandisks Identify disks marked for use by the cluster as oracleasm disks.

Software Installation
Whether you are creating a 2-node or a 16-node cluster, the procedure is the same; if you have
configured your servers as detailed in the previous sections, the installations you will perform
in the following sections will automatically push to each node you specify in the configuration
screens for Cluster Ready Services and the Oracle Database software itself.

Therefore, the following discussion is divided into three parts: CRS to prepare the clustering
environment, Oracle Database 11g software installation, and creating an instance of the database
on each node in the cluster. As I review each screen of each installation, I will provide background
and explanation as required so that you’re prepared to make adjustments to your environment
once the installations are complete.

In many cases, the installation steps for the database software, the database itself, and ASM are
similar or identical to what you’ve already seen in Chapters 1 and 4, and will find detailed in the
appendix. In the following sections, we’ll focus on the differences you’ll see for a RAC installation.

Cluster Ready Services
As mentioned earlier in this chapter, CRS should be installed in its own home directory called
CRS_HOME. As part of the CRS installation, you will have to configure two particular locations
that are not specific to any instance but are used by the cluster itself: the Oracle Cluster Registry
and the voting disk. The Oracle Cluster Registry (OCR) is the location where the cluster stores its
metadata, and 256MB is the minimum amount of disk space required to hold the cluster metadata.
The voting disk is used by the cluster to resolve situations where one or more nodes in the cluster
lose contact with other nodes in the cluster over the private interconnect. In this way, you have a
way to shut off one node or one group of nodes from writing to the shared disk files because it
assumes it is in control of the shared storage. As with the OCR disk, the voting disk requires a
minimum of 256MB of free disk space on the device.

The locations of the OCR disk and the voting disk must be on separate raw devices, even
when you are using ASM for your other database files; however, if you are using OCFS, the OCR
disk and the voting disk can exist as files on an OCFS volume. In the examples that follow, I will
use raw devices for the OCR and voting disks; this is the Oracle-recommended method.

As of Oracle Database 10g Release 2, the runcluvfy.sh command verifies that the server
memory, user equivalence, network interfaces, required packages, and connectivity among the
nodes in the cluster are configured correctly for a CRS installation. Run the command as follows,
substituting a list of your cluster’s node names for oc1,oc2,oc3:

./runcluvfy.sh stage -pre crsinst -n oc1,oc2,oc3 -verbose

The CRS software on the CD or DVD or in the downloadable installation archive is approximately
250MB. After you mount the CD or expand the ZIP file, run the script ./runInstaller as the oracle
user. The first screen you will see after the welcome screen and the Oracle inventory location
screen is shown in Figure 10-2.

■

■

■

■

■

Chapter 10: Real Application Clusters 361

The installation for CRS is similar to that for a database install; you specify a home directory
for the executables. In this case, you will use a home directory variable called CRS_HOME (with
a default OUI name of OraCrs11g_home and a pathname of /u01/app/11.1.0/crs), which must be
different from the Oracle Database home.

After OUI performs a number of prerequisite checks, such as memory, network connectivity,
and old versions of CRS, you provide a name for the cluster along with the public, private, and
virtual node names. As you can see in Figure 10-3, you specify the cluster name as shc1 and
provide the public and private node names as defined in the /etc/hosts file I provided earlier in
this chapter. If you plan to manage multiple clusters using Enterprise Manager Grid Control, be
sure to assign a unique name to each cluster.

On the next installation screen, shown in Figure 10-4, you specify which of your network
devices is to be used as the public interface (to connect to the public network) and which will
be used for the private interconnect to support cache fusion and the cluster heartbeat. As noted
earlier, you can have more than one public and more than one private interface; on this screen
you can also mark an interface to not be used at all by CRS.

In Figure 10-5, you specify /dev/raw/raw5 as the raw disk for the Oracle Cluster Registry and /
dev/raw/raw7 as the mirror location; as of Oracle Database 10g Release 2, you can use CRS (instead
of an external disk management system such as RAID) to mirror your OCR disk to further enhance
availability. The OCR is a metadata repository for the cluster configuration, keeping track of things
like where a particular service is running, if it is running, and so forth.

FIGURE 10-2 Executable file locations

362 Oracle Database 11g DBA Handbook

FIGURE 10-3 Cluster configuration

FIGURE 10-4 Private interconnect enforcement

Chapter 10: Real Application Clusters 363

In a similar fashion, you specify the location of the voting disk for CRS. In Figure 10-6, you
specify /dev/raw/raw6 and /dev/raw/raw8 as the raw disks for the voting disk. You can specify
up to two additional mirror devices for the voting disk using OUI. The processes known as
Cluster Synchronization Services (CSS) use the voting disk to arbitrate cluster ownership and
interprocess communications in a cluster environment. In a single-instance environment, CSS
facilitates communications between the ASM instance and the RDBMS instance.

After the pre-installation summary screen shown in Figure 10-7 appears, you click the Install
button and the installation begins. In addition to installing the software on the node where you
initiated the installation, the installed directory structure is copied to every node on the cluster,
or to a shared disk location if you are using a file system such as OCFS2 for the shared Oracle
binaries.

FIGURE 10-5 Oracle Cluster Registry

364 Oracle Database 11g DBA Handbook

FIGURE 10-6 Voting disk location

FIGURE 10-7 Pre-installation summary

Chapter 10: Real Application Clusters 365

After installation is complete, you are prompted to run two scripts as root on each node of the
cluster:

/u01/app/oraInventory/orainstRoot.sh
/u01/app/11.1.0/crs/root.sh

Here is the output from running the commands on the first node:

[root@oc1 ~]# /u01/app/oraInventory/orainstRoot.sh
Changing permissions of /u01/app/oraInventory to 770.
Changing groupname of /u01/app/oraInventory to oinstall.
The execution of the script is complete
[root@oc1 ~]# /u01/app/11.1.0/crs/root.sh
WARNING: directory '/u01/app/11.1.0' is not owned by root
WARNING: directory '/u01/app' is not owned by root
Checking to see if Oracle CRS stack is already configured
/etc/oracle does not exist. Creating it now.

Setting the permissions on OCR backup directory
Setting up Network socket directories
Oracle Cluster Registry configuration upgraded successfully
The directory '/u01/app/11.1.0' is not owned by root. Changing owner to root
The directory '/u01/app' is not owned by root. Changing owner to root
Successfully accumulated necessary OCR keys.
Using ports: CSS=49895 CRS=49896 EVMC=49898 and EVMR=49897.
node <nodenumber>: <nodename> <private interconnect name> <hostname>
node 1: oc1 poc1 oc1
node 2: oc2 poc2 oc2
node 3: oc3 poc3 oc3
Creating OCR keys for user 'root', privgrp 'root'..
Operation successful.
Now formatting voting device: /dev/raw/raw6
Now formatting voting device: /dev/raw/raw8
Now formatting voting device: /dev/raw/raw9
Format of 3 voting devices complete.
Startup will be queued to init within 30 seconds.
Adding daemons to inittab
Expecting the CRS daemons to be up within 600 seconds.
Cluster Synchronization Services is active on these nodes.
 oc1
Cluster Synchronization Services is inactive on these nodes.
 oc2
 oc3
Local node checking complete. Run root.sh on remaining nodes to
 start CRS daemons.
[root@oc1 ~]#

The voting and OCR disks are initialized the first time this script is run. When you run the
script on the other two nodes, you see similar results, except for the voting disk and OCR disk
initialization; here is the output for the second node, oc2:

[root@oc1 ~]# ssh oc2
root@oc2's password:
Last login: Sat Aug 18 23:29:06 2007 from oc1

366 Oracle Database 11g DBA Handbook

[root@oc2 ~]# /u01/app/oraInventory/orainstRoot.sh
Changing permissions of /u01/app/oraInventory to 770.
Changing groupname of /u01/app/oraInventory to oinstall.
The execution of the script is complete
[root@oc2 ~]# /u01/app/11.1.0/crs/root.sh
WARNING: directory '/u01/app/11.1.0' is not owned by root
WARNING: directory '/u01/app' is not owned by root
Checking to see if Oracle CRS stack is already configured
. . .
node <nodenumber>: <nodename> <private interconnect name> <hostname>
node 1: oc1 poc1 oc1
node 2: oc2 poc2 oc2
node 3: oc3 poc3 oc3
clscfg: Arguments check out successfully.

NO KEYS WERE WRITTEN. Supply -force parameter to override.
-force is destructive and will destroy any previous cluster
configuration.
Oracle Cluster Registry for cluster has already been initialized
Startup will be queued to init within 30 seconds.
Adding daemons to inittab
Expecting the CRS daemons to be up within 600 seconds.
Cluster Synchronization Services is active on these nodes.
 oc1
 oc2
Cluster Synchronization Services is inactive on these nodes.
 oc3
Local node checking complete. Run root.sh on remaining nodes to
start CRS daemons.
[root@oc2 ~]#

On the third and final node of our three-node cluster, you see similar messages with a
confirmation that the CRSD and EVMD processes have started, along with the VIP, GSD, and
ONS resources on all nodes in the cluster:

[root@oc2 ~]# ssh oc3
root@oc3's password:
Last login: Sat Aug 18 23:31:29 2007 from oc2
[root@oc3 ~]# /u01/app/oraInventory/orainstRoot.sh
Changing permissions of /u01/app/oraInventory to 770.
Changing groupname of /u01/app/oraInventory to oinstall.
The execution of the script is complete
[root@oc3 ~]# /u01/app/11.1.0/crs/root.sh
. . .
Cluster Synchronization Services is active on these nodes.
 oc1
 oc2
 oc3
Cluster Synchronization Services is active on all the nodes.
Waiting for the Oracle CRSD and EVMD to start
Waiting for the Oracle CRSD and EVMD to start
Oracle CRS stack installed and running under init(1M)

Chapter 10: Real Application Clusters 367

Running vipca(silent) for configuring nodeapps

Creating VIP application resource on (3) nodes....
Creating GSD application resource on (3) nodes....
Creating ONS application resource on (3) nodes....
Starting VIP application resource on (3) nodes....
Starting GSD application resource on (3) nodes....
Starting ONS application resource on (3) nodes....

Done.
[root@oc3 ~]#

NOTE
A discussion of CRSD, EVMD, and clustering application resources
is beyond the scope of this book; see the Oracle Press book Oracle
Database 11g High Availability with RAC, Flashback & Data Guard,
by Hart and Jesse (McGraw-Hill, forthcoming).

After you run the root-related scripts, OUI runs the cluster verification utility (as I did manually
before the installation) to verify that the cluster is operating correctly. You can verify that CRS is
active and configured correctly at any time by running the cluvfy command:

[oracle@oc1 oracle]$ cd /u01/app/11.1.0/crs/bin
[oracle@oc1 bin]$ cluvfy comp crs -n oc1,oc2,oc3

Verifying CRS integrity

Checking CRS integrity...

Checking daemon liveness...
Liveness check passed for "CRS daemon".

Checking daemon liveness...
Liveness check passed for "CSS daemon".

Checking daemon liveness...
Liveness check passed for "EVM daemon".

Checking CRS health...
CRS health check passed.

CRS integrity check passed.
Verification of CRS integrity was successful.
[oracle@oc1 ~]$

The output from cluvfy shows that the cluster composed of oc1, oc2, and oc3 is healthy with all
services running. The crs_stat command can also provide a good summary of the cluster’s status:

[oracle@oc1 ~]$ crs_stat –t
Name Type Target State Host
--
ora.oc1.gsd application ONLINE ONLINE oc1

368 Oracle Database 11g DBA Handbook

ora.oc1.ons application ONLINE ONLINE oc1
ora.oc1.vip application ONLINE ONLINE oc1
ora.oc2.gsd application ONLINE ONLINE oc2
ora.oc2.ons application ONLINE ONLINE oc2
ora.oc2.vip application ONLINE ONLINE oc2
ora.oc3.gsd application ONLINE ONLINE oc3
ora.oc3.ons application ONLINE ONLINE oc3
ora.oc3.vip application ONLINE ONLINE oc3
[oracle@oc1 ~]$

Database Software Install
Once you have the cluster software running successfully on each node, you are ready to install
the database software into the same directory on each node. In this section, we’ll primarily focus
on the parts of the database software install that differ from the single-instance installation you
performed in Chapter 1.

Although you can create a database at the same time you install the Oracle software, you
will only install the software now and run the Database Configuration Assistant later to create the
database. From the root directory of the database installation files, run the script ./runInstaller as
the oracle user, just as you did for the CRS install. The first screen you will see after the welcome
screen, the Oracle inventory location screen, and the Installation Type screen is shown in
Figure 10-8.

FIGURE 10-8 Oracle database file locations

Chapter 10: Real Application Clusters 369

Although you can install the software in any directory, make sure that this directory is available
to the user oracle on all nodes in the cluster. In addition, make sure that this directory is not the
same as the CRS installation directory.

As shown in Figure 10-9, if the installer detects clustering software running on the node, it
gives you the option to install the software on the entire cluster or to perform a single-instance
install. In this case, you select all the nodes you configured earlier as part of the cluster.

After you select the nodes for your RAC database instances, the installer confirms that the
environment for the Oracle Database software is configured correctly, as you can see in Figure 10-10.

The screen in Figure 10-11 gives you the option to create the database immediately, configure
ASM, or install the database software only. As I mentioned earlier in this chapter, I’m going to
install the software first, and then use the Database Configuration Assistant (DBCA) to configure
an ASM instance on each node and create the shared database.

After clicking Next, you select the operating system groups you use for creating and
maintaining a database using operating system authentication:

Database Administrator (OSDBA) Group: dba

Database Operator (OSOPER) Group: oinstall

ASM administrator (OSASM) Group: oinstall

The summary screen you see in Figure 10-12 is nearly identical to the one you see in a single-
instance installation, except that you are installing the software on more than one node in the
cluster.

■

■

■

FIGURE 10-9 Hardware cluster node locations

370 Oracle Database 11g DBA Handbook

FIGURE 10-10 Platform configuration checks

FIGURE 10-11 Database configuration options

Chapter 10: Real Application Clusters 371

The subsequent screens detail the progress of the installation. Upon completion, you are
prompted to run a new root.sh script on each node in the cluster. Here are the results of running
the script on the first node (you must be logged on as root to run this script):

[root@oc1 ~]# /u01/app/oracle/product/11.1.0/db_1/root.sh
Running Oracle 11g root.sh script...

The following environment variables are set as:
 ORACLE_OWNER= oracle
 ORACLE_HOME= /u01/app/oracle/product/11.1.0/db_1

Enter the full pathname of the local bin directory: [/usr/local/bin]:
 Copying dbhome to /usr/local/bin ...
 Copying oraenv to /usr/local/bin ...
 Copying coraenv to /usr/local/bin ...

Creating /etc/oratab file...
Entries will be added to the /etc/oratab file as needed by
Database Configuration Assistant when a database is created
Finished running generic part of root.sh script.
Now product-specific root actions will be performed.
Finished product-specific root actions.
[root@oc1 ~]#

FIGURE 10-12 Database pre-installation summary

372 Oracle Database 11g DBA Handbook

Creating the RAC Database with the Database Creation Assistant
Launching the Database Creation Assistant (DBCA) for creating a RAC database is much the same
as launching DBCA for a single instance database; if DBCA detects cluster software installed, it
gives you the option to install a RAC database or a single instance database, as you can see in
Figure 10-13, after DBCA is launched:

[oracle@oc1 ~] dbca &

After selecting the option to create a database, you see the dialog shown in Figure 10-14;
select the nodes that will participate in the cluster. In this case, you select all nodes.

On the next screen, choose the type of database: data warehouse, general purpose or transaction
processing, or custom. For the purposes of creating a RAC, the type of database you select will
not change the configuration of the cluster.

On step 4 of DBCA, you give the cluster database a name and a SID prefix, just as you would
with a standalone database installation. Step 5 asks you if you want to configure your RAC to use
EM Database Control, and whether to configure the database with Enterprise Manager or Grid
Control. Specify your mail server and e-mail notification address. In step 6, you specify the
password for the privileged accounts in the database: SYS, SYSTEM, DBSNMP, and SYSMAN. In
step 7, you specify ASM as your database file storage method. Finally, in step 8 you specify the
parameters for the ASM instance, as you did in Chapter 4.

Automatic Storage Management (ASM) instances, although available for storage management
with standalone Oracle instances, are ideal for use with RAC. ASM eliminates both the need to

FIGURE 10-13 DBCA cluster type options

Chapter 10: Real Application Clusters 373

configure raw devices (raw devices are mapped once within an ASM instance and subsequently
are available for all nodes in the cluster) and the need for a cluster file system for database files.
Cluster file systems such as Oracle Cluster File System (OCFS) are still available if you want your
ORACLE_HOME on a cluster file system instead of a copy on each node in the cluster. However,
Oracle best practices recommends that each node have its own local copy of the Oracle software.
More details on how to configure and use ASM can be found in Chapter 4. If you use ASM, it only
needs to be configured once, during these steps.

NOTE
OCFS version 2.x supports a shared Oracle Home.

The next few screens track the progress of the creation of the ASM instance. After this process
is completed, you are prompted to create the first ASM disk group, as you can see in Figure 10-15.
You choose two of the raw devices available to be the DATA1 disk group using normal redundancy.
Notice that I had to specify /dev/oracleasm/disks/* as the Disk Discovery Path for OUI to recognize
the ASMLib disk groups I created earlier in this chapter. Additionally, you create the RECOV1 disk
group using the remaining two disk groups; this disk group will be used to mirror the control file
and redo log files as well as to host the Flash Recovery Area. In Figure 10-16, you specify DATA1
as the disk group for database storage. In Figure 10-17, you specify RECOV1 for the Flash
Recovery Area.

FIGURE 10-14 Nodes to include for RAC installation

374 Oracle Database 11g DBA Handbook

FIGURE 10-15 Creating ASM raw disk #1

FIGURE 10-16 Selecting the ASM disk group for storage

Chapter 10: Real Application Clusters 375

As part of the database creation process, OUI creates several services in tnsnames.ora, one for
the cluster database (with load balancing enabled) and one for each instance, as you can see in
this listing:

Generated by Oracle configuration tools.

RAC =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc2)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc3)(PORT = 1521))
 (LOAD_BALANCE = yes)
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac.world)
)
)

LISTENERS_RAC =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc1)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc2)(PORT = 1521))
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc3)(PORT = 1521))
)

FIGURE 10-17 Selecting the ASM disk for Flash Recovery Area

376 Oracle Database 11g DBA Handbook

RAC3 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc3)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac.world)
 (INSTANCE_NAME = rac3)
)
)

RAC2 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc2)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac.world)
 (INSTANCE_NAME = rac2)
)
)

RAC1 =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = voc1)(PORT = 1521))
 (CONNECT_DATA =
 (SERVER = DEDICATED)
 (SERVICE_NAME = rac.world)
 (INSTANCE_NAME = rac1)
)
)

Notice that each node in the RAC database has its own entry so that you may connect to a
specific node when necessary. Note also that the hostnames for each node are using the virtual
node names instead of the physical node names.

Running the Oracle Network Configuration Assistant (netca) on a RAC node gives you many
more options for service failover. In this example, I create a service called racsvc with rac1 as the
preferred node for all connections but failing over to node rac2 or rac3 if rac1 goes down, as you
can see in the resulting entry in tnsnames.ora:racsvc:

 (description =
 (address = (protocol = tcp)(host = voc1)(port = 1521))
 (address = (protocol = tcp)(host = voc2)(port = 1521))
 (address = (protocol = tcp)(host = voc3)(port = 1521))
 (load_balance = yes)
 (connect_data =
 (server = dedicated)
 (service_name = racsvc.world)
 (failover_mode =
 (type = select)
 (method = basic)
 (retries = 180)
 (delay = 5)
)
)

Chapter 10: Real Application Clusters 377

The entry for racsvc has a few additional parameters for FAILOVER_MODE; these modes and
their values are defined in the following list:

type The type of failover. Specifying session creates a new session for the client, but
this does not preserve the position in a cursor when you are running a SELECT statement.
Specifying select preserves the state of the cursor during a SELECT, but it involves extra
overhead on the client side. The default, none, disables failover functionality.

method How fast failover occurs. Using a value of basic establishes connections when
the failover occurs, and this incurs no overhead on the backup server(s). A value of
preconnect provides faster failover, but as the name implies, it uses resources on the
backup server(s) even when no failover scenario is active.

retries The number of times to attempt to connection after a failover.

delay The amount of time, in seconds, to wait between connection attempts when a
failover scenario is active.

Later in this chapter, I will show you how connecting to the racsvc service ensures high
availability for client connections when the client connects to a node and the node fails.

The next few screens are the same as for a single-instance database installation; see the
appendix for the options available on these screens. Figure 10-18 summarizes the cluster database
installation, which includes the location of the database’s SPFILE on the DATA1 disk group.

■

■

■

■

FIGURE 10-18 DBCA RAC database creation complete

378 Oracle Database 11g DBA Handbook

Once the installation is complete, EM Database Control is automatically configured and started,
just as it is with a single-instance installation; however, you can manage the entire cluster and not
just individual nodes.

NOTE
Installing and configuring Enterprise Manager Grid Control 11g
is beyond the scope of this book; see the book Oracle Database
11g High Availability with RAC, Flashback & Data Guard for more
information.

In Figure 10-19, you see the characteristics of one of the redo log members for the cluster;
note that I placed one of the group’s members on the DATA1 disk group and the other on the
RECOV1 disk group. Because each disk group is mirrored on two different raw devices, you
have the equivalent of four-way redundancy for the members of your redo log group.

RAC Characteristics
A RAC instance is different in many ways from a standalone instance; in this section, I will show
you the initialization parameters that are specific to a RAC database. In addition, we’ll show you
some of the data dictionary views and dynamic performance views that are either unique to a
RAC or have columns that are only populated when the instance is part of a RAC.

FIGURE 10-19 EM DB Control RAC redo log group members

Chapter 10: Real Application Clusters 379

Server Parameter File Characteristics
As you saw previously in the section “Creating the RAC Database with the Database Configuration
Assistant,” the server parameter file (SPFILE) resides on the DATA1 disk group and therefore is
shared by each node in the cluster. Within the SPFILE, you can assign different values for given
parameters on an instance-by-instance basis; in other words, the value for an initialization parameter
can differ between instances. If an initialization parameter is the same for all nodes in the cluster,
it is prefixed with “*.”; otherwise, it is prefixed with the node name.

In this example, the physical memory on the cluster server oc2 is temporarily reduced due
to other applications that are currently running on the server (ideally, though, you have no other
applications running on the server except for Oracle!). Therefore, to reduce the demands of the
instance on the server, you will change the value of MEMORY_TARGET for the instance rac2:

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 423624704

SQL> alter system set memory_target = 256m sid='rac2';

System altered.

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 423624704
rac2 memory_target 268435456

Once the memory issue has been resolved, you can restore the size of the shared pool on the
rac2 instance as follows:

SQL> alter system set memory_target = 404m sid='rac2';

System altered.
SQL>

Alternatively, and usually more simply, you want to reset the value to the same value for the
rest of the cluster; in this situation, you can use the reset option of the alter system command:

SQL> alter system reset memory_target sid = 'rac2';

System altered.

SQL> select sid, name, value
 2 from v$spparameter where name = 'memory_target';

380 Oracle Database 11g DBA Handbook

SID NAME VALUE
---------- -------------------- ----------------
* memory_target 423624704

SQL>

RAC-related Initialization Parameters
A number of initialization parameters are used only in a RAC environment. Although these
initialization parameters exist in any instance, in a single-instance environment they are either
null or have a value of 1 (for example, INSTANCE_NUMBER). In Table 10-3, I give you an
overview of some of the key RAC-related initialization parameters.

Dynamic Performance Views
In a single-instance environment, all dynamic performance views that begin with V$ have a
corresponding view beginning with GV$, with the additional column INST_ID always set to 1. For a
RAC environment with two nodes, the GV$ views have twice as many rows as the corresponding
V$ views; for a three-node RAC, there are three times as many rows, and so forth. In the sections
that follow, we’ll review some of the V$ dynamic performance views that show the same contents
regardless of the node you are connected to, along with some of the GV$ views that can show
you the contents of the V$ views on each node without connecting to each node explicitly.

Initialization Parameter Description

INSTANCE_NUMBER Unique number identifying this instance in the
cluster.

INSTANCE_NAME The unique name of this instance within the
cluster; typically the cluster name with a numeric
suffix.

CLUSTER_DATABASE This parameter is TRUE if this instance is
participating in a RAC environment.

CLUSTER_DATABASE_INSTANCES The number of instances configured for this
cluster, whether each instance is active or not.

ACTIVE_INSTANCE_COUNT Specifies the primary instance in a two-node
cluster; otherwise, it is the number of instances
in the cluster.

CLUSTER_INTERCONNECTS Specifies the network used for the cluster’s IPC
traffic.

MAX_COMMIT_PROPAGATION_DELAY Controls how fast committed transactions
are propagated to other nodes. This value is
deprecated as of Oracle Database 11g.

TABLE 10-3 RAC-related Initialization Parameters

Chapter 10: Real Application Clusters 381

Common Database File Views
Some dynamic performance views are the same whether you’re in a RAC environment or a
single-instance environment; the ASM configuration is a perfect example of this. In this query run
on any database instance in the cluster, you want to verify that all your database files are stored in
one of the two ASM disk groups, +DATA1or +RECOV1:

SQL> select name from v$datafile union
 2 select name from v$tempfile union
 3 select member from v$logfile union
 4 select name from v$controlfile union
 5 select name from v$flashback_database_logfile;

NAME

+DATA1/rac/controlfile/current.260.631034951
+DATA1/rac/datafile/example.264.631035151
+DATA1/rac/datafile/sysaux.257.631034659
+DATA1/rac/datafile/system.256.631034649
+DATA1/rac/datafile/undotbs1.258.631034665
+DATA1/rac/datafile/undotbs2.265.631035931
+DATA1/rac/datafile/undotbs3.266.631035935
+DATA1/rac/datafile/users.259.631034665
+DATA1/rac/onlinelog/group_1.261.631034959
+DATA1/rac/onlinelog/group_2.262.631034973
+DATA1/rac/onlinelog/group_3.269.631036295
+DATA1/rac/onlinelog/group_4.270.631036303
+DATA1/rac/onlinelog/group_5.267.631036273
+DATA1/rac/onlinelog/group_6.268.631036281
+DATA1/rac/tempfile/temp.263.631035129
+RECOV1/rac/controlfile/current.256.631034953
+RECOV1/rac/onlinelog/group_1.257.631034965
+RECOV1/rac/onlinelog/group_2.258.631034977
+RECOV1/rac/onlinelog/group_3.261.631036301
+RECOV1/rac/onlinelog/group_4.262.631036307
+RECOV1/rac/onlinelog/group_5.259.631036277
+RECOV1/rac/onlinelog/group_6.260.631036285

22 rows selected.

SQL> show parameter spfile

NAME TYPE VALUE
--------------------- ----------- --------------------------
spfile string +DATA1/rac/spfilerac.ora
SQL>

382 Oracle Database 11g DBA Handbook

Cluster-Aware Dynamic Performance Views
The GV$ views make it easy to view each instance’s characteristics in a single SELECT statement,
while at the same time filtering out nodes that you do not want to see; these views also make it
easier to aggregate totals from some or all of the nodes in the cluster, as in this example:

SQL> select nvl(to_char(inst_id),'TOTAL') INST#,
 2 count(inst_id) sessions from gv$session
 3 group by rollup(inst_id)
 4 order by inst_id;

INST# SESSIONS
-------- ----------
1 48
2 48
3 44
TOTAL 140

4 rows selected.

From this query, you can see the number of sessions per instance and the total number of
instances for the cluster using the view GV$SESSION.

RAC Maintenance
Most of the maintenance operations you perform on a single-node instance apply directly to a
multiple-node RAC environment. In this section, I will review the basics for maintaining a RAC—
including starting up a RAC and discussing how redo logs and undo tablespaces work—and then
work through an example of an instance failure scenario using Transparent Application Failover
(TAF) as well as rebuilding a failed node and adding it back to the cluster.

Starting Up a RAC
Starting up a RAC is not much different from starting up a standalone instance; the nodes in a RAC
can start up in any order, and they can be shut down and started up at any time with minimal
impact to the rest of the cluster. During database startup, first the ASM instance starts and mounts
the shared disk groups; next, the RDBMS instance starts and joins the cluster.

On Unix, the file /etc/oratab can be modified to auto-start the instances (both the ASM instance
and the RDBMS instance) on each cluster:

This file is used by ORACLE utilities. It is created by root.sh
and updated by the Database Configuration Assistant when creating
a database.

A colon, ':', is used as the field terminator. A new line terminates
the entry. Lines beginning with a pound sign, '#', are comments.
#
Entries are of the form:
$ORACLE_SID:$ORACLE_HOME:<N|Y>:
#
The first and second fields are the system identifier and home
directory of the database respectively. The third filed indicates

Chapter 10: Real Application Clusters 383

to the dbstart utility that the database should , "Y", or should not,
"N", be brought up at system boot time.
#
Multiple entries with the same $ORACLE_SID are not allowed.
#
#
+ASM1:/u01/app/oracle/product/11.1.0/db_1:Y
rac:/u01/app/oracle/product/11.1.0/db_1:Y

Redo Logs in a RAC Environment
As with a single-node instance, online redo logs are used for instance recovery in a RAC
environment; each instance in a RAC environment has its own set of online redo log files that
are used to roll forward all information in the redo logs and then roll back any uncommitted
transactions initiated on that node using the undo tablespace.

Even before the failed instance has restarted, one of the surviving instances detects the instance
failure and uses the online redo log files to ensure that no committed transactions are lost; if this
process completes before the failed instance restarts, the restarted instance does not need instance
recovery. Even if more than one instance fails, all that is required for instance recovery is one
remaining node. If all instances in a RAC fail, the first instance that starts up will perform instance
recovery for the database using the online redo log files from all instances in the cluster.

If media recovery is required and the entire database must be recovered, all instances except
for one must be shut down and media recovery is performed from a single instance. If you are
recovering noncritical database files, all nodes may be up as long as the tablespaces containing
the files to be recovered are marked as OFFLINE.

Undo Tablespaces in a RAC Environment
As with redo logs, each instance in a RAC environment must have its own undo tablespace on
a shared drive or disk group. This undo tablespace is used for rolling back transactions during
normal transactional operations or during instance recovery. In addition, the undo tablespace is
used by other nodes in the cluster to support read consistency for transactions that are reading
rows from a table on node rac2 while a data-entry process on node rac1 makes updates to the
same table and has not yet committed the transaction. The user on rac2 needs to see the before-
image data stored in rac1’s undo tablespace. This is why all undo tablespaces must be visible to
all nodes in the cluster.

Failover Scenarios and TAF
If you have configured your client correctly and the instance to which the client is connected to
fails, the client connection is rapidly switched to another instance in the cluster and processing
can continue with only a slight delay in response time.

Here is the tnsnames entry for the service racsvc I created earlier:

racsvc =
 (description =
 (address = (protocol = tcp)(host = voc1)(port = 1521))
 (address = (protocol = tcp)(host = voc2)(port = 1521))
 (address = (protocol = tcp)(host = voc3)(port = 1521))
 (load_balance = yes)
 (connect_data =
 (server = dedicated)

384 Oracle Database 11g DBA Handbook

 (service_name = racsvc.world)
 (failover_mode =
 (type = select)
 (method = basic)
 (retries = 180)
 (delay = 5)
)
)
)

I will show you what happens and how you will know if a session is connected to the cluster
and its instance fails. First, you connect to the cluster via racsvc and find out the node and instance
that you are connected to:

SQL> connect rjb/rjb@racsvc;
Connected.
SQL> select instance_name, host_name, failover_type,
 2 failover_method, failed_over
 3 from v$instance
 4 cross join
 5 (select failover_type, failover_method, failed_over
 6 from v$session
 7 where username = 'RJB');

INSTANCE_NAME HOST_NAME FAILOVER_TYPE FAILOVER_METHOD FAILED_OVER
------------- --------- ------------- --------------- -----------
rac1 oc1 SELECT BASIC NO

SQL>

You are using the columns from V$INSTANCE to give you the instance name and host name
that you are connected to and then joining this to V$SESSION and retrieving the columns related
to failover, which are only populated in a RAC environment. In this case, the session has not yet
failed over, and the failover type is BASIC, as I specified when I created the service.

Next, you will shut down instance rac1 from another session while you are still connected to
the first session:

SQL> connect system/manager@rac1
Connected.
SQL> shutdown immediate
Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

Back at your user session, you rerun the query to find out what node you are connected to:

SQL> select instance_name, host_name, failover_type,
 2 failover_method, failed_over
 3 from v$instance
 4 cross join
 5 (select failover_type, failover_method, failed_over

Chapter 10: Real Application Clusters 385

 6 from v$session
 7 where username = 'RJB');

INSTANCE_NAME HOST_NAME FAILOVER_TYPE FAILOVER_METHOD FAILED_OVER
------------- --------- ------------- --------------- -----------
rac3 oc3 SELECT BASIC YES

SQL>

If you were running a query at the time the instance was shut down, your query would pause
for a second or two and then continue as if nothing happened. If your result set is quite large and
you already retrieved most of the result set, the pause will be slightly longer since the first part of
the result set must be re-queried and discarded.

RAC Node Failure Scenario
One of the benefits of a RAC environment is your ability to add or remove nodes to meet changing
resource demands. One server that is underutilized in one business unit may be needed in another
business unit that is entering its peak processing period. Adding or removing a node in a RAC
environment may also be driven by a failure of a node; while the remaining nodes in the cluster
service ongoing requests, you will have to repair or replace the missing node and add it back to
the cluster without bringing down the rest of the cluster.

In this section, we’ll show you the steps required to remove a node’s metadata from the
cluster registry and then rebuild a node and add it back to the cluster. The assumption in this
scenario is that the local hard disk of the third cluster node is damaged beyond repair; therefore,
you will rebuild the node from scratch and add it to the cluster registry. After this step, you will
reinstall the Oracle software and create the instance as part of the database cluster.

Remove the Instance
Even if the instance on the failed server is not available, you still want to remove any traces of the
instance from the remaining nodes in the cluster. You can use the srvctl command to remove
the instance from the cluster, as in this example:

[oracle@oc1 ~]$ srvctl remove instance -d rac -i rac3
Remove instance rac3 for the database rac? (y/[n]) y
[oracle@oc1 ~]$

The parameter -d rac specifies the database to be modified, and -i rac3 specifies the instance
to be removed from the RAC.

Remove the Node from the Cluster
To remove the server itself from the cluster, execute the rootdeltetenode.sh command from the
CRS_HOME directory, specifying both the node name and the CRS-assigned node number, as in
the following example:

[root@oc1 root] # cd /u01/app/11.1.0/crs/bin
[root@oc1 bin]# ./olsnodes -n
oc1 1
oc2 2
oc3 3
[root@oc1 bin]# cd ../install

386 Oracle Database 11g DBA Handbook

[root@oc1 install]# ./rootdeletenode.sh oc3,3
clscfg: EXISTING configuration version 4 detected.
. . .
Successfully deleted 13 values from OCR.
Key SYSTEM.css.interfaces.nodeoc3 marked for deletion is not there.
Ignoring.
Successfully deleted 5 keys from OCR.
Node deletion operation successful.
'oc3,3' deleted successfully
[root@oc1 install]# cd ../bin
[root@oc1 bin]# ./olsnodes -n
oc1 1
oc2 2
[root@oc1 bin]#

You also need to remove the node from the list of node locations maintained by the Oracle
Universal Installer (OUI); in the directory $ORACLE_BASE/oraInventory/ContentsXML, identify
any files that reference the deleted node, such as this example in the file inventory.xml:

<HOME NAME="OraCrs11g_home" LOC="/u01/app/11.1.0/crs"
 TYPE="O" IDX="1" CRS="true">
 <NODE_LIST>
 <NODE NAME="oc1"/>
 <NODE NAME="oc2"/>
 <NODE NAME="oc3"/>
 </NODE_LIST>
</HOME>

NOTE
See MetaLink for other procedures specific to your environment that
may need to be performed to remove a node from a cluster.

Note that you have specified the node name of the server that hosts the instance. There are
now only two nodes in your CRS clusterware environment.

Install Operating System Software
The next step is to reinstall the server software and prepare the environment as you did in the
examples earlier in this chapter, in the section “Operating System Configuration.” At the end of
this process, you will have the Oracle directories created along with the oracle user account, but
without the CRS and database software installed. You will also assign the public, private, and
virtual IP addresses using the same addresses you used when this node was first created. As a
result, you will not have to change the /etc/hosts file on the remaining nodes in the cluster.

Add the Node to the Cluster with CRS
The node is ready to add to the cluster at the clusterware layer so that the other nodes in the
cluster consider it to be a part of the cluster again. From one of the remaining nodes in the cluster,
change to $CRS_HOME/oui/bin and run the addNode.sh command, which launches OUI and
prompts you for the new node as if you were specifying a third node during the initial installation.

Chapter 10: Real Application Clusters 387

After presenting a summary of the existing nodes and the node to be added, you click Next
and the CRS files are copied to the new node. To start the services on the new node, you are
prompted to run rootaddnode.sh on the active node and root.sh on the new node; the output
is very similar to what you saw when you ran /u01/app/oraInventory/orainstRoot.sh and /u01/
app/11.1.0/crs/root.sh during initial installation of the cluster.

Install Oracle Software on the New Node
In this step, you will copy the Oracle software from one of the existing nodes in the cluster to
the new node. From $ORACLE_HOME/oui/bin run the addNode.sh script. Make sure you are
in $ORACLE_HOME and not $CRS_HOME.

The OUI will start in Add Node mode, and after the startup screens, you will see the Specify
Cluster Nodes screen, where you add the new node oc3.

After you see the summary screen, similar to the screen you saw for the CRS install, click Next
to copy the Oracle software to the new node. After this step completes, you will be prompted to
run the root.sh script on the new node. In the final step of the procedure, the updated cluster
information is saved to the OCR disk.

Create a New Oracle Instance
To create the Oracle instance on the new node, follow these steps:

 1. Run DBCA from an existing node and choose a RAC database.

 2. On the next screen, choose Instance Management and then add an instance to the
existing cluster.

 3. Next, choose which cluster database to add the node to. As you can see, the only option
available is the database from this chapter. Provide an Oracle username and password
with SYSDBA privileges to proceed, as shown here.

388 Oracle Database 11g DBA Handbook

 4. Confirm the existing instances in the cluster, and click Next.

 5. On the next screen, you are prompted for the new instance name. OUI makes its best
guess based on the existing cluster configuration, as you can see here.

 6. In step 6, you will see the existing cluster services; update the services with the new node
name as appropriate.

 7. On the last step, step 7, specify the tablespaces, datafiles, and redo log groups that
will be added for this instance; in this case, an undo tablespace, the datafile for the
tablespace, and two redo log groups, shown here.

Chapter 10: Real Application Clusters 389

 8. A confirmation screen appears when the instance is up and running; the cluster once
again has three nodes:

SQL> select inst_id from gv$instance;

INST_ID

 1
 2
 3

Tuning a RAC Node
The first step in tuning a RAC is to tune the instance first. If an individual instance is not tuned
correctly, the performance of the entire RAC will not be optimal. You can use the Automatic
Workload Repository (AWR) to tune an instance as if it was not part of a cluster.

Using EM Database Control, you can further leverage the statistics from the AWR to produce
reports on a RAC-wide basis. In Figure 10-20, you can see how EM Database Control makes it
easy to analyze the performance of the shared global cache as well as the cache performance on
an instance-by-instance basis.

FIGURE 10-20 EM Database Control RAC cache statistics

390 Oracle Database 11g DBA Handbook

Tablespace Management
In a RAC environment, tablespace management is much the same as in a single-instance
environment. There is still only one database and one set of tablespaces to manage; it’s just
that there is more than one instance accessing the tablespaces.

Automatic Segment Space Management (ASSM), introduced in Oracle9i, enhances the
usability of tablespaces in a RAC environment. Because you no longer have to worry about more
freelists and freelist groups to support multiple instances, and therefore more concurrent writers to
a table, adding more instances to the cluster does not necessarily require table reorganizations.

CHAPTER
11

Backup and Recovery
Options

391

392 Oracle Database 11g DBA Handbook

racle provides a variety of backup procedures and options that help protect an
Oracle database. If they are properly implemented, these options will allow you
to effectively back up your databases and recover them easily and efficiently.

Oracle’s backup capabilities include logical and physical backups, both of
which have a number of options available. This chapter will not detail every

possible option and recovery scenario; rather, I will focus on using the best options in the most
effective manner possible. You will see how to best integrate the available backup procedures
with each other and with the operating system backups. You will also see details on the options
for Data Pump Export and Import, which were introduced in Oracle Database 10g.

Capabilities
There are three standard methods of backing up an Oracle database: exports, offline backups, and
online backups. An export is a logical backup of the database; the other two backup methods are
physical file backups. In the following sections, you will see each of these options described. The
standard (and preferred) tool for physical backups is Oracle’s Recovery Manager (RMAN) utility;
see Chapter 12 for details on the implementation and usage of RMAN.

A robust backup strategy includes both physical and logical backups. In general, production
databases rely on physical backups as their primary backup method, and logical backups serve as
the secondary method. For development databases and for some small data movement processing,
logical backups offer a viable solution. You should understand the implications and uses of both
physical and logical backups in order to develop the most appropriate solution for your applications.

Logical Backups
A logical backup of a database involves reading a set of database records and writing them to a
file. These records are read independently of their physical location. In Oracle, the Data Pump
Export utility performs this type of database backup. To recover using the file generated from a
Data Pump Export, you use Data Pump Import.

NOTE
Oracle’s Import and Export utilities, available prior to Oracle Database
10g, are still provided as part of the Oracle 11g installation. Users
of the old Export and Import utilities are encouraged to replace their
usage with Data Pump Export and Data Pump Import.

Oracle’s Data Pump Export utility queries the database, including the data dictionary, and
writes the output to an XML file called an export dump file. You can export the full database,
specific users, tablespaces, or specific tables. During exports, you may choose whether or not
to export the data dictionary information associated with tables, such as grants, indexes, and
constraints. The file written by Data Pump Export will contain the commands necessary to
completely re-create all the chosen objects and data.

Once data has been exported via Data Pump Export, it may be imported via the Data Pump
Import utility. Data Pump Import reads the dump file created by Data Pump Export and executes
the commands found there. For example, these commands may include a create table command,
followed by an insert command to load data into the table.

O

Chapter 11: Backup and Recovery Options 393

NOTE
Data Pump Export and Import can use a network connection for
a simultaneous export and import operation, avoiding the use of
intermediate operating system files and reducing total export and
import time.

The data that has been exported does not have to be imported into the same database, or the
same schema, as was used to generate the export dump file. You may use the export dump file to
create a duplicate set of the exported objects under a different schema or in a separate database.

You can import either all or part of the exported data. If you import the entire export dump file
from a full export, then all the database objects, including tablespaces, datafiles, and users, will
be created during the import. However, it is often useful to precreate tablespaces and users in
order to specify the physical distribution of objects in the database.

If you are only going to import part of the data from the export dump file, the tablespaces,
datafiles, and users that will own and store that data should be set up prior to the import.

Physical Backups
Physical backups involve copying the files that constitute the database. These backups are also
referred to as file system backups because they involve using operating system file backup
commands. Oracle supports two different types of physical file backups: offline backups and the
online backups (also known as cold and hot backups, respectively). You can use the RMAN utility
(see Chapter 12) to perform all physical backups. You may optionally choose to write your own
scripts to perform physical backups, but doing so will prevent you from obtaining many of the
benefits of the RMAN approach.

Offline Backups
Consistent offline backups occur when the database has been shut down normally (that is, not
due to instance failure) using the normal, immediate, or transactional option of the shutdown
command. While the database is “offline,” the following files should be backed up:

All datafiles

All controlfiles

All archived redo log files

The init.ora file or server parameter file (SPFILE)

CAUTION
You should never, ever, want or need to back up online redo log files.
Although there is a slight time-savings for restoring from a cold backup
after a clean shutdown, the risk of losing committed transactions
outweighs the convenience. Your online redo logs should be mirrored
and multiplexed so that you (virtually) never will lose the current
online log file.

■

■

■

■

394 Oracle Database 11g DBA Handbook

Having all these files backed up while the database is closed provides a complete image of
the database as it existed at the time it was closed. The full set of these files could be retrieved
from the backups at a later date, and the database would be able to function. It is not valid to
perform a file system backup of the database while it is open unless an online backup is being
performed. Offline backups that occur following database aborts will also be considered
inconsistent and may require more effort to use during recoveries if they are usable.

Online Backups
You can use online backups for any database that is running in ARCHIVELOG mode. In this
mode, the online redo logs are archived, creating a log of all transactions within the database.

Oracle writes to the online redo log files in a cyclical fashion: After filling the first log file, it
begins writing to the second, until that one fills, and then it begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the ARCH (Archiver) background process makes
a copy of each redo log file before overwriting it. These archived redo log files are usually written
to a disk device. The archived redo log files may also be written directly to a tape device, but disk
space is getting cheap enough that the additional cost of archiving to disk is offset by the time and
labor savings when a disaster recovery operation must occur.

NOTE
Most production databases, particularly those that support transaction-
processing applications, must be run in ARCHIVELOG mode.

You can perform file system backups of a database while that database is open, provided the
database is running in ARCHIVELOG mode. An online backup involves setting each tablespace
into a backup state, backing up its datafiles, and then restoring the tablespace to its normal state.

NOTE
When using the Oracle-supplied Recovery Manager (RMAN) utility,
you do not have to manually place each tablespace into a backup
state. RMAN reads the data blocks in the same manner Oracle uses
for queries.

The database can be fully recovered from an online backup, and it can, via the archived redo
logs, be rolled forward to any point in time before the failure. When the database is then opened,
any committed transactions that were in the database at the time of the failure will have been
restored, and any uncommitted transactions will have been rolled back.

While the database is open, the following files can be backed up:

All datafiles

All archived redo log files

One control file, via the alter database backup controlfile

The server parameter file (SPFILE)

■

■

■

■

Chapter 11: Backup and Recovery Options 395

NOTE
RMAN automatically backs up the control file and SPFILE whenever
the entire database or the SYSTEM tablespace are backed up.

Online backup procedures are very powerful for two reasons. First, they provide full point-in-
time recovery. Second, they allow the database to remain open during the file system backup.
Even databases that cannot be shut down due to user requirements can still have file-system
backups. Keeping the database open also keeps the System Global Area (SGA) of the database
instance from being cleared when the database is shut down and restarted. Keeping the SGA
memory from being cleared will improve the database’s performance because it will reduce the
number of physical I/Os required by the database.

NOTE
You can use the flashback database option, introduced in Oracle
Database 10g, to roll the database backward in time without relying
on physical backups. To use the flashback database command,
you must have a Flash Recovery Area defined, be running in
ARCHIVELOG mode, and must have issued the alter database
flashback on command while the database was mounted but not
open. Logs written to the Flash Recovery Area are used by Oracle
during the flashback database operation.

Using Data Pump Export and Import
Introduced with Oracle Database 10g, Data Pump provides a server-based data-extraction and
data-import utility. Its features include significant architectural and functional enhancements over
the original Import and Export utilities. Data Pump allows you to stop and restart jobs, see the
status of running jobs, and restrict the data that is exported and imported.

NOTE
Data Pump files are incompatible with those generated from the
original Export utility.

Data pump runs as a server process, benefiting users in many ways. The client process that
starts the job can disconnect and later reattach to the job. Performance is enhanced (as compared
to the original export/import) because the data no longer has to be processed by a client program.
Data Pump extractions and loads can be parallelized, further enhancing performance.

In this chapter, you will see how to use Data Pump, along with descriptions and examples of
its major options; a more thorough treatment of Data Pump (and more examples) in the context
of large database management can be found in Chapter 16, “Managing Large Databases.”

Creating a Directory
Data Pump requires you to create directories for the datafiles and log files it will create and read.
Use the create directory command to create the directory pointer within Oracle to the external
directory you will use. Users who will access the Data Pump files must have the READ and
WRITE privileges on the directory.

Before you start, verify that the external directory exists and that the user who will be issuing
the create directory command has the CREATE ANY DIRECTORY system privilege.

396 Oracle Database 11g DBA Handbook

NOTE
In a default installation of Oracle Database 10g or 11g, a directory
object called DATA_PUMP_DIR is created and points to the directory
$ORACLE_BASE/admin/database_name/dpdump.

The following example creates a directory object called DPXFER in the Oracle instance dw
referencing the file system directory /Temp/DataPumpXfer and grants READ and WRITE access
to the user RJB:

SQL> create directory DPXFER as '/Temp/DataPumpXfer';

Directory created.

SQL> grant read, write on directory DPXFER to rjb;

Grant succeeded.

SQL>

The RJB user can now use the DPXFER directory for Data Pump jobs. The file system directory
/Temp/DataPumpXfer can exist on the source server, the target server, or any server on the network,
as long as each server can access the directory and the permissions on the directory allow read/
write access by the oracle user (the user that owns the Oracle executable files).

On the server oc1, the administrator creates a directory with the same name that references
the same network file system, except that privileges on the directory are granted to the HR user
instead:

SQL> create directory DPXFER as '/Temp/DataPumpXfer';

Directory created.

SQL> grant read,write on directory DPXFER to HR;

Grant succeeded.

SQL>

Data Pump Export Options
Oracle provides a utility called expdp that serves as the interface to Data Pump. If you have
previous experience with the Export utility, some of the options will be familiar. However, some
significant features are available only via Data Pump. Table 11-1 shows the command-line input
parameters for expdp when a job is created.

As detailed in Table 11-1, five modes of Data Pump exports are supported:

Full Export all database data and metadata

Schema Export data and metadata for specific user schemas

Tablespace Export data and metadata for tablespaces

Table Export data and metadata for tables and table partitions

Transportable Tablespace Export metadata for specific tablespaces in preparation for
transporting a tablespace from one database to another

■

■

■

■

■

Chapter 11: Backup and Recovery Options 397

Parameter Description

ATTACH Connects a client session to a currently running Data Pump
Export job.

COMPRESS Specifies which data to compress: ALL, DATA_ONLY,
METADATA_ONLY, NONE.

CONTENT Filters what is exported: DATA_ONLY, METADATA_ONLY,
or ALL.

DATA_OPTIONS If set to XML_CLOBS, then XMLType columns are exported
uncompressed.

DIRECTORY Specifies the destination directory for the log file and the
dump file set.

DUMPFILE Specifies the names and directories for dump files.

ENCRYPTION Encryption level of the output: ALL, DATA_ONLY,
ENCRYPTED_COLUMNS_ONLY, METADATA_ONLY, NONE.

ENCRYPTION_ALGORITHM The encryption method to perform the encryption: AES128,
AES192, EAS256.

ENCRYPTION_MODE Uses a password or Oracle wallet or both: values are DUAL,
PASSWORD, TRANSPARENT.

ESTIMATE Determines the method used to estimate the dump file size
(BLOCKS or STATISTICS).

ESTIMATE_ONLY A Y/N flag is used to instruct Data Pump whether the data
should be exported or just estimated.

EXCLUDE Specifies the criteria for excluding objects and data from
being exported.

FILESIZE Specifies the maximum file size of each export dump file.

FLASHBACK_SCN The SCN for the database to flash back to during the export.

FLASHBACK_TIME The timestamp for the database to flash back to during
the export. FLASHBACK_TIME and FLASHBACK_SCN are
mutually exclusive.

FULL Tells Data Pump to export all data and metadata in a Full
mode export.

HELP Displays a list of available commands and options.

INCLUDE Specifies the criteria for which objects and data will be
exported.

JOB_NAME Specifies a name for the job; the default is system-generated.

LOGFILE The name and optional directory name for the export log.

NETWORK_LINK Specifies the source database link for a Data Pump job
exporting a remote database.

TABLE 11-1 Command-Line Input Parameters for expdp

398 Oracle Database 11g DBA Handbook

NOTE
You must have the EXP_FULL_DATABASE system privilege in order to
perform a Full export or a Transportable Tablespace export.

When you submit a job, Oracle will give the job a system-generated name. If you specify a
name for the job via the JOB_NAME parameter, you must be certain that the job name will not
conflict with the name of any table or view in your schema. During Data Pump jobs, Oracle will
create and maintain a master table for the duration of the job. The master table will have the same
name as the Data Pump job, so its name cannot conflict with existing objects.

While a job is running, you can execute the commands listed in Table 11-2 via Data Pump’s
interface.

Parameter Description

NOLOGFILE A Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Export job.

PARFILE Names the parameter file to use, if any.

QUERY Filters rows from tables during the export.

REMAP_DATA Specifies a function that can transform a column or columns
in the data, for testing or masking sensitive data.

REUSE_DUMPFILES Overwrites existing dumpfiles.

SAMPLE Specifies a percentage of the data blocks to easily select a
percentage of the rows in each table.

SCHEMAS Names the schemas to be exported for a Schema mode
export.

STATUS Displays detailed status of the Data Pump job.

TABLES Lists the tables and partitions to be exported for a Table mode
export.

TABLESPACES Lists the tablespaces to be exported.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being exported should first
be verified as a self-contained set.

TRANSPORT_TABLESPACES Specifies a Transportable Tablespace mode export.

TRANSPORTABLE Exports metadata only for a table mode export.

VERSION Specifies the version of database objects to be created so
the dump file set may be compatible with earlier releases of
Oracle. The options are COMPATIBLE, LATEST, and database
version numbers (not lower than 9.2).

TABLE 11-1 Command-Line Input Parameters for expdp (continued)

Chapter 11: Backup and Recovery Options 399

Starting a Data Pump Export Job
You can store your job parameters in a parameter file, referenced via the PARFILE parameter of
expdp. For example, you can create a file named dp_rjb.par with the following entries:

directory=dpxfer
dumpfile=metadata_only.dmp
content=metadata_only

The logical data pump directory is DPXFER, the one I created earlier in the chapter. The data
pump export will only have metadata; the name of the dump file, metadata_only.dmp, reflects the
contents of the dump file. Here’s how you initiate a data pump job using this parameter file:

expdp rjb/rjb parfile=dp_rjb.par

Oracle will then pass the dp_rjb.par entries to the Data Pump Export job. A schema-type Data
Pump Export (which is the default) will be executed, and the output (metadata only, no table
rows) will be written to a file in the DPXFER directory. Here is the output from the expdp
command:

[oracle@dw ~]$ expdp rjb/rjb parfile=dp_rjb.par

Export: Release 11.1.0.6.0 - Production on Saturday, 25 August, 2007 9:45:57

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition
 Release 11.1.0.6.0 – Production

Parameter Description

ADD_FILE Adds dump files.

CONTINUE_CLIENT Exits the interactive mode and enter logging mode.

EXIT_CLIENT Exits the client session, but leave the server Data Pump Export job
running.

FILESIZE Redefines the default size for subsequent dump files.

HELP Displays online help for the import.

KILL_JOB Kills the current job and detach related client sessions.

PARALLEL Alters the number of workers for the Data Pump Export job.

START_JOB Restarts the attached job.

STATUS Displays a detailed status of the Data Pump job.

STOP_JOB Stops the job for later restart.

TABLE 11-2 Parameters for Interactive Mode Data Pump Export

400 Oracle Database 11g DBA Handbook

With the Partitioning, OLAP, Data Mining and Real Application Testing options
Starting "RJB"."SYS_EXPORT_SCHEMA_01": rjb/******** parfile=dp_rjb.par
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA
Master table "RJB"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for RJB.SYS_EXPORT_SCHEMA_01 is:
 /Temp/DataPumpXfer/metadata_only.dmp
Job "RJB"."SYS_EXPORT_SCHEMA_01" successfully completed at 09:48:12
[oracle@dw ~]$

The output file, as shown in the listing, is named metadata_only.dmp. The output dump file
contains a binary header and XML entries for re-creating the structures for the RJB schema. During
the export, Data Pump created and used an external table called SYS_EXPORT_SCHEMA_01.

NOTE
Dump files will not overwrite previously existing dump files in the
same directory unless you use the REUSE_DUMPFILES parameter.

You can use multiple directories and dump files for a single Data Pump export. Within the
DUMPFILE parameter setting, list the directory along with the filename, in this format:

DUMPFILE=directory1:file1.dmp,
 directory2:file2.dmp

Using multiple directories in the DUMPFILE parameter has two benefits: the Data Pump job can
use parallel processes (using the PARALLEL parameter), in addition to spreading out the dump file
to wherever disk space is available. You can also use the substitution variable %U in the filename
specification to automatically create multiple dump files that can be written to by multiple processes
automatically. Even if only one process is writing the dump file, using the %U substitution variable
in combination with the FILESIZE parameter will limit the size of each dump file.

Stopping and Restarting Running Jobs
After you have started a Data Pump Export job, you can close the client window you used to start
the job. Because it is server based, the export will continue to run. You can then attach to the job,
check its status, and alter it. For example, you can start the job via expdp:

expdp rjb/rjb parfile=dp_rjb.par

Press CTRL-C to leave the log display, and Data Pump will return you to the expdb prompt:

Export>

Chapter 11: Backup and Recovery Options 401

Exit to the client using the exit_client command:

Export> exit_client

Later, you can restart the client and attach to the currently running job under your schema:

expdp rjb/rjb attach

If you gave a name to your Data Pump Export job (or you identify the job name in the log file
when the job started), specify the name as part of the attach parameter. For example, if you had
named the job RJB_JOB, attach to the job by name:

expdp rjb/rjb attach=RJB_JOB

When you attach to a running job, Data Pump will display the status of the job: its basic
configuration parameters and its current status. You can then issue the continue_client command
to see the log entries as they are generated, or you can alter the running job:

Export> continue_client

In addition, you can stop a job using the stop_job command:

Export> stop_job

The job is not canceled, only suspended. With the job stopped, you can then add additional
dump files in new directories via the ADD_FILE option. You can then restart the job using start_job:

Export> START_JOB

You can specify a log file location for the export log file via the LOGFILE parameter. If you do
not specify a value for LOGFILE, the log file will be written to the same directory as the dump file.

Exporting from Another Database
You can use the NETWORK_LINK parameter to export data from a different database. If you are
logged into the HQ database and you have a database link to the DW database, Data Pump can
use that link to connect to the DW database and extract its data.

NOTE
If the source database is read-only, the user on the source database
must have a locally managed tablespace assigned as the temporary
tablespace; otherwise, the job will fail.

In your parameter file or on the expdp command line, set the NETWORK_LINK parameter
to the name of the database link. The Data Pump Export job will write the data from the remote
database to the directory defined in your local database.

Using EXCLUDE, INCLUDE, and QUERY
You can exclude or include sets of tables from the Data Pump Export via the EXCLUDE and
INCLUDE options. You can exclude objects by type and by name. If an object is excluded,
all its dependent objects are also excluded. The format for the EXCLUDE option is

EXCLUDE=object_type[:name_clause] [, ...]

402 Oracle Database 11g DBA Handbook

NOTE
You cannot specify EXCLUDE if you specify CONTENT=DATA_ONLY.

For example, to exclude the MARTHAG schema from a full export, the format of the
EXCLUDE option is as follows:

EXCLUDE=SCHEMA:"='MARTHAG'"

NOTE
You can specify more than one EXCLUDE option within the same
Data Pump Export job.

The EXCLUDE option in the preceding example contains a limiting condition within a set of
double quotes. The object_type variable can be any Oracle object type, including a grant, index,
or table. The name_clause variable restricts the value returned. For example, to exclude from the
export all tables whose names begin with TEMP, use the following EXCLUDE clause:

EXCLUDE=TABLE:"LIKE 'TEMP%'"

When you enter this at the command line on Linux, you may need to use escape characters
so the quotation marks and other special characters are properly passed to Oracle. Your expdp
command will look similar to this:

expdp rjb/rjb EXCLUDE=TABLE:\"LIKE \'TEMP%\'\"

NOTE
This example shows part of the syntax, not the full syntax for the
command.

If you do not provide a name_clause value, all objects of the specified type are excluded. For
example, to exclude all indexes, you would use an EXCLUDE clause similar to the following:

expdp rjb/rjb EXCLUDE=INDEX

For a listing of the objects you can filter, query the DATABASE_EXPORT_OBJECTS, SCHEMA_
EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS data dictionary views. If the object_type value
is CONSTRAINT, all constraints will be excluded except for NOT NULL. Additionally, constraints
needed for a table to be created successfully, such as a primary key constraint for an index-
organized table, cannot be excluded. If the object_type value is USER, the user definitions are
excluded, but the objects within the user schemas will still be exported. Use the SCHEMA object_
type, as shown in an earlier example, to exclude a user and all of the user’s objects. If the
object_type value is GRANT, all object grants and system privilege grants are excluded.

A second option, INCLUDE, is also available. When you use INCLUDE, only those objects
that pass the criteria are exported; all others are excluded. INCLUDE and EXCLUDE are mutually
exclusive. The format for INCLUDE is

INCLUDE = object_type[:name_clause] [, ...]

Chapter 11: Backup and Recovery Options 403

NOTE
You cannot specify INCLUDE if you specify CONTENT=DATA_ONLY.

For example, to export two specific tables and all procedures, your parameter file will include
two lines similar to the following:

INCLUDE=TABLE:"IN ('BOOKSHELF','BOOKSHELF_AUTHOR')"
INCLUDE=PROCEDURE

What rows will be exported for the objects that meet the EXCLUDE or INCLUDE criteria? By
default, all rows are exported for each table. You can use the QUERY option to limit the rows
returned. Here is the format for the QUERY parameter:

QUERY = [schema.][table_name:] query_clause

If you do not specify values for the schema and table_name variables, the query_clause will
be applied to all the exported tables. Because query_clause will usually include specific column
names, you should be very careful when selecting the tables to include in the export. You can
specify a QUERY value for a single table, as shown in the following example:

QUERY=BOOKSHELF:'"where rating > 2"'

As a result, the dump file will only contain rows from the BOOKSHELF table that meet the
QUERY criterion as well as any INCLUDE or EXCLUDE criteria. You can also apply these filters
during a subsequent Data Pump Import job, as described in the next section.

Data Pump Import Options
To import a dump file exported via Data Pump Export, use Data Pump Import. As with the export
process, the import process runs as a server-based job you can manage as it executes. You can
interact with Data Pump Import via the command-line interface, a parameter file, and an
interactive interface. Table 11-3 lists the parameters for the command-line interface.

As with Data Pump Export, five modes are supported in Data Pump Import:

Full Import all database data and metadata.

Schema Import data and metadata for specific user schemas.

Tablespace Import data and metadata for tablespaces.

Table Import data and metadata for tables and table partitions.

Transportable Tablespace Import metadata for specific tablespaces in preparation for
transporting a tablespace from the source database.

If no mode is specified, Data Pump Import attempts to load the entire dump file.

■

■

■

■

■

404 Oracle Database 11g DBA Handbook

Parameter Description

ATTACH Attaches the client to a server session and places you in interactive mode.

CONTENT Filters what is imported: ALL, DATA_ONLY, or METADATA_ONLY.

DATA_OPTIONS Specifies how to handle certain exceptions. As of Oracle Database 11g, the
only valid option is SKIP_CONSTRAINT_ERRORS.

DIRECTORY Specifies the location of the dump file set and the destination directory for the
log and SQL files.

DUMPFILE Specifies the names and, optionally, the directories for the dump file set.

ENCRYPTION_PASSWORD Specifies the password used to encrypt the export during a Data Pump Export.

ESTIMATE Determines the method used to estimate the dump file size (BLOCKS or
STATISTICS).

EXCLUDE Excludes objects and data from being exported.

FLASHBACK_SCN The SCN for the database to flash back to during the import.

FLASHBACK_TIME The timestamp for the database to flash back to during the import.

FULL A Y/N flag is used to specify that you want to import the full dump file.

HELP Displays online help for the import.

INCLUDE Specifies the criteria for objects to be imported.

JOB_NAME Specifies a name for the job; the default is system-generated.

LOGFILE The name and optional directory name for the import log.

NETWORK_LINK Specifies the source database link for a Data Pump job importing a remote
database.

NOLOGFILE A Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Import job.

PARFILE Names the parameter file to use, if any.

PARTITION_OPTIONS NONE creates the partitions with the same characteristics as the source.
MERGE merges partitions into one table, and DEPARTITION creates a new
table for each source partition.

QUERY Filters rows from tables during the import.

REMAP_DATA Remaps column contents using a user-defined function before it’s inserted into
the target database.

REMAP_DATAFILE Changes the name of the source datafile to the target datafile in the create
library, create tablespace, and create directory commands during the import.

REMAP_SCHEMA Imports data exported from the source schema into the target schema.

REMAP_TABLE Renames a table during import.

REMAP_TABLESPACE Imports data exported from the source tablespace into the target tablespace.

REUSE_DATAFILES Specifies whether existing datafiles should be reused by create tablespace
commands during Full mode imports.

SCHEMAS Names the schemas to be exported for a Schema mode import.

TABLE 11-3 Data Pump Import Command-Line Parameters

Chapter 11: Backup and Recovery Options 405

NOTE
The directory for the dump file and log file must already exist; see the
prior section on the create directory command.

Table 11-4 lists the parameters that are valid in the interactive mode of Data Pump Import.
Many of the Data Pump Import parameters are the same as those available for the Data Pump
Export. In the following sections, you’ll see how to start an import job, along with descriptions
of the major options unique to Data Pump Import.

Parameter Description

SKIP_UNUSABLE_INDEXES A Y/N flag. If set to Y, the import does not load data into tables whose indexes
are set to the Index Unusable state.

SQLFILE Names the file to which the DDL for the import will be written. The data and
metadata will not be loaded into the target database.

STATUS Displays a detailed status of the Data Pump job.

STREAMS_
CONFIGURATION

A Y/N flag is used to specify whether Streams configuration information should
be imported.

TABLE_EXISTS_ACTION Instructs Import how to proceed if the table being imported already exists.
Values include SKIP, APPEND, TRUNCATE, and REPLACE. The default is
APPEND if CONTENT=DATA_ONLY; otherwise, the default is SKIP.

TABLES Lists tables for a Table mode import.

TABLESPACES Lists tablespaces for a Tablespace mode import.

TRANSFORM Directs changes to the segment attributes or storage during import.

TRANSPORT_DATAFILES Lists the datafiles to be imported during a Transportable Tablespace mode import.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being imported should first be verified as a
self-contained set.

TRANSPORT_TABLESPACES Lists the tablespaces to be imported during a Transportable Tablespace mode
import.

TRANSPORTABLE Specifies whether the transportable option should be used with a table-mode
import (ALWAYS or NEVER).

VERSION Specifies the version of database objects to be created so the dump file set may
be compatible with earlier releases of Oracle. The options are COMPATIBLE,
LATEST, and database version numbers (not lower than 10.0.0). Only valid for
NETWORK_LINK and SQLFILE.

TABLE 11-3 Data Pump Import Command-Line Parameters (continued)

406 Oracle Database 11g DBA Handbook

Starting a Data Pump Import Job
You can start a Data Pump Import job via the impdp executable provided with Oracle Database
11g. Use the command-line parameters to specify the import mode and the locations for all the
files. You can store the parameter values in a parameter file and then reference the file via the
PARFILE option.

In the first export example of this chapter, using the RJB schema, the parameter file named rjb_
dp.par (copied to the destination and renamed to rjb_dp_imp.par) contained the following entries:

directory=dpxfer
dumpfile=metadata_only.dmp
content=metadata_only

If the Oracle directory object has the same name on the target database, you can re-use
the same parameter file. To create the RJB schema’s objects in a different schema on the target
database, use the REMAP_SCHEMA parameter as follows:

REMAP_SCHEMA=source_schema:target_schema

You can change the destination tablespace as well using the REMAP_TABLESPACE option.
Before starting the import, create a new user KFC as follows:

SQL> grant resource, connect to kfc identified by kfc;
Grant succeeded.
SQL>

Next, add the REMAP_SCHEMA parameter to the end of the parameter file you copied from
the source database:

directory=dpxfer
dumpfile=metadata_only.dmp

Parameter Description

CONTINUE_CLIENT Exits the interactive mode and enter logging mode. The job will
be restarted if idle.

EXIT_CLIENT Exits the client session, but leave the server Data Pump Import
job running.

HELP Displays online help for the import.

KILL_JOB Kills the current job and detach related client sessions.

PARALLEL Alters the number of workers for the Data Pump Import job.

START_JOB Restarts the attached job.

STATUS Displays detailed status of the Data Pump job.

STOP_JOB Stops the job for later restart.

TABLE 11-4 Interactive Parameters for Data Pump Import

Chapter 11: Backup and Recovery Options 407

content=metadata_only
remap_schema=RJB:KFC

NOTE
All dump files must be specified at the time the job is started.

You are now ready to start the import job. Because you are changing the original owner of
the schema, you must have the IMP_FULL_DATABASE system privilege. Data Pump Import jobs
are started using the impdp utility; here is the command, including the revised parameter file:

impdp system/verylongpassword parfile=dp_rjb_import.par

Oracle will now perform the import and display its progress. Because the NOLOGFILE option
was not specified, the log file for the import will be placed in the same directory as the dump file
and will be given the name import.log. You can verify the success of the import by logging into
the KFC schema and reviewing the objects. Here is the log file from the impdp command:

[oracle@oc1 ~]$ impdp rjb/rjb parfile=dp_rjb_import.par

Import: Release 11.1.0.6.0 - Production
 on Saturday, 25 August, 2007 13:22:07

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition
 Release 11.1.0.6.0 – Production
With the Partitioning, Real Application Clusters, OLAP, Data Mining
and Real Application Testing options

Master table "RJB"."SYS_IMPORT_FULL_01" successfully loaded/unloaded
Starting "RJB"."SYS_IMPORT_FULL_01": rjb/******** parfile=dp_rjb_import.par
Processing object type SCHEMA_EXPORT/USER
ORA-31684: Object type USER:"KFC" already exists
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA
Job "RJB"."SYS_IMPORT_FULL_01" completed with 1 error(s) at 13:22:32

[oracle@oc1 ~]$

The only error during the impdp command was that the KFC user already exists; I created it
explicitly earlier, and this error message can safely be ignored.

What if a table being imported already exists? In this example, with the CONTENT option set
to METADATA_ONLY, the table would be skipped by default. If the CONTENT option was set to
DATA_ONLY, the new data would be appended to the existing table data. To alter this behavior,
use the TABLE_EXISTS_ACTION option. Valid values for TABLE_EXISTS_OPTION are SKIP,
APPEND, TRUNCATE, and REPLACE.

408 Oracle Database 11g DBA Handbook

Stopping and Restarting Running Jobs
After you have started a Data Pump Import job, you can close the client window you used to start
the job. Because it is server based, the import will continue to run. You can then attach to the job,
check its status, and alter it:

impdp rjb/rjb parfile=rjb_dp_import.par

Press CTRL-C to leave the log display, and Data Pump Import will return you to the import prompt:

Import>

Exit to the operating system using the exit_client command:

Import> exit_client

Later, you can restart the client and attach to the currently running job under your schema:

impdp rjb/rjb attach

If you gave a name to your Data Pump Import job, specify the name as part of the attach
parameter. When you attach to a running job, Data Pump Import will display the status of the
job—its basic configuration parameters and its current status. You can then issue the continue_
client command to see the log entries as they are generated, or you can alter the running job.

Import> continue_client

Not surprisingly, you can temporarily stop a job using the stop_job command:

Import> stop_job

While the job is stopped, you can increase its parallelism via the parallel option, and then
restart the job:

Import> start_job

EXCLUDE, INCLUDE, and QUERY
Data Pump Import, like Data Pump Export, allows you to restrict the data processed via the use of
the EXCLUDE, INCLUDE, and QUERY options, as described earlier in this chapter. Because you
can use these options on both the export and the import, you can be very flexible in your imports.
For example, you may choose to export an entire table but only import part of it —the rows that
match your QUERY criteria. You could choose to export an entire schema but when recovering
the database via import include only the most necessary tables so that the application downtime
can be minimized. EXCLUDE, INCLUDE, and QUERY provide powerful capabilities to developers
and database administrators during both export and import jobs.

Transforming Imported Objects
In addition to changing or selecting schemas, tablespaces, datafiles, and rows during the import,
you can change the segment attributes and storage requirements during import via the TRANSFORM
option. The format for TRANSFORM is as follows:

TRANSFORM = transform_name:value[:object_type]

Chapter 11: Backup and Recovery Options 409

The transform_name variable can have a value of SEGMENT_ATTRIBUTES or STORAGE. You
can use the value variable to include or exclude segment attributes (physical attributes such as
storage attributes, tablespaces, and logging). The object_type variable is optional, but if specified,
it must be one of these values:

CLUSTER

CONSTRAINT

INC_TYPE

INDEX

ROLLBACK_SEGMENT

TABLE

TABLESPACE

TYPE

For example, object storage requirements may change during an export/import; you may be
using the QUERY option to limit the rows imported or you may be importing only the metadata
without the table data. To eliminate the exported storage clauses from the imported tables, add
the following to the parameter file:

transform=storage:n:table

To eliminate the exported tablespace and storage clauses from all tables and indexes, use the
following:

transform=segment_attributes:n

When the objects are imported, they will be assigned to the user’s default tablespace and will
use the default tablespace’s storage parameters.

Generating SQL
Instead of importing the data and objects, you can generate the SQL for the objects (without the
data) and store it in a file on your operating system. The file will be written to the directory and
filename specified via the SQLFILE option. The SQLFILE option format is as follows:

SQLFILE=[directory_object:]file_name

NOTE
If you do not specify a value for the directory_object variable, the file
will be created in the dump file directory.

Here is the same parameter file I used for the import earlier in this chapter, modified to create
the SQL only:

directory=dpxfer
dumpfile=metadata_only.dmp
sqlfile=sql.txt

■

■

■

■

■

■

■

■

410 Oracle Database 11g DBA Handbook

Notice that we do not need the content=metadata_only or the remap_schema parameter,
since all we want to do is to create SQL statements.

impdp rjb/rjb parfile=dp_rjb_import_sql.par

In the sql.txt file that the import process creates, you will see entries for each of the object
types within the schema. Here is an excerpt from the file:

-- CONNECT RJB
ALTER SESSION SET EDITION = "ORA$BASE";
. . .
-- new object type path: SCHEMA_EXPORT/TABLE/TABLE
CREATE TABLE "RJB"."EMPLOYEE_ARCHIVE"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) NOT NULL ENABLE,
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

-- new object type path: SCHEMA_EXPORT/TABLE/GRANT/OWNER_GRANT/OBJECT_GRANT
GRANT SELECT ON "RJB"."EMPLOYEE_ARCHIVE" TO "HR";
. . .
BEGIN
dbms_cube_exp.schema_info_imp_beg(1, '11.01.00.00.00');
dbms_cube_exp.schema_info_imp_loop(1, '11.01.00.00.00',
 '<?xml version="1.0" encoding="UTF-16"?>
<Metadata Version="1.0">
</Metadata>');
dbms_cube_exp.schema_info_imp_end(1, '11.01.00.00.00');
COMMIT;
END;

The SQLFILE output is a plain-text file, so you can edit the file, use it with SQL*Plus or SQL
Developer, or keep it as documentation of your application’s database structures.

Comparing Data Pump Export/Import to Export/Import
The original Export and Import utilities are still available via the exp and imp executables. As
shown in this chapter, there are many ways in which Data Pump Export and Import offer superior
capabilities over the original Export and Import utilities. Data Pump’s server-based architecture
leads to performance gains and improved manageability. As of Oracle Database 11g, any features
available in the original Export and Import are available in Data Pump. Therefore, the original
export utility is desupported for general use; you may, however, need to use the original export
utility to import data into a version of Oracle prior to 10g.

Chapter 11: Backup and Recovery Options 411

Implementing Offline Backups
An offline backup is a physical backup of the database files made after the database has been
shut down cleanly via a shutdown normal, a shutdown immediate, or a shutdown transactional
command. While the database is shut down, each of the files actively used by the database is
backed up. These files provide a complete image of the database as it existed at the moment it
was shut down.

NOTE
You should not rely on an offline backup performed following a
shutdown abort, because it may be inconsistent. If you must perform
a shutdown abort, you should restart the database and perform
a normal shutdown or a shutdown immediate or a shutdown
transactional prior to beginning your offline backup.

The following files should be backed up during a cold backup:

All datafiles

All controlfiles

All archived redo log files

Initialization parameter file or server parameter file (SPFILE)

Password file

If you are using raw devices for database storage, with or without ASM, you’ll have to back
up these devices as well using operating system commands such as dd in combination with a
compression utility, as in this example:

dd if=/dev/sdb | gzip > /mnt/bkup/dw_sdb_backup.img.gz

During a recovery, an offline backup can restore the database to the point in time at which
the database was shut down. Offline backups commonly play a part in disaster recovery planning,
because they are self-contained and may be simpler to restore on a disaster recovery server than
other types of backups. If the database is running in ARCHIVELOG mode, you can apply more
recent archived redo logs to the restored offline backup to bring the database back to the point
in time of a media failure or a complete loss of the database. As I’ve emphasized throughout this
book, the need for cold backups is minimized or eliminated if you use RMAN; your database may
never need to be shut down for a cold backup (unless disaster strikes—in which case, be sure to
create a RAC database as well!).

Implementing Online Backups
Consistent offline backups can only be performed while the database is shut down. However, you
can perform physical file backups of a database while the database is open, provided the database
is running in ARCHIVELOG mode and the backup is performed correctly. These backups are
referred to as online backups.

■

■

■

■

■

412 Oracle Database 11g DBA Handbook

Oracle writes to the online redo log files in a cyclical fashion: After filling the first log file, it
begins writing to the second, until that one fills, and it then begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the ARCH background process makes a copy of
each redo log file after the LGWR process finishes writing to it. These archived redo log files are
usually written to a disk device. They may instead be written directly to a tape device, but this
tends to be very operator intensive.

Getting Started
To make use of the ARCHIVELOG capability, you must first place the database in ARCHIVELOG
mode. Before starting the database in ARCHIVELOG mode, make sure you are using one of the
following configurations, listed from most to least recommended:

Enable archiving to the flash recovery area only; use disk mirroring on the disks containing
the flash recovery area. The DB_RECOVERY_FILE_DEST parameter specifies the file system
location or ASM disk group containing the flash recovery area. If you configured your
Oracle Database 11g using the same options as the installation in the appendix to this
book, you created the flash recovery area on a mirrored ASM disk group.

Enable archiving to the flash recovery area and set at least one LOG_ARCHIVE_DEST_n
parameter to another location outside of the flash recovery area.

Set at least two LOG_ARCHIVE_DEST_n parameters to archive to non-flash recovery area
destinations.

NOTE
If the initialization parameter DB_RECOVERY_FILE DEST is specified
and no LOG_ARCHIVE_DEST_n parameter is specified, then LOG_
ARCHIVE_DEST_10 is implicitly set to the flash recovery area.

In the following examples, I assume that the best configuration, a single mirrored flash
recovery area, has been selected. The following listing shows the steps needed to place a
database in ARCHIVELOG mode; first, shut down the database, and then issue these commands:

SQL> startup mount;
SQL> alter database archivelog;
SQL> alter database open;

NOTE
To see the currently active online redo log and its sequence number,
query the V$LOG dynamic view.

If you enable archiving but do not specify any archiving locations, the archived log files reside
in a default, platform-dependent location; on Unix and Linux platforms the default location is
$ORACLE_HOME/dbs.

■

■

■

Chapter 11: Backup and Recovery Options 413

Each of the archived redo log files contains the data from a single online redo log. They are
numbered sequentially, in the order in which they were created. The size of the archived redo
log files varies, but it does not exceed the size of the online redo log files.

If the destination directory of the archived redo log files runs out of space, the ARCn processes
will stop processing the online redo log data and the database will stop itself. This situation can
be resolved by adding more space to the archived redo log file destination disk or by backing up
the archived redo log files and then removing them from this directory. If you are using the flash
recovery area for your archived redo log files, the database issues a warning alert if the available
space in the flash recovery area is less than 15 percent, and a critical alert when the available
space is less than 3 percent. Taking action at the 15 percent level, such as increasing the size or
changing the location of the flash recovery area, can most likely avoid any service interruptions,
assuming that there are no runaway processes consuming space in the flash recovery area.

The initialization parameter DB_RECOVERY_FILE_DEST_SIZE can also assist in managing the
size of the flash recovery area. While its primary purpose is the limit the amount of disk space
used by the flash recovery area on the specified disk group or file system directory, it can be
temporarily increased once an alert is received to give the DBA additional time to allocate more
disk space to the disk group or relocate the flash recovery area.

Short of receiving a warning or critical alert, you can be a bit more proactive in monitoring
the size of the flash recovery area using the dynamic performance view V$RECOVERY_FILE_DEST
to see the total used and reclaimable space on the destination file system. In addition, you can use
the dynamic performance view V$FLASH_RECOVERY_AREA_USAGE to see a usage breakdown
by file type:

SQL> select * from v$recovery_file_dest;

NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES
-------------------- ----------- ---------- ----------------- ---------------
+RECOV 8589934592 1595932672 71303168 13

SQL> select * from v$flash_recovery_area_usage;

FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
--------------- ------------------ ------------------------- ---------------
CONTROL FILE .12 0 1
REDO LOG 1.87 0 3
ARCHIVED LOG .83 1 7
BACKUP PIECE 15.75 0 2
IMAGE COPY 0 0 0
FLASHBACK LOG 0 0 0
FOREIGN ARCHIVE 0 0 0
D LOG

7 rows selected.

SQL>

In this example, the flash recovery area is less than 20 percent used, with the largest
percentage due to RMAN backups.

414 Oracle Database 11g DBA Handbook

Performing Online Database Backups
Once a database is running in ARCHIVELOG mode, you can back it up while it is open and
available to users. This capability allows round-the-clock database availability to be achieved
while still guaranteeing the recoverability of the database.

Although online backups can be performed during normal working hours, they should be
scheduled for the times of the least user activity for several reasons. First, the online backups will
use operating system commands to back up the physical files, and these commands will use the
available I/O resources in the system (impacting the system performance for interactive users).
Second, while the tablespaces are being backed up, the manner in which transactions are written
to the archived redo log files changes. When you put a tablespace in “online backup” mode, the
DBWR process writes all the blocks in the buffer cache that belong to any file that is part of the
tablespace back to disk. When the blocks are read back into memory and then changed, they will
be copied to the log buffer the first time that a change is made to them. As long as they stay in the
buffer cache, they will not be recopied to the online redo log file. This will use a great deal more
space in the archived redo log file destination directory.

NOTE
You can create a command file to perform your online backups,
but using RMAN is preferred for several reasons: RMAN maintains
a catalog of your backups, allows you to manage your backup
repository, and allows you to perform incremental backups of the
database.

Follow these steps to perform an online database backup or individual tablespace backups:

 1. Set the database into backup state (prior to Oracle 10g, the only option was to enable
backup on a tablespace-by-tablespace basis) by using the alter tablespace . . . begin
backup command for each tablespace or alter database begin backup to put all
tablespaces into online backup mode.

 2. Back up the datafiles using operating system commands.

 3. Set the database back to its normal state by issuing alter tablespace . . . end backup for
each tablespace or alter database end backup for all tablespaces in the database.

 4. Archive the unarchived redo logs so that the redo required to recover the tablespace
backup is used by issuing the command alter system archive log current.

 5. Back up the archived redo log files. If necessary, compress or delete the backed-up
archived redo log files to free space on disk.

 6. Back up the control file.

See Chapter 12 for details on RMAN’s automation of this process.

Integration of Backup Procedures
Because there are multiple methods for backing up the Oracle database, there is no need to have
a single point of failure in your backup strategy. Depending on your database’s characteristics,
one method should be chosen, and at least one of the remaining methods should be used as a
backup to your primary backup method.

Chapter 11: Backup and Recovery Options 415

NOTE
When considering physical backups, you should also evaluate the use
of RMAN to perform incremental physical backups.

In the following sections, you will see how to choose the primary backup method for your
database, how to integrate logical and physical backups, and how to integrate database backups
with file system backups. For backup strategies specific to very large databases, see Chapter 16.
For details on RMAN, see Chapter 12.

Integration of Logical and Physical Backups
Which backup method is appropriate to use as the primary backup method for your database?
When deciding, you should take into account the characteristics of each method:

Method Type Recovery Characteristics

Data Pump Export Logical Can recover any database object to its status as
of the moment it was exported.

Offline backups Physical Can recover the database to its status as of the
moment it was shut down. If the database is
run in ARCHIVELOG mode, you can recover
the database to a status at any point in time.

Online backups Physical Can recover the database to its status at any
point in time.

Offline backups are the least flexible method of backing up the database if the database is
running in NOARCHIVELOG mode. Offline backups are a point-in-time snapshot of the database.
Also, because they are a physical backup, DBAs cannot selectively recover logical objects (such
as tables) from them. Although there are times when they are appropriate (such as for disaster
recovery), offline backups should normally be used as a fallback in case your primary method
fails. If you are running the database in ARCHIVELOG mode (strongly recommended!), you can
use the offline backups as the basis for a media recovery, but an online backup would typically
be easier to use for recovery in that situation.

Of the two remaining methods, which one is more appropriate? For production environments,
the answer is almost always online backups. Online backups, with the database running in
ARCHIVELOG mode, allow you to recover the database to the point in time immediately
preceding a system fault or a user error. Using a Data Pump Export-based strategy would limit
you to only being able to go back to the data as it existed the last time the data was exported.

Consider the size of the database and what objects you will likely be recovering. Given a
standard recovery scenario, such as the loss of a disk, how long will it take for the data to be
recovered? If a file is lost, the quickest way to recover it is usually via a physical backup, which
again favors online backups over exports.

If the database is small, transaction volume is very low, and availability is not a concern, then
offline backups may serve your needs. If you are only concerned about one or two tables, you
could use Data Pump Export to selectively back them up. However, if the database is large, the
recovery time needed for Data Pump Export/Import may be prohibitive. For large, low-transaction
environments, offline backups may be appropriate.

416 Oracle Database 11g DBA Handbook

Regardless of your choice for primary backup method, the final implementation should include
a physical backup and some sort of logical backup, either via Data Pump Export or via replication.
This redundancy is necessary because these methods validate different aspects of the database:
Data Pump Export validates that the data is logically sound, and physical backups that it is
physically sound. A good database backup strategy integrates logical and physical backups. The
frequency and type of backup performed will vary based on the database’s usage characteristics.

Other database activities may call for ad hoc backups. Ad hoc backups may include offline
backups before performing database upgrades and exports during application migration between
databases.

Integration of Database and Operating System Backups
As described in this chapter, the DBA’s backup activities involve a number of tasks normally
assigned to a systems management group: monitoring disk usage, maintaining tapes, and so
on. Rather than duplicate these efforts, it is best to integration them; focus on a process-based
alignment of your organization. The database backup strategy should be modified so that the
systems management personnel’s file system backups will take care of all tape handling, allowing
you to centralize the production control processes in your environment.

Centralization of production control processes is usually accomplished by dedicating disk
drives as destination locations for physical file backups. Instead of files being backed up to tape
drives, the backups will instead be written to other disks on the same server. Those disks should
be targeted for backups by the systems management personnel’s regular file system backups. The
DBA does not have to run a separate tape backup job. However, the DBA does need to verify that
the systems management team’s backup procedures executed correctly and completed successfully.

If your database environment includes files outside the database, such as datafiles for external
tables or files accessed by BFILE datatypes, then you must determine how you are going to back
those files up in a way that will provide consistent data in the event of a recovery. The backups of
these flat files should be coordinated with your database backups and should also be integrated
into any disaster recovery planning.

CHAPTER
12

Using Recovery
Manager (RMAN)

417

418 Oracle Database 11g DBA Handbook

n Chapter 11, we discussed a number of different ways in which we can back
up our data and protect the database from accidental, inadvertent, or deliberate
corruption. Physical backups of the database ensure that no committed transaction
is lost, and we can restore the database from any previous backup to the current
point in time or any point in between; logical backups allow the DBA or a user to

capture the contents of individual database objects at a particular point in time, providing an
alternative recovery option when a complete database-restoration operation would have too big
an impact on the rest of the database.

Oracle’s Recovery Manager (RMAN) takes backup and recovery to a new level of protection
and ease of use. Since RMAN’s appearance in Oracle version 8, there have been a number of
major improvements and enhancements that can make RMAN a “one-stop shopping” solution for
nearly every database environment. In addition to the RMAN command-line interface improvements
in Oracle 10g, all the RMAN functionality has been included in the web-based Oracle Enterprise
Manager (OEM) interface as well, allowing a DBA to monitor and perform backup operations
when only a web browser connection is available.

In this chapter, we’ll use a number of examples of RMAN operations, both using command-
line syntax and the OEM web interface. The examples will run the gamut from RMAN environment
setup to back up, and the recovery and validation of the backup itself. We’ll go into some detail
about how RMAN manages the metadata associated with the database and its backups. Finally,
we’ll cover a number of miscellaneous topics, such as using RMAN to catalog backups made
outside of the RMAN environment.

Oracle Database 11g brings even more functionality to an RMAN environment. The Data
Recovery Advisor operates in both a proactive manner by detecting problems with the database
before an application failure, as well as a reactive manner to analyze a failure and provide at least
one repair option that will minimize downtime, if any! In virtually all scenarios, Data Recovery
Advisor uses RMAN for its repair operation, incorporating new commands such as list failure,
change failure, advise failure, and repair failure. In addition, RMAN supports a failover location
for archived redo log files when the flash recovery area is full. Finally, the duplicate command
now supports creating a duplicate database or physical standby database without using database
backup files; this dramatically reduces the amount of time needed to create a copy of a database.

Due to the wide variety of tape backup management systems available, discussing any particular
hardware configuration would be beyond the scope of this book. Instead, the focus in this chapter
will be on using the flash recovery area, a dedicated area allocated on disk to store disk-based
copies of all types of objects that RMAN can back up. The flash recovery area is new to Oracle 10g.

For all the examples in this chapter, we will use a recovery catalog with RMAN. Although most
of the functionality of RMAN is available by only using the control file of the target database,
benefits such as being able to store RMAN scripts and additional recovery capabilities far outweigh
the relatively low cost of maintaining an RMAN user account in a different database.

RMAN Features and Components
RMAN is more than just a client-side executable that can be used with a web interface. It comprises
a number of other components, including the database to be backed up (the target database), an
optional recovery catalog, an optional flash recovery area, and media management software to
support tape backup systems. We will review each of these briefly in this section.

Many features of RMAN do not have equivalents in the backup methods presented in Chapter 11.
We’ll contrast the advantages and disadvantages of using RMAN versus the more traditional
methods of backups.

I

Chapter 12: Using Recovery Manager (RMAN) 419

RMAN Components
The first, and minimal, component in the RMAN environment is the RMAN executable. It is available
along with the other Oracle utilities in the directory $ORACLE_HOME/bin, and it’s installed by
default with both the Standard and Enterprise Editions of Oracle 11g. From a command-line prompt,
you can invoke RMAN with or without command-line arguments; in the following example, we’re
starting up RMAN using operating system authentication without connecting to a recovery catalog:

[oracle@dw ~]$ rman target /
RMAN>

The command-line arguments are optional; we can specify our target database and a recovery
catalog from the RMAN> prompt also. In Figure 12-1, you can see how to access RMAN features
from Oracle Enterprise Manager.

RMAN would not be of much use unless we have a database to back up. One or more target
databases can be cataloged in the recovery catalog; in addition, the control file of the database
being backed up contains information about backups performed by RMAN. From within the
RMAN client, you can also issue SQL commands for those operations you cannot perform with
native RMAN commands.

The RMAN recovery catalog, whether using the target database control file or a dedicated
repository in a separate database, contains the location of recovery data, its own configuration
settings, and the target database schema. At a minimum, the target database control file contains
this data; to be able to store scripts and to maintain a copy of the target database control file, a
recovery catalog is highly recommended. In this chapter, all examples will use a recovery catalog.

FIGURE 12-1 Accessing RMAN functionality from OEM

420 Oracle Database 11g DBA Handbook

As of Oracle 10g, the flash recovery area simplifies disk-based backup and recovery by defining
a location on disk to hold all RMAN backups. Along with the location, the DBA can also specify
an upper limit to the amount of disk space used in the flash recovery area. Once a retention
policy is defined within RMAN, RMAN will automatically manage the backup files by deleting
obsolete backups from both disk and tape. The initialization parameters related to the flash recovery
area are covered in the next section.

To access all non-disk-based media, such as tape and DVD-ROM, RMAN utilizes third-party
media management software to move backup files to and from these offline and near-line devices,
automatically requesting the mount and dismount of the appropriate media to support backup
and restore operations. Most major media management software and hardware vendors have
device drivers that directly support RMAN.

RMAN vs. Traditional Backup Methods
There are very few reasons not to use RMAN as your main tool for managing backups. Here are
some of the major features of RMAN that are either not available with traditional backup methods
or have significant restrictions using traditional backup methods:

Skip unused blocks Blocks that have never been written to, such as blocks above the
high water mark (HWM) in a table, are not backed up by RMAN when the backup is an
RMAN backupset. Traditional backup methods have no way to know which blocks have
been used.

Backup compression In addition to skipping blocks that have never been used, RMAN
can also use an Oracle-specific binary compression mode to save space on the backup
device. Although operating system–specific compression techniques are available with
traditional backup methods, the compression algorithm used by RMAN is customized
to maximize the compression for the typical kinds of data found in Oracle data blocks.
Although there is a slight increase in CPU time during an RMAN compressed backup or
recovery operation, the amount of media used for backup may be significantly reduced, as
well as network bandwidth if the backup is performed over the network. Multiple CPUs
can be configured for an RMAN backup to help alleviate the compression overhead.

Open database backups Tablespace backups can be performed in RMAN without using
the begin/end backup clause with alter tablespace. Whether using RMAN or a traditional
backup method, however, the database must be in ARCHIVELOG mode.

True incremental backups For any RMAN incremental backup, unchanged blocks since
the last backup will not be written to the backup file. This saves a significant amount of
disk space, I/O time, and CPU time. For restore and recovery operations, RMAN supports
incrementally updated backups. Data blocks from an incremental backup are applied
to a previous backup to potentially reduce the amount of time and number of files that
need to be accessed to perform a recovery operation. We will cover an example of an
incrementally updated backup later in this chapter.

Block-level recovery To potentially avoid downtime during a recovery operation, RMAN
supports block-level recovery for recovery operations that only need to restore or repair a
small number of blocks identified as being corrupt during the backup operation. The rest
of the tablespace and the objects within the tablespace can remain online while RMAN
repairs the damaged blocks. The rows of a table not being repaired by RMAN are even
available to applications and users.

■

■

■

■

■

Chapter 12: Using Recovery Manager (RMAN) 421

Multiple I/O channels During a backup or recovery operation, RMAN can utilize many
I/O channels, via separate operating system processes, to perform concurrent I/O.
Traditional backup methods, such as a Unix cp command or an Oracle export, are
typically single-threaded operations.

Platform independence Backups written with RMAN commands will be syntactically
identical regardless of the hardware or software platform used, with the only difference
being the media management channel configuration. On the other hand, a Unix script
with lots of cp commands will not run very well if the backup script is migrated to a
Windows platform!

Tape manager support All major enterprise backup systems are supported within
RMAN by a third-party media management driver provided by a tape backup vendor.

Cataloging A record of all RMAN backups is recorded in the target database control
file, and optionally in a recovery catalog stored in a different database. This makes
restore and recovery operations relatively simple compared to manually tracking
operating system–level backups using “copy” commands.

Scripting capabilities RMAN scripts can be saved in a recovery catalog for retrieval
during a backup session. The tight integration of the scripting language, the ease of
maintaining scripts in RMAN, and the Oracle scheduling facility make it a better choice
than storing traditional operating system scripts in an operating system directory with the
operating system’s native scheduling mechanisms.

Encrypted backups RMAN uses backup encryption integrated into Oracle Database 11g
to store encrypted backups. Storing encrypted backups on tape requires the Advanced
Security Option.

In a few limited cases, a traditional backup method may have an advantage over RMAN; for
example, RMAN does not support the backup of password files and other non-database files such
as tnsnames.ora, listener.ora, and sqlnet.ora. However, these files are relatively static in nature,
and they can easily be backed up and restored using a traditional backup method such as the
Unix cp command.

Backup Types
RMAN supports a number of different backup methods, depending on your availability needs,
the desired size of your recovery window, and the amount of downtime you can endure while the
database or a part of the database is involved in a recovery operation.

Consistent and Inconsistent Backups
A physical backup can be classified by being a consistent or an inconsistent backup. In a consistent
backup, all datafiles have the same SCN; in other words, all changes in the redo logs have been
applied to the datafiles. Because an open database with no uncommitted transactions may have
some dirty blocks in the buffer cache, it is rare that an open database backup can be considered
consistent. As a result, consistent backups are taken when the database is shut down normally or
in a MOUNT state.

In contrast, an inconsistent backup is performed while the database is open and users are
accessing the database. Because the SCNs of the datafiles typically do not match when an
inconsistent backup is taking place, a recovery operation performed using an inconsistent backup

■

■

■

■

■

■

422 Oracle Database 11g DBA Handbook

must rely on both archived and online redo log files to bring the database into a consistent state
before it is opened. As a result, a database must be in ARCHIVELOG mode to use an inconsistent
backup method.

Full and Incremental Backups
Full backups include all blocks of every datafile within a tablespace or a database; it is essentially
a bit-for-bit copy of one or more datafiles in the database. Either RMAN or an operating system
command can be used to perform a full backup, although backups performed outside of RMAN
must be cataloged with RMAN before they can be used in an RMAN recovery operation.

In Oracle 11g, incremental backups can be level 0 or level 1. A level 0 backup is a
full backup of all blocks in the database that can be used in conjunction with differential,
incremental, or cumulative incremental level 1 backups in a database recovery operation. A
distinct advantage to using an incremental backup in a recovery strategy is that archived and
online redo log files may not be necessary to restore a database or tablespace to a consistent
state; the incremental backups may have some or all of the blocks needed. An example of using
level 0 and level 1 incremental backups is presented later in this chapter. Incremental backups
can only be performed within RMAN.

Image Copies
Image copies are full backups created by operating system commands or RMAN backup as copy
commands. Although a full backup created with a Unix cp command can be later registered in
the RMAN catalog as a database backup, doing the same image copy backup in RMAN has the
advantage of checking for corrupt blocks as they are being read by RMAN and recording the
information about the bad blocks in the data dictionary. Image copies are the default backup file
format in RMAN.

This is a great feature of Oracle 11g’s RMAN for the following reason: If you add another
datafile to a tablespace, you need to also remember to add the new datafile to your Unix script
cp command. By creating image copies using RMAN, all datafiles will automatically be included
in the backup. Forgetting to add the new datafile to a Unix script will make a recovery situation
extremely inconvenient at best and a disaster at worst.

Backupsets and Backup Pieces
In contrast to image copies, which can be created in most any backup environment, backupsets
can be created and restored only with RMAN. A backupset is an RMAN backup of part or all
of a database, consisting of one or more backup pieces. Each backup piece belongs to only
one backupset, and can contain backups of one or many datafiles in the database. All
backupsets and pieces are recorded in the RMAN repository, the same as any other RMAN-
initiated backup.

Compressed Backups
For any Oracle11g RMAN backup creating a backupset, compression is available to reduce the
amount of disk space or tape needed to store the backup. Compressed backups are only usable
by RMAN, and they need no special processing when used in a recovery operation; RMAN

Chapter 12: Using Recovery Manager (RMAN) 423

automatically decompresses the backup. Creating compressed backups is as easy as specifying
as compressed backupset in the RMAN backup command.

Overview of RMAN Commands and Options
In the next few sections, we’ll review the basic set of commands you’ll use on a regular basis.
We’ll show you how to make your job even easier by persisting some of the settings in an RMAN
session; in addition, we’ll set up the retention policy and the repository we’ll use to store RMAN
metadata.

At the end of this section, we’ll review the initialization parameters related to RMAN backups
and the flash recovery area.

Frequently Used Commands
Table 12-1 provides a list of the most common RMAN commands you’ll use on a regular basis,
along with some common options and caveats for each command. For the complete list of all
RMAN commands and their syntax, see the Oracle Database Backup and Recovery Reference,
11g Release 1.

If backups use a flash recovery area (I presented the flash recovery area in Chapter 11), you
can back up the database without any other explicit RMAN configuration by running the following
command:

RMAN> backup database;

Note that this is a full backup and can be used with archived redo log files to recover a
database. However, this is not a level 0 backup and cannot be used as part of an incremental
backup strategy. See the “Backup Operations” section later in this chapter.

Setting Up a Repository
Whether you use a repository for the metadata from one database or a hundred, the repository
setup is very straightforward and needs to be done only once. The examples that follow assume
that we have a default installation of an Oracle 11g database; the repository database itself can be
used for other applications if there is no significant performance degradation when RMAN needs
to update metadata in the repository.

CAUTION
Using an RMAN target database for the repository is strongly
discouraged. Loss of the target database prevents any chance of
a successful recovery of the database using RMAN because the
repository metadata is lost along with the target database.

The following sequence of commands creates a tablespace and a user to maintain the metadata
in the repository database. In this and all subsequent examples, a database with a SID of rac, the
RAC database we created in Chapter 10, is used for all repository operations.

424 Oracle Database 11g DBA Handbook

RMAN Command Description

@ Runs an RMAN command script at the pathname specified after the
@. If no path is specified, the path is assumed to be the directory from
which RMAN was invoked.

ADVISE FAILURE Displays repair options for the failure found.

BACKUP Performs an RMAN backup, with or without archived redo logs. Backs
up datafiles, datafile copies, or performs an incremental level 0 or level
1 backup. Backs up an entire database, or a single tablespace or datafile.
Validates the blocks to be backed up with the VALIDATE clause.

CATALOG Adds information about file copies and user-managed backups to the
repository.

CHANGE Changes the status of a backup in the RMAN repository. Useful for
explicitly excluding a backup from a restore or recovery operation, or
to notify RMAN that a backup file was inadvertently or deliberately
removed by an operating system command outside of RMAN.

CONFIGURE Configures the persistent parameters for RMAN. The parameters
configured are available during every subsequent RMAN session unless
they are explicitly cleared or modified.

CONVERT Converts datafile formats for transporting tablespaces or entire databases
across platforms.

CREATE
CATALOG

Creates the repository catalog containing RMAN metadata for one or
more target databases. It is strongly recommended that this catalog not
be stored in one of the target databases.

CROSSCHECK Checks the record of backups in the RMAN repository against the actual
files on disk or tape. Objects are flagged as EXPIRED, AVAILABLE,
UNAVAILABLE, or OBSOLETE. If the object is not available to RMAN,
it is marked UNAVAILABLE.

DELETE Deletes backup files or copies and marks them as DELETED in the target
database control file. If a repository is used, the record of the backup
file is removed.

DROP DATABASE Deletes the target database from disk and unregister it.

DUPLICATE Uses backups of the target database (or use the live database) to create a
duplicate database.

FLASHBACK
DATABASE

Performs a Flashback Database operation, new to Oracle 10g. The
database is restored to a point in the past by SCN or log sequence
number using flashback logs to undo changes before the SCN or log
sequence number, and then archived redo logs are applied to bring the
database forward to a consistent state.

TABLE 12-1 Common RMAN Commands

Chapter 12: Using Recovery Manager (RMAN) 425

RMAN Command Description

LIST Displays information about backupsets and image copies recorded in
the target database control file or repository. See REPORT for identifying
complex relationships between backupsets.

RECOVER Performs a complete or incomplete recovery on a datafile, a tablespace,
or the entire database. Can also apply incremental backups to a datafile
image copy to roll it forward in time.

REGISTER
DATABASE

Registers a target database in the RMAN repository.

REPAIR FAILURE Repairs one or more failures recorded in the automated diagnostic
repository (ADR).

REPORT Performs a detailed analysis of the RMAN repository. For example, this
command can identify which files need a backup to meet the retention
policy or which backup files can be deleted.

RESTORE Restores files from image copies or backupsets to disk, typically after
a media failure. Can be used to validate a restore operation without
actually performing the restore by specifying the PREVIEW option.

RUN Runs a sequence of RMAN statements as a group between { and }.
Allows you to override default RMAN parameters for the duration of the
execution of the group.

SET Sets RMAN configuration settings for the duration of the RMAN session,
such as allocated disk or tape channels. Persistent settings are assigned
with CONFIGURE.

SHOW Shows all or individual RMAN configured settings.

SHUTDOWN Shuts down the target database from within RMAN. Identical to the
SHUTDOWN command within SQL*Plus.

STARTUP Starts up the target database. This command has the same options and
function as the SQL*Plus STARTUP command.

SQL Runs SQL commands that cannot be accomplished directly or indirectly
using standard RMAN commands; for example, it can run sql ‘alter
tablespace users offline immediate’; before restoring and recovering
the USERS tablespace.

TRANSPORT
TABLESPACE

Creates transportable tablespace sets from backup for one or more
tablespaces.

VALIDATE Examines a backup set and report whether its data is intact and consistent.

TABLE 12-1 Common RMAN Commands (continued)

426 Oracle Database 11g DBA Handbook

The tablespace that holds the repository database requires at least 125MB to hold recovery
catalog entries; here is a space requirements breakdown by tablespace:

90MB in the SYSTEM tablespace

5MB in the TEMP tablespace

5MB in the UNDO tablespace

15MB in RMAN’s default tablespace for each database registered in the recovery catalog

1MB for each online redo log file

Starting out with available free space of 125MB will in most cases be sufficient for the first
year, and enabling additional extents of 50MB each will be sufficient in the long term depending
on how many databases you manage in the recovery catalog. Overall, a very small amount of
disk space compared to your terabyte data warehouse!

Connect to the repository database with SYSDBA privileges and create the RMAN account
and the recovery catalog in the RMAN tablespace as follows:

[oracle@oc1 ~]$ sqlplus / as sysdba

SQL*Plus: Release 11.1.0.6.0 -
 Production on Tue Aug 28 20:56:24 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 -
 Production
With the Partitioning, Real Application Clusters, OLAP,
 Data Mining and Real Application Testing options

SQL> create tablespace rman datafile '+data1'
 2 size 125m autoextend on next 50m maxsize 500m;

Tablespace created.

SQL> grant recovery_catalog_owner to rman identified by rman;

Grant succeeded.

SQL> alter user rman default tablespace rman
 2 quota unlimited on rman;

User altered.

SQL>

■

■

■

■

■

Chapter 12: Using Recovery Manager (RMAN) 427

Now that the RMAN user account exists in the repository database, we can start RMAN,
connect to the catalog, and initialize the repository with the create catalog command:

[oracle@dw ~]$ rman catalog rman/rman@rac

Recovery Manager: Release 11.1.0.6.0 -
 Production on Tue Aug 28 21:24:30 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to recovery catalog database

RMAN> create catalog;

recovery catalog created

RMAN>

From this point on, using a repository is as easy as specifying the repository username and
password on the RMAN command line with the catalog parameter or using the connect catalog
command in an RMAN session. Within Oracle Enterprise Manager, you can persist the repository
credentials as demonstrated in Figure 12-2.

In future OEM sessions, any RMAN backup or recovery operations will automatically use the
recovery catalog.

FIGURE 12-2 Persisting RMAN repository credentials

428 Oracle Database 11g DBA Handbook

Registering a Database
For each database for which RMAN will perform a backup or recovery, we must register the
database in the RMAN repository; this operation records information such as the target database
schema and the unique database ID (DBID) of the target database. The target database need only
be registered once; subsequent RMAN sessions that connect to the target database will automatically
reference the correct metadata in the repository.

[oracle@dw ~]$ rman target / catalog rman@rac

Recovery Manager: Release 11.1.0.6.0 -
 Production on Tue Aug 28 21:34:08 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to target database: DW (DBID=3048318127)
recovery catalog database Password: **********
connected to recovery catalog database

RMAN> register database;

database registered in recovery catalog
starting full resync of recovery catalog
full resync complete

RMAN>

In the preceding example, we connect to the target database using operating system
authentication and to the repository with password authentication. All databases registered
with the repository must have unique DBIDs; trying to register the database again yields the
following error message:

RMAN> register database;

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03009: failure of register command on default channel
 at 08/28/2007 21:38:44
RMAN-20002: target database already registered in recovery catalog

RMAN>

Persisting RMAN Settings
To make the DBA’s job easier, a number of RMAN settings can be persisted. In other words, these
settings will stay in effect between RMAN sessions. In the example that follows, we use the show
command to display the default RMAN settings:

RMAN> show all;

RMAN configuration parameters for database with db_unique_name DW are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default

Chapter 12: Using Recovery Manager (RMAN) 429

CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F';
 # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BZIP2'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO
'/u01/app/oracle/product/11.1.0/db_1/dbs/snapcf_dw.f'; # default
RMAN>

Any parameters that are set to their default values have # default at the end of the
configuration setting. These parameters are easy to review and change using OEM, as
demonstrated in Figure 12-3.

In the next few sections, we’ll review a few of the more common RMAN persistent settings.

FIGURE 12-3 RMAN persistent parameters in OEM

430 Oracle Database 11g DBA Handbook

Retention Policy
Backups can be automatically retained and managed using one of two methods: by a recovery
window or by redundancy. Using a recovery window, RMAN will retain as many backups as
necessary to bring the database to any point in time within the recovery window. For example,
with a Recovery Window of seven days, RMAN will maintain enough image copies, incremental
backups, and archived redo logs to ensure that the database can be restored and recovered to any
point in time within the last seven days. Any backups that are not needed to support this recovery
window are marked as OBSOLETE and are automatically removed by RMAN if a flash recovery
area is used and disk space is needed for new backups.

In contrast, a redundancy retention policy directs RMAN to retain the specified number of
backups or copies of each datafile and control file. Any extra copies or backups beyond the
number specified in the redundancy policy are marked as OBSOLETE. As with a recovery window,
obsolete backups are automatically removed if disk space is needed and a flash recovery area is
used. Otherwise, you can use the delete obsolete command to remove the backup files and update
the catalog.

If the retention policy is set to NONE, no backups or copies are ever considered obsolete, and
the DBA must manually remove unneeded backups from the catalog and from disk.

In the following example, we will set the retention policy to a recovery window of four days
(from a default redundancy policy of 1 copy):

RMAN> configure retention policy to recovery window of 4 days;

new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS;
new RMAN configuration parameters are successfully stored
RMAN>

Device Type
If the default device type is set to DISK and no pathname parameter is specified, RMAN uses the
flash recovery area for all backups; you can easily override the disk backup location in OEM, as
you can see in Figure 12-4. As with many of the simplified administration tasks from Oracle 11g,
there is no need to allocate or deallocate a specific channel for backups unless you’re using a
tape device.

Although configuring a tape device is specific to your installation, in general terms we
configure a tape device as follows:

RMAN> configure channel device type sbt
2> parms='ENV=(<vendor specific arguments>)';

NOTE
sbt is the device type used for any tape backup subsystem, regardless
of vendor.

Although we can use the flash recovery area to restore and recover our database entirely from
disk, at some point it becomes inefficient to keep all our backups on disk, especially if we have a
large recovery window. As a result, we can make copies of our backup files to tape, and RMAN
will dutifully keep track of where the backups are in case we need to restore or recover the
database from tape, or restore archived redo logs to roll forward an image copy in the flash
recovery area.

Chapter 12: Using Recovery Manager (RMAN) 431

Control File Autobackup
Because of the importance of the control file, we want to back it up at least as often as it changes
due to modifications in the structure of the database. By default, the backup of the control file
does not occur automatically. This is a strange default, considering the importance of the control
file and how little disk space it takes to back it up. Fortunately, RMAN can easily be configured to
back up the control file automatically, either any time a successful backup must be recorded in
the repository or when a structural change affects the contents of the control file (in other words,
cases when a control file backup must occur to ensure a successful recovery if and when a recovery
operation is required).

RMAN> configure controlfile autobackup on;

new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP ON;
new RMAN configuration parameters are successfully stored

RMAN>

Every RMAN backup from this point on will automatically include a copy of the control file; the
control file is also backed up whenever a new tablespace is created or another datafile is added to
an existing tablespace.

FIGURE 12-4 Configuring backup destination using OEM

432 Oracle Database 11g DBA Handbook

Backup Compression
If disk space is at a premium, you have a very large database, and you have some extra CPU
capacity, it makes sense to compress the backups to save space. The files are decompressed
automatically during a restore or recovery operation.

RMAN> configure device type disk backup type to compressed backupset;

new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO
 COMPRESSED BACKUPSET PARALLELISM 1;
new RMAN configuration parameters are successfully stored

RMAN>

Compressing backupsets may not be necessary if the operating system’s file system has
compression enabled or if the tape device hardware automatically compresses backups; however,
RMAN’s compression algorithm is tuned to efficiently back up Oracle data blocks, and as a result
it may do a better job of compressing the backupsets.

Initialization Parameters
A number of initialization parameters are used to control RMAN backups. We’ll cover some of
the more important parameters in this section.

CONTROL_FILE_RECORD_KEEP_TIME
A record of all RMAN backups is kept in the target control file. This parameter specifies the number
of days that RMAN will attempt to keep a record of backups in the target control file. After this
time, RMAN will begin to reuse records older than this retention period. If RMAN needs to write
a new backup record, and the retention period has not been reached, RMAN will attempt to
expand the size of the control file. Usually, this is successful because the size of the control file
is relatively small compared to other database objects. However, if space is not available for the
expansion of the control file, RMAN will reuse the oldest record in the control file and write a
message to the alert log.

As a rule of thumb, you should set CONTROL_FILE_RECORD_KEEP_TIME to several days
beyond your actual recovery window to ensure that backup records are retained in the control
file. The default is 7 days.

DB_RECOVERY_FILE_DEST
This parameter specifies the location of the flash recovery area. It should be located on a file
system different from any database datafiles, control files, or redo log files, online or archived. If
you lose the disk with the datafiles, the flash recovery area is gone too, mitigating the advantages
of using a flash recovery area.

DB_RECOVERY_FILE_DEST_SIZE
The parameter DB_RECOVERY_FILE_DEST_SIZE specifies an upper limit to the amount of space
used for the flash recovery area. The underlying file system may have less or more than this amount

Chapter 12: Using Recovery Manager (RMAN) 433

of space; the DBA should ensure that at least this amount of space is available for backups. Note
that this is the amount of recovery space for this database only; if multiple databases share the same
ASM disk group for their flash recovery area, the sum of all values for DB_RECOVERY_FILE_DEST_
SIZE must not exceed the available space in the disk group.

In our data warehouse database, dw, a flash recovery area is defined in the disk group +RECOV
with a maximum size of 8GB. As this limit is reached, RMAN will automatically remove obsolete
backups and generate an alert in the alert log when the amount of space occupied by nonobsolete
backups is within 10 percent of the value specified in DB_RECOVERY_FILE_DEST_SIZE.

The parameters DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE are both
dynamic; they can be changed on the fly while the instance is running to respond to changes in
disk space availability.

Data Dictionary and Dynamic Performance Views
A number of Oracle data dictionary and dynamic performance views contain information specific
to RMAN operations, on both the target database and the catalog database. In Table 12-2 are
the key views related to RMAN. Each of these views will be covered in more detail later in this
chapter.

View Description

RC_* RMAN Recovery Catalog views. Only exist in the
RMAN repository database and contain recovery
information for all target databases.

V$RMAN_STATUS Displays finished and in-progress RMAN jobs.

V$RMAN_OUTPUT Contains messages generated by RMAN sessions and
each RMAN command executed within the session.

V$SESSION_LONGOPS Contains the status of long-running administrative
operations that run for more than six seconds;
includes statistics gathering and long-running
queries, in addition to RMAN recovery and
backup operations.

V$DATABASE_BLOCK_CORRUPTION Corrupted blocks detected during an RMAN session.

V$FLASH_RECOVERY_AREA_USAGE The percentage of space used, by object type, in
the flash recovery area.

V$RECOVERY_FILE_DEST The number of files, space used, space that can be
reclaimed, and space limit for the flash recovery area.

V$RMAN_CONFIGURATION RMAN configuration parameters with non-default
values for this database.

TABLE 12-2 RMAN Data Dictionary and Dynamic Performance Views

434 Oracle Database 11g DBA Handbook

The RC_* views only exist in a database that is used as an RMAN repository; the V$ views
exist and have rows in any database that is backed up using RMAN. To highlight this difference,
we’ll look at the view V$RMAN_CONFIGURATION in the target database:

SQL> connect rjb/rjb@dw
Connected.
SQL> select * from v$rman_configuration;

 CONF# NAME VALUE
---------- ------------------------------ ------------------------------
 1 RETENTION POLICY TO RECOVERY WINDOW OF 4 DAYS
 2 CONTROLFILE AUTOBACKUP ON
 3 DEVICE TYPE DISK BACKUP TYPE TO COMPRESSED
 BACKUPSET PARALLELISM 1

SQL>

Note that these are the three RMAN persistent parameters that we changed earlier. The recovery
catalog database keeps these non-default values in the view RC_RMAN_CONFIGURATION for all
databases registered with RMAN:

SQL> connect rman/rman@rac
Connected.
SQL> select db_key, db_unique_name, name, value
 2 from rman.rc_rman_configuration;

 DB_KEY DB_UNIQUE_NAME NAME VALUE
---------- ---------------- ------------------------- --------------------
 1 dw CONTROLFILE AUTOBACKUP ON
 1 RETENTION POLICY TO RECOVERY WINDOW O
 F 4 DAYS
 1 dw DEVICE TYPE DISK BACKUP TYPE TO
 COMPRESSED BACKUPSET
 PARALLELISM 1

3 rows selected.

If we were using RMAN to back up another database, this view would contain other values for
DB_KEY and DB_UNIQUE_NAME for other target databases with non-default RMAN parameters.

Because we are not using RMAN to back up the rac database, the views V$RMAN_* are empty.

Backup Operations
In this section, we’ll run through some examples to back up the target database in a variety of
ways: We’ll perform two kinds of full backups, create image copies of selected database files,
investigate how incremental backups work, and delve further into backup compression,
incremental backup optimization, and the flash recovery area.

We’ll continue to use our data warehouse database, dw, as the target database, with the
database rac as the RMAN repository.

Chapter 12: Using Recovery Manager (RMAN) 435

Full Database Backups
In our first example of a full database backup, we’ll use backupsets to copy all database files,
including the SPFILE, to the flash recovery area:

RMAN> backup as backupset database spfile;

Starting backup at 29-AUG-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=111 device type=DISK
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00002 name=+DATA/dw/datafile/sysaux.257.630244581
input datafile file number=00001 name=+DATA/dw/datafile/system.256.630244579
input datafile file number=00006
 name=+DATA/dw/datafile/users_crypt.267.630456963
input datafile file number=00005
 name=+DATA/dw/datafile/example.265.630244801
input datafile file number=00003 name=+DATA/dw/datafile/undotbs1.258.630244583
input datafile file number=00004 name=+DATA/dw/datafile/users.259.630244583
channel ORA_DISK_1: starting piece 1 at 29-AUG-07
channel ORA_DISK_1: finished piece 1 at 29-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_29/
 nnndf0_tag20070829t181238_0.292.63190
 775 tag=TAG20070829T181238 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:02:26
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
including current SPFILE in backup set
channel ORA_DISK_1: starting piece 1 at 29-AUG-07
channel ORA_DISK_1: finished piece 1 at 29-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_29/
 nnsnf0_tag20070829t181238_0.293.631908931 tag=TAG20070829T181238
 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:02
Finished backup at 29-AUG-07

Starting Control File and SPFILE Autobackup at 29-AUG-07
piece handle=+RECOV/dw/autobackup/2007_08_29/
 s_631908935.294.631908947 comment=NONE
Finished Control File and SPFILE Autobackup at 29-AUG-07

RMAN> sql 'alter system archive log current';
sql statement: alter system archive log current
RMAN>

The alter system command ensures that we have archived logs for all transactions, including
those that occurred while the backup was taking place; this ensures that we can perform media
recovery after restoring this backup.

Note that the SPFILE is backed up twice, the second time along with the control file. Because
we set configure controlfile autobackup to on, we automatically back up the control file and
SPFILE whenever we do any other kind of backup or the structure of the database changes. As
a result, we don’t need to specify SPFILE in the backup command.

436 Oracle Database 11g DBA Handbook

Taking a peek into the flash recovery area using the asmcmd tool, we see a lot of cryptic
filenames for the recent archived redo logs and the full database backup we just performed:

SQL> connect / as sysdba
Connected.
SQL> show parameter db_recovery

NAME TYPE VALUE
------------------------------------ ----------- ---------------------
db_recovery_file_dest string +RECOV
db_recovery_file_dest_size big integer 8G
SQL> select name from v$database;

NAME

DW

SQL> exit
[oracle@dw ~]$ asmcmd
ASMCMD> ls
DATA/
RECOV/
ASMCMD> cd recov/dw
ASMCMD> ls
ARCHIVELOG/
AUTOBACKUP/
BACKUPSET/
CONTROLFILE/
ONLINELOG/
ASMCMD> ls -l backupset
Type Redund Striped Time Sys Name
 Y 2007_08_25/
 Y 2007_08_29/
ASMCMD> ls -l backupset/2007_08_29
Type Redund Striped Time Sys Name
BACKUPSET MIRROR COARSE AUG 29 18:00:00 Y
nnndf0_TAG20070829T181238_0.292.631908775
BACKUPSET MIRROR COARSE AUG 29 18:00:00 Y
nnsnf0_TAG20070829T181238_0.293.631908931
ASMCMD> ls -l archivelog
Type Redund Striped Time Sys Name
 Y 2007_08_25/
 Y 2007_08_26/
 Y 2007_08_27/
 Y 2007_08_28/
 Y 2007_08_29/
ASMCMD> ls -l archivelog/2007_08_29
Type Redund Striped Time Sys Name
ARCHIVELOG MIRROR COARSE AUG 29 00:00:00 Y
 thread_1_seq_100.289.631843233
ARCHIVELOG MIRROR COARSE AUG 29 07:00:00 Y
 thread_1_seq_101.290.631869317

Chapter 12: Using Recovery Manager (RMAN) 437

ARCHIVELOG MIRROR COARSE AUG 29 14:00:00 Y
 thread_1_seq_102.291.631893633
ARCHIVELOG MIRROR COARSE AUG 29 18:00:00 Y
 thread_1_seq_103.295.631908977
ASMCMD> ls -l autobackup
Type Redund Striped Time Sys Name
 Y 2007_08_29/
ASMCMD> ls -l autobackup/2007_08_29
Type Redund Striped Time Sys Name
AUTOBACKUP MIRROR COARSE AUG 29 18:00:00 Y s_631908935.294.631908947
ASMCMD>

As an alternative, you can use RMAN’s list command to see these backups as they are
cataloged in the target database control file and the RMAN repository. There are four backupsets,
one for a previous full database backup, and three others: a more recent full backup containing
the datafiles themselves, one for the explicit SPFILE backup, and one for the implicit SPFILE and
control file backup.

RMAN> list backup by backup;

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
163 Full 1.25G DISK 00:03:57 25-AUG-07
 BP Key: 165 Status: AVAILABLE Compressed: NO Tag:
 TAG20070825T215501
 Piece Name:
+RECOV/dw/backupset/2007_08_25/
 nnndf0_tag20070825t215501_0.271.631576525
 List of Datafiles in backup set 163
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 2315404 25-AUG-07
+DATA/dw/datafile/system.256.630244579
 2 Full 2315404 25-AUG-07
+DATA/dw/datafile/sysaux.257.630244581
 3 Full 2315404 25-AUG-07
+DATA/dw/datafile/undotbs1.258.630244583
 4 Full 2315404 25-AUG-07
+DATA/dw/datafile/users.259.630244583
 5 Full 2315404 25-AUG-07
+DATA/dw/datafile/example.265.630244801
 6 Full 2315404 25-AUG-07
+DATA/dw/datafile/users_crypt.267.630456963

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
164 Full 9.36M DISK 00:00:19 25-AUG-07
 BP Key: 166 Status: AVAILABLE Compressed: NO Tag:
 TAG20070825T215501

438 Oracle Database 11g DBA Handbook

 Piece Name:
+RECOV/dw/backupset/2007_08_25/
ncsnf0_tag20070825t215501_0.272.631576759
 SPFILE Included: Modification time: 25-AUG-07
 SPFILE db_unique_name: DW
 Control File Included: Ckp SCN: 2315588 Ckp time: 25-AUG-07

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
229 Full 1.28G DISK 00:02:33 29-AUG-07
 BP Key: 231 Status: AVAILABLE Compressed: NO Tag:
 TAG20070829T181238
 Piece Name:
+RECOV/dw/backupset/2007_08_29/
nnndf0_tag20070829t181238_0.292.631908775
 List of Datafiles in backup set 229
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 2741782 29-AUG-07
+DATA/dw/datafile/system.256.630244579
 2 Full 2741782 29-AUG-07
+DATA/dw/datafile/sysaux.257.630244581
 3 Full 2741782 29-AUG-07
+DATA/dw/datafile/undotbs1.258.630244583
 4 Full 2741782 29-AUG-07
+DATA/dw/datafile/users.259.630244583
 5 Full 2741782 29-AUG-07
+DATA/dw/datafile/example.265.630244801
 6 Full 2741782 29-AUG-07
+DATA/dw/datafile/users_crypt.267.630456963

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
230 Full 80.00K DISK 00:00:12 29-AUG-07
 BP Key: 232 Status: AVAILABLE Compressed: NO Tag:
 TAG20070829T181238
 Piece Name: +RECOV/dw/backupset/2007_08_29/
nnsnf0_tag20070829t181238_0.293.631908931
 SPFILE Included: Modification time: 28-AUG-07
 SPFILE db_unique_name: DW

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
244 Full 9.48M DISK 00:00:11 29-AUG-07
 BP Key: 246 Status: AVAILABLE Compressed: NO Tag:
 TAG20070829T181535
 Piece Name:
+RECOV/dw/autobackup/2007_08_29/
s_631908935.294.631908947
 SPFILE Included: Modification time: 28-AUG-07

Chapter 12: Using Recovery Manager (RMAN) 439

 SPFILE db_unique_name: DW
 Control File Included: Ckp SCN: 2741907 Ckp time: 29-AUG-07

RMAN>

One of the full backups can be used in conjunction with the archived redo logs (stored
by default in the flash recovery area residing in the ASM disk group +RECOV) to recover the
database to any point in time up to the last committed transaction.

Figure 12-5 shows a whole database backup configured to run using OEM. Notice that you
can view, copy, or edit the RMAN script that OEM generates.

Displaying the contents of the catalog is just as easy in OEM. Figure 12-6 shows results
equivalent to the list backup by backup command.

The list and report commands are covered in more detail later in this chapter.

Tablespace
After adding a tablespace to the database, performing an immediate backup of the tablespace will
shorten the time it will take to restore the tablespace later in the event of media failure. In addition,
you might back up an individual tablespace in a database that is too large to back up all at once;
again, creating a backupset or image copy of a tablespace at frequent intervals will reduce the
amount of redo that would need to be applied to an older backup of the tablespace in the event

FIGURE 12-5 Configure backup job with OEM

440 Oracle Database 11g DBA Handbook

of media failure. For example, in an environment with three large tablespaces—USERS, USERS2,
and USERS3—along with the default tablespaces SYSTEM and SYSAUX, you might back up the
SYSTEM and SYSAUX tablespaces on Sunday, USERS on Monday, USERS2 on Wednesday, and
USERS3 on Friday. Failures of any media containing datafiles from one of these tablespaces will
use a tablespace backup that is no more than a week old plus the intervening archived and online
redo log files for recovery.

In our next example, we’re adding a tablespace to the dw database to support a new set of
star schemas:

SQL> create tablespace inet_star
 2 datafile '+DATA' size 100m
 3 autoextend on next 50m maxsize 500m;
 Tablespace created.

From an RMAN session, we will back up the tablespace along with the control file. In this
case, it’s critical that we back up the control file because it contains the definition for the new
tablespace.

RMAN> report schema;

starting full resync of recovery catalog
full resync complete
Report of database schema for database with db_unique_name DW

FIGURE 12-6 Display backupset information with OEM

Chapter 12: Using Recovery Manager (RMAN) 441

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 750 SYSTEM YES
 +DATA/dw/datafile/system.256.630244579
2 803 SYSAUX NO
 +DATA/dw/datafile/sysaux.257.630244581
3 60 UNDOTBS1 YES
 +DATA/dw/datafile/undotbs1.258.630244583
4 5 USERS NO
 +DATA/dw/datafile/users.259.630244583
5 100 EXAMPLE NO
 +DATA/dw/datafile/example.265.630244801
6 500 USERS_CRYPT NO
 +DATA/dw/datafile/users_crypt.267.630456963
7 100 INET_STAR NO
 +DATA/dw/datafile/inet_star.268.632004213

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 60 TEMP 32767
 +DATA/dw/tempfile/temp.264.630244787

RMAN> backup as backupset tablespace inet_star;

Starting backup at 30-AUG-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=152 device type=DISK
channel ORA_DISK_1: starting full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00007
name=+DATA/dw/datafile/inet_star.268.632004213
channel ORA_DISK_1: starting piece 1 at 30-AUG-07
channel ORA_DISK_1: finished piece 1 at 30-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_30/
 nnndf0_tag20070830t204700_0.302.63200435
 tag=TAG20070830T204700 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:03
Finished backup at 30-AUG-07

Starting Control File and SPFILE Autobackup at 30-AUG-07
piece handle=+RECOV/dw/autobackup/2007_08_30/s_632004440.303.632004453
comment=NONE
Finished Control File and SPFILE Autobackup at 30-AUG-07

RMAN>

In Figure 12-7, you can see the new RMAN backup records in the repository—one for the
tablespace (recorded as a single datafile backupset) and one for the controlfile/SPFILE autobackup.

442 Oracle Database 11g DBA Handbook

Datafiles
Individual datafiles can be backed up as easily as we can back up a tablespace. If it’s impractical
to back up an entire tablespace within an RMAN session, you can back up individual datafiles
within a tablespace over a period of days, and the archived redo log files will take care of the rest
during a recovery operation. Here is an example of a datafile backup of a single datafile within a
non-ASM tablespace:

RMAN> backup as backupset datafile
2> '/u04/oradata/ord/oe_trans_06.dbf';

Image Copies
Up until this point, we have been using backupset backups; in contrast, image copies make
bit-for-bit copies of the specified tablespace or entire database. There are a couple of distinct
advantages for using RMAN to perform image copy backups: First, the backup is automatically
recorded in the RMAN repository. Second, all blocks are checked for corruption as they are read
and copied to the backup destination. Another side benefit to making image copies is that the
copies can be used “as is” outside of RMAN if, for some reason, a recovery operation must occur
outside of RMAN.

In the example that follows, we make another backup of the INET_STAR tablespace, this time
as an image copy:

FIGURE 12-7 Tablespace backup files in OEM

Chapter 12: Using Recovery Manager (RMAN) 443

RMAN> backup as copy tablespace inet_star;
Starting backup at 30-AUG-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile file number=00007
name=+DATA/dw/datafile/inet_star.268.632004213
output file name=+RECOV/dw/datafile/inet_star.304.632005047
tag=TAG20070830T205713 RECID=2 STAMP=632005118
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:14
Finished backup at 30-AUG-07

Starting Control File and SPFILE Autobackup at 30-AUG-07
piece handle=+RECOV/dw/autobackup/2007_08_30/
 s_632005123.305.632005135 comment=NONE
Finished Control File and SPFILE Autobackup at 30-AUG-07

RMAN>

Image copies can only be created on DISK device types. In Figure 12-8, we perform the same
backup with OEM.

Because we had earlier configured the default backup type to compressed backupset, we
overrode the default value in an earlier setup screen for this backup.

FIGURE 12-8 Image copy backup of a tablespace using OEM

444 Oracle Database 11g DBA Handbook

Control File, SPFILE Backup
To back up the control file and SPFILE manually, use the following RMAN command:

RMAN> backup current controlfile spfile;

Starting backup at 30-AUG-07
starting full resync of recovery catalog
full resync complete
using channel ORA_DISK_1
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
including current control file in backup set
channel ORA_DISK_1: starting piece 1 at 30-AUG-07
channel ORA_DISK_1: finished piece 1 at 30-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_30/
ncnnf0_tag20070830t220903_0.311.632009363 tag=TAG20070830T220903
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:07
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
including current SPFILE in backup set
channel ORA_DISK_1: starting piece 1 at 30-AUG-07
channel ORA_DISK_1: finished piece 1 at 30-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_30/
nnsnf0_tag20070830t220903_0.312.632009383 tag=TAG20070830T220903
comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
Finished backup at 30-AUG-07

Starting Control File and SPFILE Autobackup at 30-AUG-07
piece handle=+RECOV/dw/autobackup/2007_08_30/
s_632009385.313.632009397 comment=NONE
Finished Control File and SPFILE Autobackup at 30-AUG-07

RMAN>

Note that because we already had autobackup set to on, we actually performed two backups
of the control file and the SPFILE. The second backup of the control file, however, has a record of
the first control file and SPFILE backup.

Archived Redo Logs
Even when archived redo logs are sent to multiple destinations, including the flash recovery area,
due to the critical nature of the archived redo logs, we want to back up copies of the logs to tape
or another disk destination. Once the backup is completed, we have the option to leave the logs
in place, to delete only the logs that RMAN used for the backup, or to delete all copies of the
archived logs that were backed up to tape.

In the following example, we back up all the archived log files in the flash recovery area and
then remove them from disk:

RMAN> backup device type sbt archivelog all delete input;

Chapter 12: Using Recovery Manager (RMAN) 445

If archived log files are being sent to multiple locations, then only one set of the archived redo
log files are deleted. If we want all copies to be deleted, we use delete all input instead of delete
input. As of Oracle Database 11g, corrupt or missing archived log files do not prevent a successful
RMAN backup of the archived logs as in previous releases; as long as one of the archive log file
destinations has a valid log file for a given log sequence number, the backup is successful.

Backing up and deleting only older archived redo log files can be accomplished by specifying
a date range in the backup archivelog command:

RMAN> backup device type sbt
2> archivelog from time 'sysdate-30' until time 'sysdate-7'
3> delete all input;

In the preceding example, all archived redo logs older than one week, going back for three
weeks, are copied to tape and deleted from disk. In addition, you can specify a range using SCNs
or log sequence numbers.

Incremental Backups
An alternative strategy to relying on full backups with archived redo logs is to use incremental
backups along with archived redo logs for recovery. The initial incremental backup is known as
a level 0 incremental backup. Each incremental backup after the initial incremental backup (also
known as a level 1 incremental backup) contains only changed blocks and as a result takes less
time and space. Incremental level 1 backups can either be cumulative or differential. A cumulative
backup records all changed blocks since the initial incremental backup; a differential backup
records all changed blocks since the last incremental backup, whether it was a level 0 or a level
1 incremental backup.

When a number of different types of backups exist in the catalog, such as image copies,
tablespace backupsets, and incremental backups, RMAN will choose the best combination of
backups to most efficiently recover and restore the database. The DBA still has the option to
prevent RMAN from using a particular backup (for example, if the DBA thinks that a particular
backup is corrupt and will be rejected by RMAN during the recovery operation).

The decision whether to use cumulative or differential backups is based partly on where you
want to spend the CPU cycles, and how much disk space you have available. Using cumulative
backups means that each incremental backup will become progressively larger and take longer
until another level 0 incremental backup is performed, but during a restore and recover operation,
only two backupsets will be required. On the other hand, differential backups only record the
changes since the last backup, so each backupset might be smaller or larger than the previous
one, with no overlap in data blocks backed up. However, a restore and recover operation may
take longer if you have to restore from several backupsets instead of just two.

Following our example with the dw database, we find out that several files are outside of our
retention policy of four days; in other words, files that need more than four days worth of archived
redo logs to recover the database:

RMAN> report need backup;

RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 4 days
Report of files whose recovery needs more than 4 days of archived logs

446 Oracle Database 11g DBA Handbook

File Days Name
---- ----- ---
1 5 +DATA/dw/datafile/system.256.630244579
2 5 +DATA/dw/datafile/sysaux.257.630244581
3 5 +DATA/dw/datafile/undotbs1.258.630244583
4 5 +DATA/dw/datafile/users.259.630244583
5 5 +DATA/dw/datafile/example.265.630244801
6 5 +DATA/dw/datafile/users_crypt.267.630456963
7 5 +DATA/dw/datafile/inet_star.268.632004213
8 5 +DATA/dw/datafile/inet_intl_star.269.632009933

RMAN>

To remedy this situation, we can do another full backup, or we can pursue an incremental
backup policy, which might be easier to implement and maintain. To set up our incremental
policy, we need to perform a level 0 incremental backup first:

RMAN> backup incremental level 0
2> as compressed backupset database;

Starting backup at 30-AUG-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting compressed incremental level 0
datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00002 name=+DATA/dw/datafile/sysaux.257.630244581
input datafile file number=00001 name=+DATA/dw/datafile/system.256.630244579
input datafile file number=00006
 name=+DATA/dw/datafile/users_crypt.267.630456963
input datafile file number=00005
 name=+DATA/dw/datafile/example.265.630244801
input datafile file number=00007
 name=+DATA/dw/datafile/inet_star.268.632004213
input datafile file number=00003
 name=+DATA/dw/datafile/undotbs1.258.630244583
input datafile file number=00008
 name=+DATA/dw/datafile/inet_intl_star.269.632009933
input datafile file number=00004
 name=+DATA/dw/datafile/users.259.630244583
channel ORA_DISK_1: starting piece 1 at 30-AUG-07
channel ORA_DISK_1: finished piece 1 at 30-AUG-07
piece handle=+RECOV/dw/backupset/2007_08_30/
 nnndn0_tag20070830t222903_0.315.632010557
 tag=TAG20070830T222903 comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:36
Finished backup at 30-AUG-07

Starting Control File and SPFILE Autobackup at 30-AUG-07
piece handle=+RECOV/dw/autobackup/2007_08_30/
 s_632010654.316.632010665 comment=NONE
Finished Control File and SPFILE Autobackup at 30-AUG-07

RMAN>

Chapter 12: Using Recovery Manager (RMAN) 447

At any point in the future after this level 0 backup, we can perform an incremental level 1
differential backup:

RMAN> backup as compressed backupset
2> incremental level 1 database;

The default incremental backup type is differential; the keyword differential is neither needed
nor allowed. However, to perform a cumulative backup, we add the cumulative keyword:

RMAN> backup as compressed backupset
2> incremental level 1 cumulative database;

How much database activity is performed may also dictate whether you use cumulative or
differential backups. In an OLTP environment with heavy insert and update activity, incremental
backups may be more manageable in terms of disk space usage. For a data warehouse environment
with infrequent changes, a differential backup policy may be more suitable. Compared to using
redo log files, both types of incremental backups are far superior in terms of the time to recover
a database. In any case, we have addressed RMAN’s retention policy:

RMAN> report need backup;

starting full resync of recovery catalog
full resync complete
RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 4 days
Report of files whose recovery needs more than 4 days of archived logs
File Days Name
---- ----- ---

RMAN>

Incrementally Updated Backups
An incrementally updated backup can potentially make a recover and restore operation even
more efficient by rolling the changes from a level 1 incremental backup to a level 0 incremental
image backup. If the incrementally updated backup is run on a daily basis, then any recovery
operation would require at most the updated image copy, one incremental level 1 backup, and
the most recent archived and online redo logs. The following example uses an RMAN script that
can be scheduled to run at the same time every day to support an incrementally updated backup
strategy:

run
{
 recover copy of database with tag 'incr_upd_img';
 backup incremental level 1
 for recover of copy with tag 'incr_upd_img' database;
}

The key part of both commands within the run script is the recover copy clause. Rather than
doing a recovery of the actual database datafiles, we are recovering a copy of a database datafile
by applying incremental backups. Using a tag with an RMAN backup allows us to apply the
incremental backup to the correct image copy. Tags allow DBAs to easily refer to a specific
backup for recovery or catalog cleanup operations; if the backup command does not provide

448 Oracle Database 11g DBA Handbook

a tag, one is automatically generated for the backupset and is unique within the backupsets for
the target database.

The basics of standard recovery operations and RMAN scripting capabilities are covered later
in this chapter.

The OEM backup wizards make it easy to automate an incrementally updated backup strategy.
In the figures that follow, we’ll cover the steps needed to configure this strategy within OEM.

In Figure 12-9, we’re specifying the strategy for backing up our database.
The database is open, archivelog mode is enabled, and backups will follow the Oracle-suggested

guidelines for a backup strategy. The other option in the pull-down menu is Customized. Figure
12-10 shows the next step in the backup configuration process: a summary of the database name,
the strategy selected, where the backups will be sent, the recovery catalog in use, and a brief
explanation as to how the backup will be performed.

In Figure 12-11, we specify when the backups will start, and what time of day they will run.
Although the backup job can run any time during the day, because we are performing a hot backup
(the database is open and users can process transactions), we want to minimize the possible impact
on query and DML response time by scheduling the job during a time period with low activity.

Figure 12-12 gives us one more chance to review how the backup will be performed and
where it will reside.

FIGURE 12-9 OEM backup strategy selection

Chapter 12: Using Recovery Manager (RMAN) 449

FIGURE 12-10 OEM backup setup summary

FIGURE 12-11 OEM backup schedule

450 Oracle Database 11g DBA Handbook

At the bottom of the browser window is the actual RMAN script that will be scheduled to
run on a daily basis (see Figure 12-13). Coincidentally, it strongly resembles the RMAN script
we presented earlier in this section.

Incremental Backup Block Change Tracking
Another way to improve the performance of incremental backups is to enable block change
tracking. For a traditional incremental backup, RMAN must inspect every block of the tablespace
or datafile to be backed up to see if the block has changed since the last backup. For a very large
database, the time it takes to scan the blocks in the database can easily exceed the time it takes
to perform the actual backup.

FIGURE 12-12 OEM backup summary

FIGURE 12-13 OEM backup script

Chapter 12: Using Recovery Manager (RMAN) 451

By enabling block change tracking, RMAN knows which blocks have changed by using a
change tracking file. Although there is some slight overhead in space usage and maintenance of
the tracking file every time a block is changed, the tradeoff is well worth it if frequent incremental
backups are performed on the database. In the following example, we create a block change
tracking file in the DATA disk group and enable block change tracking:

SQL> alter database enable block change tracking
 2 using file '+DATA';

Database altered.

SQL> exit
[oracle@dw ~]$ asmcmd
ASMCMD> cd data/dw
ASMCMD> ls
CHANGETRACKING/
CONTROLFILE/
DATAFILE/
ONLINELOG/
PARAMETERFILE/
TEMPFILE/
spfiledw.ora
ASMCMD> cd changetracking
ASMCMD> ls –s
Block_Size Blocks Bytes Space Name
 512 22657 11600384 25165824 ctf.270.632356105
ASMCMD>

The next time a backup is performed, RMAN will only have to use the contents of the file
ctf.270.632356105 (an OMF-named file in the DW/CHANGETRACKING directory of the DATA
disk group) to determine which blocks need to be backed up. The space needed for the block
change tracking file is approximately 1/250,000 the size of the database.

The dynamic performance view V$BLOCK_CHANGE_TRACKING contains the name and size
of the block change tracking file as well as whether change tracking is enabled:

SQL> select filename, status, bytes from v$block_change_tracking;

FILENAME STATUS BYTES
--- ---------- ----------
+DATA/dw/changetracking/ctf.270.632356105 ENABLED 11599872
SQL>

Backup Compression
As you learned earlier in this chapter, we can either configure backup compression as the default
for backupsets or explicitly specify compression in an RMAN backup command (for the purposes
of this example, the backup was performed on September 3, 2007):

RMAN> backup as compressed backupset database;

452 Oracle Database 11g DBA Handbook

Comparing the size of the actual datafiles with the backupset, we can see just how much
compression we can achieve for some additional CPU overhead:

ASMCMD> cd +DATA
ASMCMD> du DW
Used_MB Mirror_used_MB
 2675 5361
ASMCMD> cd +RECOV/dw/backupset
ASMCMD> ls
2007_08_25/
2007_08_29/
2007_08_30/
2007_09_03/
ASMCMD> du 2007_09_03
Used_MB Mirror_used_MB
 241 483
ASMCMD>

The database files occupy about 2.7GB in the +DATA disk group; the compressed backupset
from RMAN comes in at 241MB, which is well over a 90 percent compression rate.

Using a Flash Recovery Area
Earlier in this chapter, we covered the initialization parameters required to set up the flash recovery
area: DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE. Both of these parameters
are dynamic, allowing the DBA to change either the RMAN destination for backups or the amount
of space allowed for backups in the flash recovery area without restarting the instance.

To facilitate a completely disk-based recovery scenario, the flash recovery area should be big
enough for a copy of all datafiles, incremental backup files, online redo logs, archived redo logs
not on tape, control file autobackups, and SPFILE backups. Using a larger or smaller recovery
window or adjusting the redundancy policy will require an adjustment in the size of the flash
recovery area. If the flash recovery area is limited in size due to disk space constraints, at a minimum
there should be enough room to hold the archived log files that have not yet been copied to tape.
The dynamic performance view V$RECOVERY_FILE_DEST displays information about the number
of files in the flash recovery area, how much space is currently being used, and the total amount
of space available in the flash recovery area.

The flash recovery area automatically uses OMF. As part of Oracle 11g’s simplified
management structure, you do not need to explicitly set any of the LOG_ARCHIVE_DEST_n
initialization parameters if you only need one location for archived redo log files; if the database
is in ARCHIVELOG mode, and a flash recovery area is defined, then the initialization parameter
LOG_ARCHIVE_DEST_10 is implicitly defined as the flash recovery area.

As you have seen in many previous examples, RMAN uses the flash recovery area in a very
organized fashion—with separate directories for archived logs, backupsets, image copies, block
change tracking files, and automatic backups of the control file and SPFILE. In addition, each
subdirectory is further subdivided by a datestamp, making it easy to find a backupset or image
copy when the need arises.

Multiple databases can share the same flash recovery area, even a primary and a standby
database. Even with the same DB_NAME, as long as the DB_UNIQUE_NAME parameter is
different, there will not be any conflicts. RMAN uses the DB_UNIQUE_NAME to distinguish
backups between databases that use the same flash recovery area.

Chapter 12: Using Recovery Manager (RMAN) 453

Validating Backups
Having multiple image backups or enough archived redo log files to support a recovery window
is of less value if there are problems with the live database files or control files. The RMAN
command backup validate database will simulate a backup, checking for the existence of the
specified files, ensuring that they are not corrupted. No backup files are created. This command
would be useful in a scenario where you can check for problems with the database or archived
redo logs proactively, giving you an opportunity to fix problems before the actual backup operation
or for scheduling additional time overnight to repair problems found during the day.

In the following example, we will validate the entire database along with the archived redo
logs after one of the redo log files is accidentally lost:

ASMCMD> cd 2007_08_27
ASMCMD> ls
thread_1_seq_91.280.631681211
thread_1_seq_92.281.631708219
thread_1_seq_93.282.631730443
thread_1_seq_94.283.631749691
thread_1_seq_95.284.631750213
ASMCMD> rm *95.*
You may delete multiple files and/or directories.
Are you sure? (y/n) y
ASMCMD>
. . .
RMAN> backup validate database archivelog all;

Starting backup at 04-SEP-07
using channel ORA_DISK_1
archived log +RECOV/dw/archivelog/2007_08_27/
 thread_1_seq_95.284.631750213
 not found or out of sync with catalog
trying alternate file for archived log of thread 1 with sequence 95
channel ORA_DISK_1: starting compressed archived log backup set
channel ORA_DISK_1: specifying archived log(s) in backup set
input archived log thread=1 sequence=77 RECID=1 STAMP=631556992
. . .
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 602
Finished backup at 04-SEP-07
RMAN>

The backup validate command has identified an archived redo log file that is no longer in the
flash recovery area. It may have been archived to tape outside of RMAN, or it may have been
inadvertently deleted (in this case, it appears that the log file was intentionally deleted). Looking
at the datestamp of the log file, we see that it is outside of our recovery window of four days, so
it is not a critical file in terms of recoverability.

454 Oracle Database 11g DBA Handbook

Synchronizing the flash recovery area and the catalog with the crosscheck command is
covered later in this chapter; once we have fixed the cross-reference problem we have just
discovered, we can perform the rest of the validation:

RMAN> backup validate database archivelog all;

Starting backup at 04-SEP-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting compressed archived log backup set
channel ORA_DISK_1: specifying archived log(s) in backup set
input archived log thread=1 sequence=77 RECID=1 STAMP=631556992
input archived log thread=1 sequence=78 RECID=3 STAMP=631556992
input archived log thread=1 sequence=79 RECID=5 STAMP=631556995
input archived log thread=1 sequence=80 RECID=7 STAMP=631556998
input archived log thread=1 sequence=81 RECID=9 STAMP=631557001
input archived log thread=1 sequence=82 RECID=11 STAMP=631557001
input archived log thread=1 sequence=83 RECID=13 STAMP=631566057
input archived log thread=1 sequence=84 RECID=16 STAMP=631578707
input archived log thread=1 sequence=85 RECID=18 STAMP=631590167
input archived log thread=1 sequence=86 RECID=20 STAMP=631607160
input archived log thread=1 sequence=87 RECID=22 STAMP=631623660
input archived log thread=1 sequence=88 RECID=24 STAMP=631643444
. . .
channel ORA_DISK_1: starting compressed full datafile backup set
channel ORA_DISK_1: specifying datafile(s) in backup set
input datafile file number=00002 name=+DATA/dw/datafile/sysaux.257.630244581
input datafile file number=00001 name=+DATA/dw/datafile/system.256.630244579
input datafile file number=00006
 name=+DATA/dw/datafile/users_crypt.267.630456963
input datafile file number=00005
 name=+DATA/dw/datafile/example.265.630244801
input datafile file number=00007
 name=+DATA/dw/datafile/inet_star.268.632004213
input datafile file number=00003
 name=+DATA/dw/datafile/undotbs1.258.630244583
input datafile file number=00008
 name=+DATA/dw/datafile/inet_intl_star.269.632009933
input datafile file number=00004 name=+DATA/dw/datafile/users.259.630244583
channel ORA_DISK_1: backup set complete, elapsed time: 00:01:05
. . .
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:01
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 602
Finished backup at 04-SEP-07
RMAN>

Chapter 12: Using Recovery Manager (RMAN) 455

No errors were found during the validation; RMAN read every block of every archived redo
log file and datafile to ensure that they were readable and had no corrupted blocks. However, no
backups were actually written to a disk or tape channel.

Recovery Operations
Every good backup plan includes a disaster recovery plan so that we can retrieve the datafiles and
logs from the backups and recover the database files. In this section, we’ll review several different
aspects of RMAN recovery operations.

RMAN can perform restore and recovery operations at various levels of granularity, and most
of these operations can be performed while the database is open and available to users. We can
recover individual blocks, tablespaces, datafiles, or even an entire database. In addition, RMAN
has various methods of validating a restore operation without performing an actual recovery on
the database datafiles.

Block Media Recovery
When there are only a small handful of blocks to recover in a database, RMAN can perform block
media recovery rather than a full datafile recovery. Block media recovery minimizes redo log
application time, and it drastically reduces the amount of I/O required to recover only the block
or blocks in question. While block media recovery is in progress, the affected datafiles can remain
online and available to users.

NOTE
Block media recovery is only available from within the RMAN
application.

There are a number of ways in which block corruption is detected. During a read or write
operation from an insert or select statement, Oracle may detect a block is corrupt, write an error
in a user trace file, and abort the transaction. An RMAN backup or backup validate command can
record corrupted blocks in the dynamic performance view V$DATABASE_BLOCK_CORRUPTION.
In addition, the SQL commands analyze table and analyze index could uncover corrupted blocks.

To recover one or more data blocks, RMAN must know the datafile number and block number
within the datafile. This information is available in a user trace file, as in the following example:

ORA-01578: ORACLE data block corrupted (file # 6, block # 403)
ORA-01110: data file 6: '/u09/oradata/ord/oe_trans01.dbf'

Alternatively, the block may appear in the view V$DATABASE_BLOCK_CORRUPTION after
an RMAN backup command; the columns FILE# and BLOCK# provide the information needed to
execute the recover command. The column CORRUPTION_TYPE identifies the type of corruption
in the block, such as FRACTURED, CHECKSUM, or CORRUPT. Fixing the block is easily
accomplished in RMAN:

RMAN> recover datafile 6 block 403;

Starting recover at 04-SEP-07
using channel ORA_DISK_1

starting media recovery

456 Oracle Database 11g DBA Handbook

media recovery complete, elapsed time: 00:00:01

Finished recover at 04-SEP-07

RMAN>

A corrupted block must be restored completely; in other words, all redo operations up to the
latest SCN against the data block must be applied before the block can be considered usable again.

NOTE
The blockrecover command, available in previous releases of RMAN,
has been deprecated in Oracle Database 11g in favor of the recover
command; the syntax of the command is otherwise the same.

Restoring a Control File
In the rare event that you lose all copies of your control file, it is easy to restore the control file
when a recovery catalog is used; start the instance with nomount (since we don’t have a control
file to read with mount) and issue the following RMAN command:

RMAN> restore controlfile;

If you are not using a recovery catalog, you can add the from ‘<filename>’ clause to the
command to specify where the latest control file exists:

RMAN> restore controlfile from '/u11/oradata/ord/bkup.ctl';

After restoring the control files, you must perform complete media recovery of your database
and open the database with the resetlogs option. Complete media recovery can be performed
using RMAN or the methods described in Chapter 11.

Restoring a Tablespace
If the disk containing the datafiles for a tablespace fails or becomes corrupted, recovery of the
tablespace is possible while the database remains open and available. The exception to this is the
SYSTEM tablespace. In our dw database, suppose the disk containing the datafiles for the USERS
tablespace has crashed. After the first phone call from the users (which happened even before
OEM notified us of the error), we can check the dynamic performance view V$DATAFILE_HEADER
to see which datafiles need recovery:

SQL> select file#, status, error, tablespace_name, name
 2 from v$datafile_header;

 FILE# STATUS ERROR TABLESPACE_NAME NAME
------- ------- ----------- --------------- -------------------------
 1 ONLINE SYSTEM +DATA/dw/datafile/system.
 256.630244579
 2 ONLINE SYSAUX +DATA/dw/datafile/sysaux.
 257.630244581
 3 ONLINE UNDOTBS1 +DATA/dw/datafile/undotbs
 1.258.630244583
 4 ONLINE FILE NOT
 FOUND
 5 ONLINE EXAMPLE +DATA/dw/datafile/example

Chapter 12: Using Recovery Manager (RMAN) 457

 .265.630244801
 6 ONLINE USERS_CRYPT +DATA/dw/datafile/users_c
 rypt.267.630456963
 7 ONLINE INET_STAR +DATA/dw/datafile/inet_st
 ar.268.632004213
 8 ONLINE INET_INTL_STAR +DATA/dw/datafile/inet_in
 tl_star.269.632009933

8 rows selected.

Incidentally, the alert log (and the session where you performed the startup command) would
give you another clue the next time you tried to start the database with a missing or corrupted
datafile:

ORA-01157: cannot identify/lock data file 4 - see DBWR trace file
ORA-01110: data file 4: '+DATA/dw/datafile/users.259.630244583'

After replacing the disk drive, we initiate an RMAN session and find out that file number 4
corresponds to the USERS tablespace:

RMAN> report schema;

Report of database schema for database with db_unique_name DW

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 750 SYSTEM YES
 +DATA/dw/datafile/system.256.630244579
2 826 SYSAUX NO
 +DATA/dw/datafile/sysaux.257.630244581
3 60 UNDOTBS1 YES
 +DATA/dw/datafile/undotbs1.258.630244583
4 5 USERS NO
 +DATA/dw/datafile/users.259.630244583
5 100 EXAMPLE NO
 +DATA/dw/datafile/example.265.630244801
6 500 USERS_CRYPT NO
 +DATA/dw/datafile/users_crypt.267.630456963
7 100 INET_STAR NO
 +DATA/dw/datafile/inet_star.268.632004213
8 50 INET_INTL_STAR NO
 +DATA/dw/datafile/inet_intl_star.269.632009933

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 60 TEMP 32767
 +DATA/dw/tempfile/temp.264.630244787

RMAN>

458 Oracle Database 11g DBA Handbook

To restore and recover the tablespace, we force the tablespace offline, restore and recover the
tablespace, and bring it back online:

RMAN> sql 'alter tablespace users offline immediate';
sql statement: alter tablespace users offline immediate

RMAN> restore tablespace users;

Starting restore at 04-SEP-07
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00004 to
 +DATA/dw/datafile/users.259.630244583
channel ORA_DISK_1: reading from backup piece
+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t215119_0.266.632440295
channel ORA_DISK_1: piece handle=+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t215119_0.266.632440295
 tag=TAG20070904T215119
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
Finished restore at 04-SEP-07
starting full resync of recovery catalog
full resync complete

RMAN> recover tablespace users;

Starting recover at 04-SEP-07
using channel ORA_DISK_1

starting media recovery
media recovery complete, elapsed time: 00:00:01
Finished recover at 04-SEP-07

RMAN> sql 'alter tablespace users online';

sql statement: alter tablespace users online

RMAN>

The restore command copied the latest image or backupset copy of the datafiles in the USERS
tablespace to their original locations; the recover command applied redo from either redo log
files or incremental backups to bring the objects in the tablespace back up to the latest SCN.
Once the tablespace is back online, it is available for use again, without the loss of any committed
transactions to tables in the tablespace.

Chapter 12: Using Recovery Manager (RMAN) 459

Restoring a Datafile
Restoring a datafile is a very similar operation to restoring a tablespace. Once the missing or
corrupted datafile is identified using the V$DATAFILE_HEADER view, the RMAN commands are
very similar to the previous example; the tablespace is taken offline, the datafile(s) are restored
and recovered, and the tablespace is brought back online. If only file number 7 was lost, the
recover and restore commands are as simple as this:

RMAN> restore datafile 7;
RMAN> recover datafile 7;

Using OEM, the procedure is also very straightforward. In Figure 12-14, we configure the
datafile restore by selecting the missing datafile (#7) in the INET_STAR tablespace.

In Figure 12-15, we have the option to restore the datafile to an alternate location; in this
case, we want to restore it to the original location. If the failed disk drive containing the datafile
could not be repaired, we would specify an alternate location for the datafile.

Before the RMAN job is submitted, we have one more chance to review the configuration of
the job in Figure 12-16. Figure 12-17 shows the actual RMAN commands that will be run to perform
the requested operation.

FIGURE 12-14 Selecting the datafile to restore

460 Oracle Database 11g DBA Handbook

FIGURE 12-15 Specifying a location for the restored datafile

FIGURE 12-16 Review the restore options

Chapter 12: Using Recovery Manager (RMAN) 461

Restoring an Entire Database
Although the loss of an entire database is a serious and disastrous event, having a solid backup
and recovery policy, as we’ve described previously in this chapter, can bring the database back
up to the most recent committed transaction with a minimum of effort. In the following scenario,
we have lost all datafiles. However, because we have multiplexed the control file and online redo
log files on many different disks, we will have them available during the RMAN restore and recovery
operation. Alternatively, you can restore the control files or copy the online redo log files to the
other destinations before mounting the database. If this is not feasible because the alternate disk
locations are not available, you can alter your parameter file or SPFILE to indicate which files are
still available.

The entire restore and recovery operation can be performed within RMAN; first, we start up
RMAN and open the database in mount mode, just as if we used the startup mount command at
a SQL*Plus prompt:

[oracle@oltp oracle]$ rman target / catalog rman/rman@rac

Recovery Manager: Release 11.1.0.6.0 -
 Production on Tue Sep 4 22:36:05 2007

Copyright (c) 1982, 2007, Oracle. All rights reserved.

connected to target database (not started)

FIGURE 12-17 RMAN commands for the restore options

462 Oracle Database 11g DBA Handbook

recovery catalog database Password:
connected to recovery catalog database

RMAN> startup mount

Oracle instance started
database mounted

Total System Global Area 422670336 bytes
Fixed Size 1300352 bytes
Variable Size 360712320 bytes
Database Buffers 54525952 bytes
Redo Buffers 6131712 bytes
starting full resync of recovery catalog
full resync complete
RMAN>

RMAN connects to the database and identifies it as being unavailable; this is the same as
connecting to SQL*Plus and seeing the message “Connected to an idle instance.” The next steps
are to restore and recover the database:

RMAN> restore database;
Starting restore at 04-SEP-07
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00001 to
+DATA/dw/datafile/system.256.630244579
channel ORA_DISK_1: restoring datafile 00002 to
+DATA/dw/datafile/sysaux.257.630244581
channel ORA_DISK_1: restoring datafile 00003 to
+DATA/dw/datafile/undotbs1.258.630244583
channel ORA_DISK_1: restoring datafile 00004 to
+DATA/dw/datafile/users.259.632441707
channel ORA_DISK_1: restoring datafile 00005 to
+DATA/dw/datafile/example.265.630244801
channel ORA_DISK_1: restoring datafile 00006 to
+DATA/dw/datafile/users_crypt.267.630456963
channel ORA_DISK_1: restoring datafile 00007 to
+DATA/dw/datafile/inet_star.268.632004213
channel ORA_DISK_1: restoring datafile 00008 to
+DATA/dw/datafile/inet_intl_star.269.632009933
channel ORA_DISK_1: reading from backup piece
+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t215119_0.266.632440295
channel ORA_DISK_1: piece
handle=+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t215119_0.266.63244295
 tag=TAG20070904T215119
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:03:11

Chapter 12: Using Recovery Manager (RMAN) 463

Finished restore at 04-SEP-07
RMAN> recover database;
Starting recover at 04-SEP-07
using channel ORA_DISK_1

starting media recovery

archived log for thread 1 with sequence 142
 is already on disk as file
 +RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_142.265.632440415
archived log for thread 1 with sequence 143
 is already on disk as file
 +RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_143.349.632442295
archived log for thread 1 with sequence 144
 is already on disk as file
 +RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_144.350.632442297
archived log for thread 1 with sequence 145
 is already on disk as file
 +RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_145.351.632442303
archived log file
 name=+RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_142.265.632440415 thread=1 sequence=142
archived log file
 name=+RECOV/dw/archivelog/2007_09_04/
 thread_1_seq_143.349.632442295 thread=1 sequence=143
media recovery complete, elapsed time: 00:00:35
Finished recover at 04-SEP-07
starting full resync of recovery catalog
full resync complete
RMAN> alter database open;
database opened
RMAN>

The database is now open and available for use. RMAN will pick the most efficient way to
perform the requested operation, minimizing the number of files accessed or the number of disk I/
Os to bring the database back to a consistent state in as short a time as possible. In the previous
example, RMAN used a full database backupset and archived redo log files to recover the database.

During a recovery operation, RMAN may need to restore archived redo logs from tape; to
limit the amount of disk space used during a recovery operation, the recover command used in
the previous example could use the following options instead:

RMAN> recover database delete archivelog maxsize 2gb;

The parameter delete archivelog directs RMAN to remove archived log files from disk that
were restored from tape for this recovery option; the maxsize 2gb parameter restricts the amount
of space that can be occupied by restored archived log files at any point in time to 2GB. In our
dw database, these two parameters are not needed; all archived log files needed to recover the
database are kept in the flash recovery area on disk to support the defined retention policy.

464 Oracle Database 11g DBA Handbook

Validating Restore Operations
Earlier in this chapter, we validated the data blocks in the datafiles that we want to back up. In
this section, we’ll take the opposite approach and instead validate the backups that we have
already made. We’ll also find out from RMAN which backupsets, image copies, and archived
redo logs would be used in a recovery operation without actually performing the recovery.

RESTORE PREVIEW
The command restore preview will provide a list of the files that RMAN will use to perform
the requested operation; the preview will also indicate if a tape volume will be requested, for
example. No files are actually restored; only the recovery catalog is queried to determine which
files are needed. In the following example, we want to find out what RMAN will need if we need
to recover the USERS tablespace:

RMAN> restore tablespace users preview;

Starting restore at 04-SEP-07
using channel ORA_DISK_1

List of Backup Sets
===================

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
744 Full 239.34M DISK 00:01:45 04-SEP-07
 BP Key: 747 Status: AVAILABLE Compressed: YES Tag:
TAG20070904T215119
 Piece Name:
+RECOV/dw/backupset/2007_09_04/nnndf0_tag20070904t215119_0.266.632440295
 List of Datafiles in backup set 744
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 4 Full 3472960 04-SEP-07 +DATA/dw/datafile/users.259.632441707

List of Archived Log Copies for database with db_unique_name DW
===
Key Thrd Seq S Low Time
------- ---- ------- - ---------
806 1 142 A 04-SEP-07
 Name: +RECOV/dw/archivelog/2007_09_04/thread_1_seq_142.265.632440415
833 1 143 A 04-SEP-07
 Name: +RECOV/dw/archivelog/2007_09_04/thread_1_seq_143.349.632442295
831 1 144 A 04-SEP-07
 Name: +RECOV/dw/archivelog/2007_09_04/thread_1_seq_144.350.632442297
835 1 145 A 04-SEP-07
 Name: +RECOV/dw/archivelog/2007_09_04/thread_1_seq_145.351.632442303
Media recovery start SCN is 3472960

Recovery must be done beyond SCN 3472960 to clear datafile fuzziness
Finished restore at 04-SEP-07
RMAN>

Chapter 12: Using Recovery Manager (RMAN) 465

For the restore operation, RMAN will need to use one backupset for the single datafile in the
tablespace; archived redo log files will be used to bring the tablespace up to the current SCN.

If a restore operation needs to be performed immediately, and one of the files that RMAN will
request to perform the operation is offsite, you can use the change . . . unavailable command to
mark a backupset as unavailable and then run the restore tablespace . . . preview command again
to see if RMAN can use disk-based backupsets to fulfill the request.

RESTORE VALIDATE
The restore . . . preview command does not read the actual backupsets, only the catalog information;
if we want to validate whether the backupsets themselves are readable and not corrupted, we use
the restore . . . validate command. As with most other RMAN commands, we can perform the
validation for a datafile, a tablespace, or the entire database. In the following example, we’ll
perform a validation on the same backupsets that RMAN reported in the previous example for
the USERS tablespace:

RMAN> restore tablespace users validate;
Starting restore at 04-SEP-07
using channel ORA_DISK_1
channel ORA_DISK_1: starting validation of datafile backup set
channel ORA_DISK_1: reading from backup piece
+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t230656_0.354.632444895
channel ORA_DISK_1: piece
handle=+RECOV/dw/backupset/2007_09_04/
 nnndf0_tag20070904t230656_0.354.632444895 tag=TAG20070904T230656
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: validation complete, elapsed time: 00:02:13
Finished restore at 04-SEP-07
RMAN>

All blocks of the backupsets were read to ensure that they are usable for a restore operation
for the USERS tablespace.

Point in Time Recovery
RMAN can be used to implement point in time recovery, or restoring and recovering a database
up to a timestamp or SCN before the point at which a database failure occurred. As you found
out in Chapter 11, a point in time recovery (PITR) may be useful for recovering from a user error
where a table was dropped yesterday, but the error was not detected until today. Using PITR, we
can recover the database to a point in time right before the table was dropped.

Using PITR has the disadvantage of losing all other changes to the database from the point at
which the database was restored; this disadvantage needs to be weighed against the consequences
of the dropped table. If both options are undesirable, then another method such as Flashback
Table, Flashback Database, or tablespace point in time recovery (TSPITR) should be considered
as an alternative for recovering from these types of user errors.

Data Recovery Advisor
In a busy DBA’s schedule, you may be aware of a database failure (usually from a user’s phone
call or e-mail), but you don’t know the specific cause; using the Data Recovery Advisor, new to
Oracle Database 11g, you can zoom in on the failure without checking the alert log or trace files.

466 Oracle Database 11g DBA Handbook

The Data Recovery Advisor is available at the RMAN command line or in Oracle Enterprise Manager,
as you’ll see in the following paragraphs.

In this scenario, the datafile for the tablespace XPORT_DW was accidentally deleted by the
system administrator; the next time one of the users tries to create a table in this tablespace, they
get this message:

SQL> create table daily_lineitem
 2 tablespace xport_dw
 3 as select * from oe.lineitem_table;
as select * from oe.lineitem_table
 *
ERROR at line 3:
ORA-01658: unable to create INITIAL extent for segment
 in tablespace XPORT_DW
SQL>

You get an instant message from the user notifying you of the failure, and since you’re already
at the RMAN command-line interface, you use the list failure command to see what the problem
might be:

RMAN> list failure;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1022 HIGH OPEN 05-SEP-07 One or more non-system
 datafiles are corrupt

There is only one failure, so you drill down into the failure using the Failure ID and the detail
option of the list failure command:

RMAN> list failure 1022 detail;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1022 HIGH OPEN 05-SEP-07 One or more non-system
 datafiles are corrupt
 Impact: See impact for individual child failures
 List of child failures for parent failure ID 1022

 Failure ID Priority Status Time Detected Summary
 ---------- -------- --------- ------------- -------
 1025 HIGH OPEN 05-SEP-07 Datafile 9:
 '/u02/oradata/xport_dw.dbf' is corrupt
 Impact: Some objects in tablespace
 XPORT_DW might be unavailable

Similar information is available in OEM; Figure 12-18 shows the OEM page when you click
the Perform Recovery link, as you did earlier in this chapter.

Chapter 12: Using Recovery Manager (RMAN) 467

In your RMAN session, you use the advise failure command to see a possible course of action:

RMAN> advise failure;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
1022 HIGH OPEN 05-SEP-07 One or more non-system
 datafiles are corrupt
 Impact: See impact for individual child failures
 List of child failures for parent failure ID 1022

 Failure ID Priority Status Time Detected Summary
 ---------- -------- --------- ------------- -------
 1025 HIGH OPEN 05-SEP-07 Datafile 9:
 '/u02/oradata/xport_dw.dbf' is corrupt
 Impact: Some objects in tablespace
 XPORT_DW might be unavailable

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

FIGURE 12-18 OEM Recovery Advisor interface

468 Oracle Database 11g DBA Handbook

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
no manual actions available

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 9
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /u01/app/oracle/diag/rdbms/dw/dw/hm/reco_3725543542.hm

RMAN>

Clicking the Advise And Recover button in Figure 12-19 gives you the same advice, as you
might expect; Figure 12-20 shows the RMAN script that OEM will execute to recover from the
media failure.

FIGURE 12-19 OEM Recovery Advisor recommended actions

Chapter 12: Using Recovery Manager (RMAN) 469

In any case, you perform a straightforward tablespace recovery in RMAN using the
recommendations in /u01/app/oracle/diag/rdbms/dw/dw/hm/reco_3725543542.hm, which
not uncoincidentally are the same recommendations you see in Figure 12-20:

RMAN> sql 'alter database datafile 9 offline';

sql statement: alter database datafile 9 offline

RMAN> restore datafile 9;

Starting restore at 05-SEP-07
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00009 to /u02/oradata/xport_dw.dbf
channel ORA_DISK_1: reading from backup piece
+RECOV/dw/backupset/2007_09_05/nnndf0_tag20070905t230653_0.304.632531225
channel ORA_DISK_1: piece
handle=+RECOV/dw/backupset/2007_09_05/
nnndf0_tag20070905t230653_0.304.632531225 tag=TAG20070905T230653
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
Finished restore at 05-SEP-07

FIGURE 12-20 OEM Recovery Advisor RMAN command summary

470 Oracle Database 11g DBA Handbook

RMAN> recover datafile 9;

Starting recover at 05-SEP-07
using channel ORA_DISK_1

starting media recovery
media recovery complete, elapsed time: 00:00:02

Finished recover at 05-SEP-07

RMAN> sql 'alter database datafile 9 online';

sql statement: alter database datafile 9 online

RMAN>

Miscellaneous Operations
In the next few sections, we’ll cover some of the other capabilities of RMAN, beyond the backup,
restore, and recovery operations. We’ll show how to record the existence of other backups made
outside of the database and perform some catalog maintenance. We’ll also give a couple more
examples of the list and report commands.

Cataloging Other Backups
On occasion, we want the recovery catalog to include backups made outside of RMAN, such as
image copies made with operating system commands or with the asmcmd command, as in this
example:

ASMCMD> pwd
+DATA/dw/datafile
ASMCMD> ls
EXAMPLE.265.630244801
INET_INTL_STAR.269.632009933
INET_STAR.268.632004213
SYSAUX.257.630244581
SYSTEM.256.630244579
UNDOTBS1.258.630244583
USERS.259.632441707
USERS_CRYPT.267.630456963
ASMCMD> cp USERS.259.632441707 /u02/oradata/USERS.259.632441707
source +DATA/dw/datafile/USERS.259.632441707
target /u02/oradata/USERS.259.632441707
copying file(s)...
file, /u02/oradata/USERS.259.632441707, copy committed.
ASMCMD>

CAUTION
Image copies created with operating system commands must be
performed either while the database is shut down or by using the
alter tablespace . . . begin/end backup commands.

Chapter 12: Using Recovery Manager (RMAN) 471

Recording this image copy of the USERS tablespace is easy in RMAN using the catalog
command:

RMAN> catalog datafilecopy '/u02/oradata/USERS.259.632441707';
starting full resync of recovery catalog
full resync complete
cataloged datafile copy
datafile copy file name=/u02/oradata/
 USERS.259.632441707 RECID=11 STAMP=632447886
RMAN>

Now that the image copy is recorded in the RMAN repository, it may be considered for use in
restore and recovery operations for the USERS tablespace.

Catalog Maintenance
Earlier in this chapter, we discussed the use of the backup validate command to ensure that all
the files that could be used in a backup operation were available, readable, and not corrupted.
In that example, we found out that we had a mismatch between what the catalog reported and the
archived redo logs on disk; some old archived redo logs were inadvertently removed from disk
during a cleanup operation. In this section, we’ll step through some of the maintenance operations
we would need to perform to bring the catalog in synch with what actually exists on disk.

RMAN> backup validate database archivelog all;
Starting backup at 05-SEP-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=121 device type=DISK
archived log +RECOV/dw/archivelog/2007_08_27/
thread_1_seq_95.284.631750213 not found or out of sync with catalog
trying alternate file for archived log of thread 1 with sequence 95
. . .

Our first attempt to fix the problem was to remove all obsolete files outside of our recovery
window of four days, keeping an extra day’s worth of logs, since we have plenty of space in the
flash recovery area.

RMAN> delete obsolete recovery window of 5 days;

using channel ORA_DISK_1
Deleting the following obsolete backups and copies:
Type Key Completion Time Filename/Handle
-------------------- ------ ------------------ --------------------
Archive Log 131 25-AUG-07
 /u01/app/oracle/product/11.1.0/db_1/dbs/arch1_83_630244724.dbf
Archive Log 133 25-AUG-07
 /u01/app/oracle/product/11.1.0/db_1/dbs/arch1_84_630244724.dbf
Archive Log 134 25-AUG-07
 +RECOV/dw/archivelog/2007_08_25/thread_1_seq_84.273.631578703
Archive Log 135 26-AUG-07
 /u01/app/oracle/product/11.1.0/db_1/dbs/arch1_85_630244724.dbf
. . .
Archive Log 976 05-SEP-07
/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_81_630244724.dbf
Archive Log 977 05-SEP-07
/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_82_630244724.dbf

472 Oracle Database 11g DBA Handbook

Do you really want to delete the above objects (enter YES or NO)? yes
deleted archived log
archived log file
name=/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_83_630244724.dbf RECID=13 STAMP=631566057
deleted archived log
archived log file
name=/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_84_630244724.dbf RECID=15
STAMP=631578707
deleted archived log
. . .
Deleted 79 objects
RMAN-06207: WARNING: 1 objects could not be deleted for DISK channel(s) due
RMAN-06208: to mismatched status. Use CROSSCHECK command to fix
 status
RMAN-06210: List of Mismatched objects
RMAN-06211: ==========================
RMAN-06212: Object Type Filename/Handle
RMAN-06213: --------------- --
RMAN-06214: Archivelog
+RECOV/dw/archivelog/2007_08_27/thread_1_seq_95.284.631750213
RMAN>

Although we did remove a lot of the obsolete files from the flash recovery area, the catalog
and the contents of the disk were still not in synch; RMAN suggests that we use the crosscheck
command to remedy the problem:

RMAN> crosscheck archivelog all;

released channel: ORA_DISK_1
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=121 device type=DISK
validation failed for archived log
archived log file
name=+RECOV/dw/archivelog/2007_08_27
 /thread_1_seq_95.284.631750213 RECID=38 STAMP=631750217
validation succeeded for archived log
archived log file
name=/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_114_630244724.dbf RECID=75 STAMP=632020373
. . .
archived log file name=/u01/app/oracle/product/11.1.0/db_1/dbs/arch1_147_630244724.dbf
RECID=141 STAMP=632444769
validation succeeded for archived log
archived log file
name=+RECOV/dw/archivelog/2007_09_04/thread_1_seq_147.353.632444769
RECID=142 STAMP=632444769
Crosschecked 69 objects
RMAN>

The missing archived redo logs are now marked as EXPIRED in the catalog, and they won’t be
considered when validating backups or for performing restore or recovery operations.

All datafiles that RMAN could consider for a backup operation, including archived redo logs,
are available and readable.

REPORT and LIST
All throughout this chapter, I’ve provided a number of examples of how to extract information
from the recovery catalog, whether it resides in the target database control file or in a catalog
database repository. We’ve used both the list and report commands. The primary difference

Chapter 12: Using Recovery Manager (RMAN) 473

between these commands is in their complexity: The list command displays information about
backupsets and image copies in the repository as well as lists the contents of scripts stored in the
repository catalog:

RMAN> list backup summary;

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
487 B 0 A DISK 30-AUG-07 1 1 YES
 TAG20070830T222903
509 B F A DISK 30-AUG-07 1 1 NO
 TAG20070830T223054
624 B F A DISK 03-SEP-07 1 1 NO
 TAG20070903T133622
661 B F A DISK 03-SEP-07 1 1 YES
 TAG20070903T224442
677 B F A DISK 03-SEP-07 1 1 NO
 TAG20070903T224753
744 B F A DISK 04-SEP-07 1 1 YES
 TAG20070904T215119
768 B F A DISK 04-SEP-07 1 1 NO
 TAG20070904T215311
889 B F A DISK 04-SEP-07 1 1 YES
 TAG20070904T230656
915 B F A DISK 04-SEP-07 1 1 NO
 TAG20070904T230932
RMAN>

In contrast, the report command performs a more detailed analysis of the information in the
recovery catalog; as in one of our previous examples, we used report to identify which database
files needed backups to comply with our retention policy. In the following example, we find
out what the datafiles looked like back on 8/30/07, and then we query the current status of the
datafiles:

RMAN> report schema at time='30-aug-07';

Report of database schema for database with db_unique_name DW

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 750 SYSTEM YES
 +DATA/dw/datafile/system.256.630244579
2 829 SYSAUX NO
 +DATA/dw/datafile/sysaux.257.630244581
3 60 UNDOTBS1 YES
 +DATA/dw/datafile/undotbs1.258.630244583
4 5 USERS NO
 +DATA/dw/datafile/users.259.632441707

474 Oracle Database 11g DBA Handbook

5 100 EXAMPLE NO
 +DATA/dw/datafile/example.265.630244801
6 500 USERS_CRYPT NO
 +DATA/dw/datafile/users_crypt.267.630456963

List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 60 TEMP 32767
 +DATA/dw/tempfile/temp.264.630244787

RMAN> report schema;
Report of database schema for database with db_unique_name DW

List of Permanent Datafiles
===========================
File Size(MB) Tablespace RB segs Datafile Name
---- -------- -------------------- ------- ------------------------
1 750 SYSTEM YES
 +DATA/dw/datafile/system.256.630244579
2 829 SYSAUX NO
 +DATA/dw/datafile/sysaux.257.630244581
3 60 UNDOTBS1 YES
 +DATA/dw/datafile/undotbs1.258.630244583
4 5 USERS NO
 +DATA/dw/datafile/users.259.632441707
5 100 EXAMPLE NO
 +DATA/dw/datafile/example.265.630244801
6 500 USERS_CRYPT NO
 +DATA/dw/datafile/users_crypt.267.630456963
7 100 INET_STAR NO
 +DATA/dw/datafile/inet_star.268.632004213
8 50 INET_INTL_STAR NO
 +DATA/dw/datafile/inet_intl_star.269.632009933
List of Temporary Files
=======================
File Size(MB) Tablespace Maxsize(MB) Tempfile Name
---- -------- -------------------- ----------- --------------------
1 60 TEMP 32767
 +DATA/dw/tempfile/temp.264.630244787
RMAN>

At some point between 8/30/07 and today, we created the tablespaces INET_STAR and INET_
INTL_STAR.

CHAPTER
13

Oracle Data Guard

475

476 Oracle Database 11g DBA Handbook

racle Data Guard provides a solution for high availability, enhanced performance,
and automated failover. You can use Oracle Data Guard to create and maintain
multiple standby databases for a primary database. The standby databases can be
started in read-only mode to support reporting users and then returned to standby
mode. Changes to the primary database can be automatically relayed from the

primary database to the standby databases with a guarantee of no data lost in the process. The
standby database servers can be physically separate from the primary server.

In this chapter, you will see how to administer an Oracle Data Guard environment, along
with sample configuration files for a Data Guard environment.

Data Guard Architecture
In a Data Guard implementation, a database running in ARCHIVELOG mode is designated as the
primary database for an application. One or more standby databases, accessible via Oracle Net,
provide for failover capabilities. Data Guard automatically transmits redo information to the
standby databases, where it is applied. As a result, the standby database is transactionally consistent.
Depending on how you configure the redo application process, the standby databases may be in
sync with the primary database or may lag behind it. Figure 13-1 shows a standard Data Guard
implementation.

The redo log data is transferred to the Standby Databases via Log Transport Services, as
defined via your initialization parameter settings. Log Apply Services apply the redo information
to the standby databases. A third set of services, Role Management Services, simplify the process
of making Standby Databases serve as the primary database.

O

FIGURE 13-1 Simple Data Guard configuration

Chapter 13: Oracle Data Guard 477

NOTE
The primary database can be a single instance or a multi-instance Real
Application Clusters implementation.

Physical vs. Logical Standby Databases
Two types of standby databases are supported: physical standbys and logical standbys. A physical
standby database has the same structures as the primary database. A logical standby database may
have different internal structures (such as additional indexes used for reporting). You synchronize a
logical standby database with the primary by transforming the redo data into SQL statements that
are executed against the standby database.

Physical and logical standby databases serve different purposes. A physical standby database
is a block-for-block copy of the primary database, so it can be used for database backups in place
of the primary database. During disaster recovery, the physical standby looks exactly like the
primary database it replaces.

A logical standby database, because it supports additional database structures, can more
easily be used to support specific reporting requirements that would otherwise burden the primary
database. Additionally, rolling upgrades of primary and standby databases can be performed with
minimal downtime when logical standby databases are used. The type of standby to use depends
on your needs; many environments start out using physical standby databases for disaster recovery
and then add in additional logical standby databases to support specific reporting and business
requirements.

NOTE
The operating system and platform architecture on the primary and
standby locations do not need to be identical as of Oracle Database
11g. The directory structures for the primary and standby databases may
differ, but you should minimize the differences to simplify administration
and failover processes. If the standby is located on the same server as
the primary, you must use a different directory structure for the two
databases, and they cannot share an archive log directory. In addition,
Oracle Data Guard is available only in Oracle Enterprise Edition.

Data Protection Modes
When you configure the primary and standby databases, you will need to determine the level
of data loss that is acceptable to the business. In the primary database, you will define its archive
log destination areas, and at least one of which will refer to the remote site used by the standby
database. The ASYNC, SYNC, ARCH, LGWR, NOAFFIRM and AFFIRM attributes of the LOG_
ARCHIVE_DEST_n parameter setting (see Table 13-1, later in this chapter) for the standby
database will direct Oracle Data Guard to select among several modes of operation:

In maximum protection (or “no data loss”) mode, at least one standby location must be
written to before a transaction commits in the primary database. The primary database
shuts down if the standby database’s log location is unavailable.

In maximum availability mode, at least one standby location must be written to before a
transaction commits in the primary database. If the standby location is not available, the
primary database does not shut down. When the fault is corrected, the redo that has been
generated since the fault is transported and applied to the standby databases.

■

■

478 Oracle Database 11g DBA Handbook

In maximum performance mode (the default), transactions can commit before their redo
information is sent to the standby locations. Commits in the primary database occur as
soon as writes to the local online redo logs complete. The writes to the standby locations
are handled by the ARCH process by default.

Once you have decided the type of standby and the data protection mode for your
configuration, you can create your standby database.

LOG_ARCHIVE_DEST_n Parameter Attributes
As illustrated in the following sections, Oracle Data Guard configurations rely on a number of
attributes within the LOG_ARCHIVE_DEST_n parameter. Table 13-1 summarizes the attributes
available for this parameter. In almost all cases the attributes are paired; in some cases the second
member of the pair simply serves to nullify the setting.

■

Attribute Description

AFFIRM and NOAFFIRM AFFIRM ensures all disk I/O to the archived redo log files or standby redo log
files at the standby destination is performed synchronously and completes
successfully before the log writer process (LGWR) can continue; therefore,
LGWR waits before writing to the local online redo log files on the primary
database. AFFIRM is required to achieve no data loss.
NOAFFIRM indicates all disk I/O to archived redo log files and standby
redo log files is to be performed asynchronously; online redo log files on the
primary database can be reused before the disk I/O on the standby destination
completes.

ALTERNATE and
NOALTERNATE

ALTERNATE specifies an alternate LOG_ARCHIVE_DEST_n destination to use
when the original archiving destination fails.

ARCH and LGWR ARCH, the default, specifies that the ARCH process is responsible for
transmitting redo data to archival destinations. LGWR specifies that the LGWR
process performs the log transport operations.

DB_UNIQUE_NAME and
NODB_UNIQUE_NAME

DB_UNIQUE_NAME specifies the unique database name for the destination.

DELAY and NODELAY DELAY specifies a time lag between archiving redo data on the standby site and
applying the archived redo log file to the standby database; DELAY may be used
to protect the standby database from corrupted or erroneous primary data. If
neither DELAY nor NODELAY is specified, NODELAY is the default.

DEPENDENCY and
NODEPENDENCY

DEPENDENCY allows you to transmit redo data to a destination that then shares
its archived redo log files among multiple standby databases. You must use the
REGISTER and SERVICE attributes when you create a DEPENDENCY.

LOCATION and SERVICE Each destination must specify either the LOCATION or the SERVICE attribute
to identify either a local disk directory (via LOCATION) or a remote database
destination where Log Transport Services can transmit redo data (via SERVICE).

MANDATORY and
OPTIONAL

If a destination is OPTIONAL, archiving to that destination may fail, yet the
online redo log file is available for reuse and may be overwritten eventually. If
the archival operation of a MANDATORY destination fails, online redo log files
cannot be overwritten.

TABLE 13-1 LOG_ARCHIVE_DEST_n Parameter Attributes

Chapter 13: Oracle Data Guard 479

Creating the Standby Database Configuration
You can use SQL*Plus, Oracle Enterprise Manager (OEM), or Data Guard–specific tools to configure
and administer Data Guard configurations. The parameters you set will depend on the configuration
you choose.

If the primary and standby databases are on the same server, you will need to set a value for
the DB_UNIQUE_NAME parameter. Because the directory structures for the two databases will
be different, you must either manually rename files or define values for the DB_FILE_NAME_
CONVERT and LOG_FILE_NAME_CONVERT parameters in the standby database. You must
set up unique service names for the primary and standby databases via the SERVICE_NAMES
initialization parameter.

Attribute Description

MAX_FAILURE and
NOMAX_FAILURE

MAX_FAILURE specifies the maximum number of reopen attempts before the
primary database permanently gives up on the standby database.

NET_TIMEOUT and
NONET_TIMEOUT

NET_TIMEOUT specifies the number of seconds the log writer process on
the primary system waits for status from the network server process before
terminating the network connection. The default value is 180 seconds.

QUOTA_SIZE and
NOQUOTA_SIZE

QUOTA_SIZE indicates the maximum number of 512-byte blocks of physical
storage on a disk device that can be used by a local destination.

QUOTA_USED and
NOQUOTA_USED

QUOTA_USED identifies the number of 512-byte blocks of data that were
archived on a specified destination.

REGISTER and
NOREGISTER

REGISTER indicates that the location of the archived redo log file is to be
recorded at the corresponding destination.

REOPEN and
NOREOPEN

REOPEN specifies the minimum number of seconds (the default is 300 seconds)
before the archiver processes (ARCn) or the log writer process (LGWR) should
try again to access a previously failed destination.

SYNC and ASYNC SYNC and ASYNC specify that network I/O is to be done synchronously or
asynchronously when using the log writer process (LGWR). The default is
SYNC=PARALLEL, which should be used when there are multiple destinations
with the SYNC attribute. All destinations should use the same value.

TEMPLATE and
NOTEMPLATE

TEMPLATE defines a directory specification and format template for names of
the archived redo log files or standby redo log files at the standby destination.
You can specify these attributes in either the primary or standby initialization
parameter file, but the attribute applies only to the database role that is archiving.

VALID_FOR VALID_FOR identifies when Log Transport Services can transmit redo data to
destinations based on the following factors: (1) whether the database is currently
running in the primary or the standby role, and (2) whether online redo log files,
standby redo log files, or both are currently being archived on the database
at this destination. The default value for this attribute is VALID_FOR=(ALL_
LOGFILES, ALL_ROLES). Other values include PRIMARY_ROLE, STANDBY_
ROLE, ONLINE_LOGFILES, and STANDBY_LOGFILE.

VERIFY and NOVERIFY VERIFY indicates an archiver process should verify the correctness of the
contents of a completed archived redo log file. The default is NOVERIFY.

TABLE 13-1 LOG_ARCHIVE_DEST_n Parameter Attributes (continued)

480 Oracle Database 11g DBA Handbook

If the primary and standby databases are on separate servers, you can use the same directory
structures for each, avoiding the need for the filename conversion parameters. If you use a
different directory structure for the database files, you will need to define the values for the DB_
FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters in the standby database.

In physical standby databases, all the redo comes from the primary database. When physical
standby databases are opened in read-only mode, no redo is generated. Oracle Data Guard does,
however, use archived redo log files to support the replication of the data and SQL commands
used to update the standby databases.

NOTE
For each standby database, you should create a standby redo log file
to store redo data received from the primary database.

Preparing the Primary Database
On the primary database, make sure you have set values for the following parameters, which
impact the transfer of the redo log data. The first five parameters, listed next, are standard for
most databases; set REMOTE_LOGIN_PASSWORDFILE to EXCLUSIVE to support remote access
by SYSDBA-privileged users.

DB_NAME The database name. Use the same name for all standby databases
and the primary database.

DB_UNIQUE_NAME The unique name for the database. This value must be different for
each standby database and must differ from the primary database.

SERVICE_NAMES Service names for the databases; set separate service names for the
primary and standby databases.

CONTROL_FILES The location of the controlfiles.

REMOTE_LOGIN_
PASSWORDFILE

Set to EXCLUSIVE or SHARED. Set the same password for SYS on
both the primary and standby databases.

The LOG_ARCHIVE-related parameters, listed next, will configure how the Log Transport
Services work.

LOG_ARCHIVE_CONFIG Within the DB_CONFIG parameter, list the primary and
standby databases.

LOG_ARCHIVE_DEST_1 The location of the primary database’s archived redo log files.

LOG_ARCHIVE_DEST_2 The remote location used for the standby redo log files.

LOG_ARCHIVE_DEST_STATE_1 Set to ENABLE.

LOG_ARCHIVE_DEST_STATE_2 Set to ENABLE to enable log transport.

LOG_ARCHIVE_FORMAT Specify the format for the archive log file’s name.

For this example, assume that the primary database has a DB_UNIQUE_NAME value of
‘headqtr’ and the physical standby database has a DB_UNIQUE_NAME value of ‘salesofc’. The
SERVICE_NAMES values can be the same as the DB_UNIQUE_NAME values, but this is not a
requirement. In fact, the SERVICE_NAMES value may be unique to a single node in a RAC
instance.

Chapter 13: Oracle Data Guard 481

The LOG_ARCHIVE_CONFIG parameter setting may resemble the following:

LOG_ARCHIVE_CONFIG='DG_CONFIG=(headqtr,salesofc)'

There are two LOG_ARCHIVE_DEST_n entries—one for the local copy of the archived redo
log files, and a second for the remote copy that will be shipped to the physical standby database:

LOG_ARCHIVE_DEST_1=
 'LOCATION=/arch/headqtr/
 VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
 DB_UNIQUE_NAME=headqtr'
LOG_ARCHIVE_DEST_2=
 'SERVICE=salesofc
 VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)
 DB_UNIQUE_NAME=salesofc'

The LOG_ARCHIVE_DEST_1 parameter specifies the location of the archived redo log files for
the primary database (as specified via the DB_UNIQUE_NAME parameter). The LOG_ARCHIVE_
DEST_2 parameter gives the service name of the physical standby database as its location. For
each of these destinations, the corresponding LOG_ARCHIVE_DEST_STATE_n parameter should
have a value of ‘ENABLE’.

The standby role–related parameters include the FAL (Fetch Archive Log) parameters used
prior to Oracle Database 10g to resolve gaps in the range of archive logs copied to the standby
databases:

TIP
FAL_SERVER and FAL_CLIENT should both be defined on each node
so they are ready to switch back to their original roles after a role
switch.

FAL_SERVER Specify the service name of the FAL server (typically the
primary database).

FAL_CLIENT Specify the service name of the FAL client (the standby
database fetching the logs).

DB_FILE_NAME_CONVERT If the primary and standby databases use differing directory
structures, specify the pathname and filename location of the
primary database datafiles, followed by the standby location.

LOG_FILE_NAME_CONVERT If the primary and standby databases use differing directory
structures, specify the pathname and filename location of the
primary database log files, followed by the standby location.

STANDBY_FILE_MANAGEMENT Set to AUTO.

Sample settings for these parameters are shown in the following listing:

FAL_SERVER=headqtr
FAL_CLIENT=salesofc
LOG_FILE_NAME_CONVERT=
'/arch/headqtr/','/arch/salesofc/','/arch1/headqtr/','/arch1/salesofc/'
STANDBY_FILE_MANAGEMENT=AUTO

482 Oracle Database 11g DBA Handbook

If the primary database is not already in ARCHIVELOG mode, enable archiving by issuing
the alter database archivelog command while the database is mounted but not open. In addition,
enable forced logging in the primary database to ensure that all unlogged direct writes will be
propagated to the standby database by using the alter database force logging command.

Once the log-related parameters have been set, you can begin the process of creating the
standby database.

Step 1: Back Up the Primary Database’s Datafiles
First, perform a physical backup of the primary database. Oracle recommends using the RMAN
utility to back up the database; you can use the duplicate command within RMAN to automate
the process of creating the standby database.

Step 2: Create a Controlfile for the Standby Database
In the primary database, issue the following command to generate a controlfile that will be used
for the standby database:

alter database create standby controlfile as '/tmp/salesofc.ctl';

Note that you specify the directory and filename where you want the controlfile to be created.
Also, do not use the same directory and controlfile name as you use for the primary database.

Step 3: Create an Initialization File for the Standby Database
In the primary database, create a parameter file from the server parameter file:

create pfile='/tmp/initsalesofc.ora' from spfile;

Edit this initialization file to set the proper values for the standby database. Set the standby
database’s values for the DB_UNIQUE_NAME, SERVICE_NAMES, CONTROL_FILES, DB_FILE_
NAME_CONVERT, LOG_FILE_NAME_CONVERT, LOG_ARCHIVE_DEST_n, INSTANCE_NAME,
FAL_SERVER, and FAL_CLIENT. The filename conversions should be the same as in the primary
database—you want to convert the filenames from the primary database to the standby database
format when the redo information is applied:

LOG_ARCHIVE_DEST_1=
'LOCATION=/arch/salesofc/
VALID_FOR=(ALL_LOGFILES,ALL_ROLES)
DB_UNIQUE_NAME=salesofc'
LOG_ARCHIVE_DEST_2=
'SERVICE=headqtr
VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)

In the standby environment, the LOG_ARCHIVE_DEST_1 parameter points to its local archive
log destination, and LOG_ARCHIVE_DEST_2 points to the primary database’s service name. If the
roles of the two databases are switched, the original primary database will be able to serve as the
standby database. While the standby database is running in standby mode, the LOG_ARCHIVE_
DEST_2 value will be ignored.

NOTE
Set the COMPATIBLE parameter to the same value for both the
primary and standby databases. To take advantage of the new features
in Oracle 11g, set the COMPATIBLE value to 11.0.0 or higher. Once
COMPATIBLE is set to 11.0.0, you cannot reset it to a lower value.

Chapter 13: Oracle Data Guard 483

Step 4: Copy the Database Files to the Standby Database Location
Copy the datafiles from Step 1, the controlfile from Step 2, and the standby initialization file from
Step 3 to the standby database location. Put the files in the proper directories (as defined by the
CONTROL_FILES, DB_FILE_NAME_CONVERT, and LOG_FILE_NAME_CONVERT parameters).
Alternatively, use an RMAN backup of the primary database to create the standby database files.

Step 5: Configure the Standby Database Environment
At this point, the files are in place. You need to create the proper environment variables and
services to allow an instance to access the files. For example, in a Windows environment you
should use the oradim utility to create a new service, as shown in this example:

ORADIM –NEW –SID salesofc –INTPWD oracle –STARTMODE manual

Next, create a password file for the standby database via the ORAPWD utility (see Chapter 2
for details on creating a new password file).

Next, create the Oracle Net parameters and services needed to access the standby database.
In the standby environment, create an Oracle Net listener service for the standby database. In the
standby server’s sqlnet.ora file, set the SQLNET.EXPIRE_TIME parameter to 1 to activate broken-
connection detection after one minute. See Chapter 15 for further details on Oracle Net connections.

Next, create a service name entry for the standby database in the tnsnames.ora file and then
distribute that update to both the standby and primary database servers.

If the primary database has an encryption wallet, copy the wallet to the standby database
system and configure the standby database to use this wallet; the wallet must be re-copied from
the primary to all standby databases whenever the master encryption key is updated.

Lastly, create a server parameter file via the create spfile from pfile command, passing the
name and location of the standby parameter file as input to that command.

Step 6: Start the Standby Database
From within SQL*Plus, start the standby database in mount mode, as shown in the following
example:

startup mount;

NOTE
You can add new temporary files to the temporary tablespaces in
the standby database. Adding temporary files will support sorting
operations required for reporting activity within the standby database.

Although optional, Oracle recommends that you create an online redo log on each standby
database to reduce the amount of time it will take to transition the standby database to the
primary role.

Start the redo application process within the standby database via the following alter database
command:

alter database recover managed standby database
 using current logfile disconnect from session;

Step 7: Verify the Configuration
To test the configuration, go to the primary database and force a log switch to occur via the alter
system command, as shown here:

alter system switch logfile;

484 Oracle Database 11g DBA Handbook

The primary database’s redo log data should then be copied to the standby location.
On the standby database, you can query the V$ARCHIVED_LOG view or use the archive

log list command to see which archived logs have been applied to the database. As new logs are
received from the primary database and applied to the standby, new rows will be added to the
listing in V$ARCHIVED_LOG.

Creating Logical Standby Databases
Logical standby databases follow many of the same steps used to create physical standby
databases. Because they rely on the re-execution of SQL commands, logical standby databases
have greater restrictions on their use. If any of your tables in the primary database use the
following datatypes, they will be skipped during the redo application process:

BFILE

ROWID

UROWID

User-defined datatype

Object types

REFs

Varying arrays

Nested tables

XMLtype

Additionally, tables that use table compression and the schemas that are installed with the
Oracle software are skipped during redo application. The DBA_LOGSTDBY_UNSUPPORTED
view lists the objects that are not supported for logical standby databases. The DBA_LOGSTDBY_
SKIP view lists the schemas that will be skipped.

A logical standby database is not identical to the primary database. Each transaction that is
executed in the logical standby database must be the logical equivalent of the transaction that
was executed in the primary database. Therefore, you should make sure your tables have the
proper constraints on them—primary keys, unique constraints, check constraints, and foreign
keys—so the proper rows can be targeted for update in the logical standby database. You can
query DBA_LOGSTDBY_NOT_UNIQUE to list tables that lack primary key or unique constraints
in the primary database.

To create a logical standby database, follow the steps outlined in the remainder of this section.

Step 1: Create a Physical Standby Database
Following the steps in the prior section of this chapter, create a physical standby database. After
you create and start up the physical standby, stop Redo Apply on the physical standby to avoid
applying changes past the redo that contains the supplemental log information:

alter database recover managed standby database cancel;

■

■

■

■

■

■

■

■

■

Chapter 13: Oracle Data Guard 485

Step 2: Enable Supplemental Logging
Supplemental logging on the primary database generates additional information in the redo log.
That information is then used during the redo application process in the standby database to make
sure the correct rows are affected by the generated SQL. To add primary key and unique index
information to the redo data, issue the following command in the primary database:

execute dbms_logstdby.build;

This procedure waits for all existing transactions to complete; if there are long-running
transactions on the primary database, this process will not finish until those transactions
commit or roll back.

Step 3: Transition the Physical Standby to a Logical Standby
The redo log files have the information necessary to convert your physical database to a logical
database; run this command to continue redo log data application to the physical standby database
until the moment you’re ready to convert to a logical standby:

alter database recover to logical standby new_db_name;

Oracle automatically stores the name of your new logical standby database, new_db_name, in
the SPFILE. Otherwise, this command generates a message reminding you to change the DB_
NAME parameter in your initialization parameter file after shutting down the database.

Physical standby databases operate in read-only mode; logical standby databases are open for
writes and generate their own redo data. In the initialization file for the logical standby database,
specify destinations for the logical standby database’s redo data (LOG_ARCHIVE_DEST_1) and
the incoming redo from the primary database (in this example, LOG_ARCHIVE_DEST_3 will be
used to avoid conflicts with the earlier LOG_ARCHIVE_DEST_2 setting). You do not want a
logical standby database to have the LOG_ARCHIVE_DEST_2 destination enabled and pointing
back to the primary database.

Shut down and start up the database and change these parameters:

shutdown;
startup mount;

Step 4: Start the Logical Standby Database
Open the logical standby database using its new initialization parameter file or SPFILE as follows:

alter database open resetlogs;

Because this is the first time the database is opened after being converted to a standby, the
database’s global name is adjusted to match the new DB_NAME initialization parameter.

Step 5: Start the Redo Application Process
Within the logical standby database, you can now start the redo application process:

alter database start logical standby apply immediate;

To see the logs that have been received and applied to the logical standby database, query the
DBA_LOGSTDBY_LOG view. You can query the V$LOGSTDBY view to see the activity log of the
logical standby redo application process. The logical standby database is now available for use.

486 Oracle Database 11g DBA Handbook

Using Real-Time Apply
By default, redo data is not applied to a standby database until the standby redo log file is archived.
When you use the real-time apply feature, redo data is applied to the standby database as it is
received, reducing the time lag between the databases and potentially shortening the time required
to fail over to the standby database.

To enable real-time apply in a physical standby database, execute the following command in
the standby database:

alter database recover managed standby database
using current logfile;

For a logical standby database, the command to use is

alter database start logical standby apply immediate;

The Recovery_Mode column of the V$ARCHIVE_DEST_STATUS view will have a value of
‘MANAGED REAL-TIME APPLY’ if real-time apply has been enabled.

As shown earlier in this chapter, you can enable the redo application on a physical standby
database via the command

alter database recover managed standby database disconnect;

The disconnect keyword allows the command to run in the background after you disconnect from
your Oracle session. When you start a foreground session and issue the same command without
the disconnect keyword, control is not returned to the command prompt until the recovery is
cancelled by another session. To stop the redo application in a physical standby database—
whether in a background session or a foreground session—use the following command:

alter database recover managed standby database cancel;

For a logical standby database, the command to stop the Log Apply Services is

alter database stop logical standby apply;

Managing Gaps in Archive Log Sequences
If the standby database has not received one or more archived logs generated by the primary
database, it does not have a full record of the transactions in the primary database. Oracle Data
Guard detects the gap in the archive log sequence automatically; it resolves the problem by
copying the missing sequence of log files to the standby destination. Prior to Oracle 10g, the FAL
(Fetch Archive Log) client and server were used to resolve gaps from the primary database.

To determine if there is a gap in your physical standby database, query the V$ARCHIVE_GAP
view. For each gap, that view will report the lowest and highest log sequence number of the set of
logs that are missing from the standby database. If there is some reason why Oracle Data Guard
has not been able to copy the logs, you can copy the files manually to your physical standby
database environment and register them using the alter database register logfile filename command;
then you can start the redo apply process. After the logs have been applied, check the V$ARCHIVE_
GAP view again to see if there is another gap to resolve.

Chapter 13: Oracle Data Guard 487

Managing Roles—Switchovers and Failovers
Each database that participates in a Data Guard configuration has a role—it is either a primary
database or a standby database. At some point, those roles may need to change. For example, if
there is a hardware failure on the primary database’s server, you may fail over to the standby
database. Depending on your configuration choices, there may be some loss of data during a
failover.

A second type of role change is called a switchover. This occurs when the primary database
switches roles with a standby database, and the standby becomes the new primary database.
During a switchover, there should be no data lost. Switchovers and failovers require manual
intervention by a database administrator.

Switchovers
Switchovers are planned role changes, usually to allow for maintenance activities to be performed
on the primary database server. A standby database is chosen to act as the new primary database,
the switchover occurs, and applications now write their data to the new primary database. At
some later point in time you can switch the databases back to their original roles.

NOTE
You can perform switchovers with either a logical standby database
or a physical standby database; the physical standby database is the
preferred option.

What if you have defined multiple standby databases? When one of the physical standby
databases becomes the new primary database, the other standby databases must be able to
receive their redo log data from the new primary database. In that configuration, you must define
the LOG_ARCHIVE_DEST_n parameters to allow those standby sites to receive data from the new
primary database location.

NOTE
Verify that the database that will become the new primary database is
running in ARCHIVELOG mode.

In the following sections, you will see the steps required to perform a switchover to a standby
database. The standby database should be actively applying redo log data prior to the switchover,
as this will minimize the time required to complete the switchover.

Switchovers to Physical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a physical standby database. There
is no data loss during a switchover.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the SWITCHOVER_STATUS column:

select switchover_status from v$database;

488 Oracle Database 11g DBA Handbook

If the SWITCHOVER_STATUS column’s value is anything other than TO STANDBY, it is not
possible to perform the switchover (usually due to a configuration or hardware issue). If the
column’s value is SESSIONS ACTIVE, you should terminate active user sessions. Valid values for
the Switchover_Status column are shown in Table 13-2.

From within the primary database, you can initiate its transition to the physical standby
database role with the following command:

alter database commit to switchover to physical standby;

As part of executing this command, Oracle will back up the current primary database’s
controlfile to a trace file. At this point, you should shut down the primary database and mount it:

shutdown immediate;
startup mount;

The primary database is prepared for the switchover; you should now go to the physical standby
database that will serve as the new primary database.

In the physical standby database, check the switchover status in the V$DATABASE view; its
status should be TO PRIMARY (see Table 13-2). You can now switch the physical standby database
to the primary via the following command:

alter database commit to switchover to primary;

Switchover_Status Value

NOT ALLOWED The current database is not a primary database with standby
databases.

PREPARING DICTIONARY This logical standby database is sending its redo data to a
primary database and other standby databases to prepare for
the switchover.

PREPARING SWITCHOVER Used by logical standby configurations while redo data is
being accepted for the switchover.

RECOVERY NEEDED This standby database has not received the switchover request.

SESSIONS ACTIVE There are active SQL sessions in the primary database; they
must be disconnected before continuing.

SWITCHOVER PENDING Valid for standby databases in which the primary database
switchover request has been received but not processed.

SWITCHOVER LATENT The switchover did not complete and went back to the
primary database.

TO LOGICAL STANDBY This primary database has received a complete dictionary
from a logical standby database.

TO PRIMARY This standby database can switch over to a primary database.

TO STANDBY This primary database can switch over to a standby database.

TABLE 13-2 SWITCHOVER_STATUS Values

Chapter 13: Oracle Data Guard 489

If you add the with session shutdown wait clause, the statement will not return to the SQL>
prompt until the switchover is complete. Start up the database using the open keyword:

alter database open;

The database has completed its transition to the primary database role. Next, start the redo
apply services on the standby databases if they were not already running in the background:

alter database recover managed standby database using current logfile
 disconnect from session;

Switchovers to Logical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a logical standby database.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the Switchover_Status column:

select switchover_status from v$database;

For the switchover to complete, the status must be either TO STANDBY, TO LOGICAL STANDBY,
or SESSIONS ACTIVE.

In the primary database, issue the following command to prepare the primary database for the
switchover:

alter database prepare to switchover to logical standby;

In the logical standby database, issue the following command:

alter database prepare to switchover to primary;

At this point, the logical standby database will begin transmitting its redo data to the current
primary database and to the other standby databases in the configuration. The redo data from the
logical standby database is sent but is not applied at this point.

In the primary database, you must now verify that the dictionary data was received from the
logical standby database. The SWITCHOVER_STATUS column value in V$DATABASE must read
TO LOGICAL STANDBY in the primary database before you can continue to the next step. When
that status value is shown in the primary database, switch the primary database to the logical
standby role:

alter database commit to switchover to logical standby;

You do not need to shut down and restart the old primary database. You should now go
back to the original logical standby database and verify its SWITCHOVER_STATUS value in
V$DATABASE (it should be TO PRIMARY). You can then complete the switchover; in the original
logical standby database, issue the following command:

alter database commit to switchover to primary;

The original logical standby database is now the primary database. In the new logical standby
database (the old primary database), start the redo apply process:

alter database start logical standby apply immediate;

The switchover is now complete.

490 Oracle Database 11g DBA Handbook

Failovers to Physical Standby Databases
Failovers occur when the primary database can no longer be part of the primary database
configuration. In this section, you will see the steps required to fail over a physical standby
database to the role of the primary database in a Data Guard configuration.

In the standby database, you should first attempt to identify and resolve any gaps in the archived
redo log files (see the section “Managing Gaps in Archive Log Sequences,” earlier in this chapter).
You may need to manually copy and register log files for use by the standby database.

Within the standby database, you must then finish the recovery process. If you have configured
the standby database to have standby redo log files, the command to execute is

alter database recover managed standby database finish;

If there are no standby redo log files, execute the following command:

alter database recover managed standby database finish
 skip standby logfile;

Once the standby recovery operation has completed, you can perform the switchover using
the following command:

alter database commit to switchover to primary;

Shut down and restart the new primary database to complete the transition. The old primary
database is no longer a part of the Data Guard configuration. If you want to re-create the old
primary database and use it as a standby database, you must create it as a standby database
following the steps provided earlier in this chapter.

Failovers to Logical Standby Databases
Failovers occur when the primary database can no longer be part of the primary database
configuration. In this section, you will see the steps required to fail over a logical standby
database to the role of the primary database in a Data Guard configuration.

In the standby database, you should first attempt to identify and resolve any gaps in the archived
redo log files (see the section “Managing Gaps in Archive Log Sequences,” earlier in this chapter).
You may need to manually copy and register log files for use by the standby database. Query the
DBA_LOGSTDBY_LOG view for details on the logs remaining to be applied. If the redo apply
process was not active on the logical standby database, start it using the following command:

alter database start logical standby apply nodelay finish;

Next, enable the remote locations for the redo log files that the logical standby database
generates. You may need to update the logical standby database’s settings of the LOG_ARCHIVE_
DEST_STATE_n parameters so the other standby databases in the configuration will receive the
redo generated from the original logical standby database. You can then activate the original
logical standby database as the new primary database via the following command:

alter database activate logical standby database finish apply;

If there are other logical standby databases that are part of the Data Guard configuration, you
may need to re-create them or use database links to add them to the new configuration. First,
create a link in each of the databases that will act as a logical standby database to the new primary

Chapter 13: Oracle Data Guard 491

database. The alter session disable guard command allows you to bypass the Data Guard processes
within your session. The database account used by the database link must have the SELECT_
CATALOG_ROLE role:

alter session disable guard;
create database link salesofc
 connect to username identified by password using 'salesofc';
alter session enable guard;

You should verify the link by selecting from the DBA_LOGSTDBY_PARAMETERS view in the
remote database (the new primary database).

In each logical standby database, you can now start the redo apply process based on the new
primary database:

alter database start logical standby apply new primary salesofc;

Administering the Databases
In the following sections, you will see the steps required to perform standard maintenance actions
on the databases that are part of the Data Guard configuration, including startup and shutdown
operations.

Startup and Shutdown of Physical Standby Databases
When you start up a physical standby database, you should start the redo apply process. First,
mount the database:

startup mount;

Next, start the redo apply process:

alter database recover managed standby database
 disconnect from session;

Use the using current logfile clause in place of the disconnect from session clause to start real-
time apply.

To shut down the standby database, you should first stop the Log Apply Services. Query the
V$MANAGED_STANDBY view; if Log Apply Services are listed there, cancel them using the
following command:

alter database recover managed standby database cancel;

You can then shut down the database.

Opening Physical Standby Databases in Read-Only Mode
To make the physical standby database open for read operations, you should first cancel any log
apply operations in the database:

alter database recover managed standby database cancel;

Next, open the database:

alter database open;

492 Oracle Database 11g DBA Handbook

Managing Datafiles in Data Guard Environments
As noted earlier in this chapter, you should set the STANDBY_FILE_MANAGEMENT initialization
parameter to AUTO. Setting this parameter simplifies the administration of the Data Guard
environment, because files added to the primary environment can be automatically propagated
to the physical standby databases. When this parameter is set to AUTO, any new datafiles created
in the primary database are automatically created in the standby databases; when the parameter
is set to MANUAL, you must manually create the new datafiles in the standby databases.

When STANDBY_FILE_MANAGEMENT is set to MANUAL, follow these steps to add a
datafile to a tablespace:

 1. Add the new datafile in the primary database.

 2. Alter the datafile’s tablespace so that it is offline.

 3. Copy the datafile to the standby location.

 4. Alter the datafile’s tablespace so that it is once again online.

To add a new tablespace using manual file management, follow the same steps—create the
tablespace, take the tablespace offline, copy its datafiles to the standby location, and then alter
the tablespace so it is online. If you are using automatic file management, you only need to
create the new tablespace in the primary database for it to be propagated to the standby
databases.

To drop a tablespace, simply drop it in the primary database and force a log switch via the
alter system switch logfile command. You can then drop the file at the operating system level in
the primary and standby environments.

Changes to the names of datafiles are not propagated, even if you are using automatic file
management. To rename a datafile in a Data Guard configuration, take the tablespace offline and
rename the datafile at the operating system level on the primary server. Use the alter tablespace
rename datafile command on the primary database to point to the new location of the datafile.
Bring the tablespace back online with the alter tablespace tablespace_name online command.
On the standby database, query the V$ARCHIVED_LOG view to verify all logs have been applied
and then shut down the redo apply services:

alter database recover managed standby database cancel;

Shut down the standby database and rename the file on the standby server. Next, use the
startup mount command to mount the standby database. With the database mounted but not
opened, use the alter database rename file command to point to the new file location on the
standby server. Finally, restart the redo apply process:

alter database recover managed standby database
 disconnect from session;

Performing DDL on a Logical Standby Database
As illustrated earlier in this chapter, you can temporarily disable Data Guard within a logical
standby database. When you need to perform DDL operations (such as the creation of new
indexes to improve query performance), you will follow the same basic steps:

Chapter 13: Oracle Data Guard 493

 1. Stop the application of redo on the logical standby database.

 2. Disable Data Guard.

 3. Execute the DDL commands.

 4. Enable Data Guard.

 5. Restart the redo apply process.

For example, to create a new index, start by turning off the Data Guard features:

alter database stop logical standby apply;
alter session disable guard;

At this point, you can perform your DDL operations. When you are done, reenable the Data
Guard features:

alter session enable guard;
alter database start logical standby apply;

The logical standby database will then restart its redo apply process, while the index will be
available to its query users.

This page intentionally left blank

CHAPTER
14

Miscellaneous High
Availability Features

495

496 Oracle Database 11g DBA Handbook

n this chapter, you will see the implementation details for features that can
significantly enhance the availability of your database applications. Some of these
features, such as the LogMiner options, are enhancements of features available
in earlier versions of Oracle. Others, such as the use of the recycle bin and the
flashback database command, have been introduced in Oracle Database 10g and

enhanced in Oracle Database 11g. Other flashback options, such as Flashback Table and Flashback
Query, which rely solely on undo data, were thoroughly covered in Chapter 7. In this chapter, you
will see how to use the following features to enhance the availability of your database:

Flashback Drop

Flashback Database

LogMiner

Online object-reorganization options

Flashback Drop relies on a construct introduced in Oracle Database 10g, the recycle bin,
which behaves much like the recycle bin on a Windows-based computer: if there is enough room
in the tablespace, dropped objects can be restored to their original schema with all indexes and
constraints intact. Flashback Database relies on data stored in the Flash Recovery Area, a new
storage area also introduced in Oracle Database 10g. LogMiner, available since Oracle9i, relies
on archived redo log files to see the changes made to tables, indexes, and other database structures
(DDL operations) over time.

Recovering Dropped Tables Using
Flashback Drop
When you drop a table (and its associated indexes, constraints, and nested tables), Oracle does
not immediately release the table’s disk space for use by other objects in the tablespace. Instead,
the objects are retained in the recycle bin until purged by the owner or the space occupied by the
dropped objects is needed for new objects.

In this example, consider the AUTHOR table, defined as follows:

SQL> describe AUTHOR

Name Null? Type
------------------ -------- ----------------------------
AUTHORNAME NOT NULL VARCHAR2(50)
COMMENTS VARCHAR2(100)

Now, assume that the table is dropped accidentally. This can happen when a user with
privileges on a table that exists in multiple environments intends to drop a table in a development
environment but is pointing to the production database when the command is executed.

SQL> drop table AUTHOR cascade constraints;

Table dropped.

How can the table be recovered? As of Oracle Database 10g, a dropped table does not fully
disappear. Its blocks are still maintained in its tablespace, and it still counts against your space

■

■

■

■

I

Chapter 14: Miscellaneous High Availability Features 497

quota. You can see the dropped objects by querying the RECYCLEBIN data dictionary view. Note
that the format for the OBJECT_NAME column may differ between versions:

SQL> select object_name, original_name, operation, type, user,
 2 can_undrop, space from recyclebin;

OBJECT_NAME ORIGINAL_NAME OPERATION
------------------------------ -------------------- ---------
TYPE USER CAN_UNDROP SPACE
------------------------- --------------- ---------- ----------
BIN$OyXS+NT+J47gQKjAXwJcSA==$0 AUTH_NAME_IDX DROP
INDEX HR NO 384

BIN$OyXS+NT/J47gQKjAXwJcSA==$0 AUTHORS DROP
TABLE HR YES 1152

SQL>

RECYCLEBIN is a public synonym for the USER_RECYCLEBIN data dictionary view, showing
the recycle bin entries for the current user. DBAs can see all dropped objects via the DBA_
RECYCLEBIN data dictionary view.

As shown in the preceding listing, a user has dropped the AUTHOR table and its associated
primary key index. Although they have been dropped, they are still available for flashback. The
index cannot be recovered by itself (its CAN_UNDROP column value is ‘NO’, while the AUTHOR
table’s CAN_UNDROP value is ‘YES’).

You can use the flashback table to before drop command to recover the table from the
recycle bin:

SQL> flashback table AUTHOR to before drop;

Flashback complete.

The table has been restored, along with its rows, indexes, and statistics.
What happens if you drop the AUTHOR table, re-create it, and then drop it again? The recycle

bin will contain both the tables. Each entry in the recycle bin will be identified via its SCN and
the timestamp for the drop.

NOTE
The flashback table to before drop command does not recover
referential constraints.

To purge old entries from the recycle bin, use the purge command. You can purge all your
dropped objects, all dropped objects in the database (if you are a DBA), all objects in a specific
tablespace, or all objects for a particular user in a specific tablespace. You can use the rename to
clause of the flashback table command to rename the table as you flash it back

By default, the recycle bin is enabled in Oracle Database 10g and 11g. You can use the
initialization parameter RECYCLEBIN to turn the recycle bin on and off; you can also turn the
recycle bin on and off at the session level, as in this example:

alter session set recyclebin = off;

498 Oracle Database 11g DBA Handbook

Temporarily disabling the recycle bin functionality does not affect objects currently in the
recycle bin; even when the recycle bin is disabled, you can still recover objects currently in
the recycle bin. Only objects dropped while the recycle bin is disabled cannot be recovered.

The Flashback Database Command
The flashback database command returns the database to a past time or SCN, providing a fast
alternative to performing incomplete database recovery. Following a flashback database operation,
in order to have write access to the flashed-back database, you must reopen it with an alter
database open resetlogs command. You must have the SYSDBA system privilege in order to use
the flashback database command.

NOTE
The database must have been put in FLASHBACK mode with an alter
database flashback on command. The database must be mounted in
exclusive mode but not open when that command is executed.

The syntax for the flashback database command is as follows:

flashback [standby] database [database]
{ to {scn | timestamp} expr
| to before {scn | timestamp } expr
}

You can use either the to scn or to timestamp clause to set the point to which the entire
database should be flashed back. You can flash back to before a critical point (such as a
transaction that produced an unintended consequence for multiple tables). Use the ORA_
ROWSCN pseudo-column to see the SCNs of the most recent row transactions.

If you have not already done so, you will need to shut down your database and enable
flashback during the startup process using this sequence of commands:

startup mount exclusive;
alter database archivelog;
alter database flashback on;
alter database open;

NOTE
You must enable media recovery via the alter database archivelog
command prior to executing the alter database flashback on
command.

Two initialization parameter settings control how much flashback data is retained in the
database. The DB_FLASHBACK_RETENTION_TARGET initialization parameter sets the upper
limit (in minutes) for how far back in time the database can be flashed back. The DB_RECOVERY_
FILE_DEST initialization parameter sets the size of the Flash Recovery Area (see Chapter 12 for
more information on setting up the Flash Recovery Area). Note that the flashback table command
uses data already stored in the undo tablespace (it does not create additional entries), whereas the
flashback database command relies on flashback logs stored in the Flash Recovery Area.

Chapter 14: Miscellaneous High Availability Features 499

You can determine how far back you can flash back the database by querying the
V$FLASHBACK_DATABASE_LOG view. The amount of flashback data retained in the database is
controlled by the initialization parameter and the size of the Flash Recovery Area. The following
listing shows the available columns in V$FLASHBACK_DATABASE_LOG and sample contents:

SQL> describe V$FLASHBACK_DATABASE_LOG

Name Null? Type
--- -------- -------
OLDEST_FLASHBACK_SCN NUMBER
OLDEST_FLASHBACK_TIME DATE
RETENTION_TARGET NUMBER
FLASHBACK_SIZE NUMBER
ESTIMATED_FLASHBACK_SIZE NUMBER

SQL> select * from V$FLASHBACK_DATABASE_LOG;

OLDEST_FLASHBACK_SCN OLDEST_FL RETENTION_TARGET FLASHBACK_SIZE
-------------------- --------- ---------------- --------------
ESTIMATED_FLASHBACK_SIZE

 5903482 27-SEP-07 1440 8192000
 0

You can verify the database’s flashback status by querying V$DATABASE; the FLASHBACK_
ON column will have a value of ‘YES’ if the flashback has been enabled for the database:

select current_scn, flashback_on from V$DATABASE;

CURRENT_SCN FLA
----------- ---
 5910734 YES

With the database open for over an hour, verify that the flashback data is available and then
flash it back—you will lose all transactions that occurred during that time:

shutdown;
startup mount exclusive;
flashback database to timestamp sysdate-1/24;

Note that the flashback database command requires that the database be mounted in exclusive
mode, which will affect its participation in any RAC clusters (see Chapter 10).

When you execute the flashback database command, Oracle checks to make sure all
required archived and online redo log files are available. If the logs are available, the online
datafiles are reverted to the time or SCN specified.

If there is not enough data online in the archive logs and the flashback area, you will need to
use traditional database recovery methods to recover the data. For example, you may need to use
a file system recovery method followed by rolling the data forward.

Once the flashback has completed, you must open the database using the resetlogs option in
order to have write access to the database:

alter database open resetlogs;

500 Oracle Database 11g DBA Handbook

To turn off the flashback database option, execute the alter database flashback off command
when the database is mounted but not open:

startup mount exclusive;
alter database flashback off;
alter database open;

You can use the flashback options to perform an array of actions—recovering old data,
reverting a table to its earlier data, maintaining a history of changes on a row basis, and quickly
restoring an entire database. All these actions are greatly simplified if the database has been
configured to support Automatic Undo Management (AUM). Also, note that the flashback database
command requires the modification of the database status. Although these requirements can
present additional burdens to DBAs, the benefits involved in terms of the number of recoveries
required and the speed with which those recoveries can be completed may be dramatic.

Using LogMiner
Oracle uses online redo log files to track every change that is made to user data and the data
dictionary. The information stored in the redo log files is used to re-create the database, in part
or in full, during recovery. To enable recovery of the database to a point in time after the database
backup was made, you can maintain archived copies of the redo log files. The LogMiner utility
provides a vital view into the modifications that have occurred within your database.

When you use LogMiner, you see both the changes that have been made (the SQL_redo) and
the SQL you can use to reverse those changes (the SQL_undo). Thus, you can review the history
of the database, without actually applying any redo logs, and obtain the code to reverse any
problematic transactions. Using LogMiner, you can pinpoint the transaction under which corruption
first occurred so that you can determine the correct point in time or System Change Number (SCN)
to use as the endpoint for a database recovery.

If there were a small number of transactions that required rolling back, prior to LogMiner, you
would have to restore the table to an earlier state and apply archived log files to bring the table
forward to just before the corruption. When restoring the table and applying the archived log files,
you would risk losing later transactions that you would like to retain. You can now use LogMiner
to roll back only the transactions that are problematic without losing later, valid transactions.

LogMiner in its original form has had some limitations associated with its use. With the
original approach, you could only review one log file at a time, and the interface to the tool was
cumbersome to use. In Oracle9i, a major overhaul of the interface has been implemented, and
the functionality has been greatly enhanced, including a LogMiner Viewer for use with the Oracle
Enterprise Manager. Both the manual approach to using LogMiner and the OEM LogMiner Viewer
are presented within this section.

How LogMiner Works
To run the LogMiner utility, you must have either the EXECUTE privilege on the DMBS_LOGMNR
package or the EXECUTE_CATALOG_ROLE role. LogMiner requires a data dictionary to fully
translate the redo log file contents and translate internal object identifiers and datatypes to object
names and external data formats. If a data dictionary is not available, LogMiner will return the
data in hex format and the object information as internal object IDs.

You have three choices for obtaining a data dictionary for LogMiner use:

Chapter 14: Miscellaneous High Availability Features 501

Extract the data dictionary information to a flat file.

Extract the data dictionary to redo log files.

Use the online data dictionary from the current database.

The LogMiner analysis usually requires that the data dictionary in use was generated from the
same database that generated the redo log files. However, if you are using a flat file format or are
using the data dictionary from redo log files, you can analyze the redo log files either from the
database on which LogMiner is running or from another database. If, however, you are using the
online catalog from the current database, you can only analyze redo log files from the current
database.

Since you can run LogMiner from one database against the redo log files in another database,
the character sets used on both databases must match. The hardware platform must also match
the one used when the redo log files were generated.

Extracting the Data Dictionary
One potential problem with extracting the data dictionary to a flat file is that while you are
extracting the data dictionary, someone else could be issuing DDL statements. Therefore, the
extracted data dictionary could be out of sync with the database. When you use a flat file to
store the data dictionary, fewer system resources are required than when you use redo log files.

When you extract the data dictionary to redo log files, no DDL statements can be processed
during the time in which the data dictionary is extracted. Therefore, the dictionary will be in sync
with the database; the extraction is more resource intensive, but the extraction process is faster.

To extract the data dictionary to either a flat file or to redo log files, you use the procedure
DBMS_LOGMNR_D.BUILD. The data dictionary file is placed in a directory. Therefore, you must
have write permission for the directory in which the file will be placed. To define the location of
the directory, use the initialization parameter UTL_FILE_DIR. For example, to specify the location
D:\Oracle\Ora10\database as the location for the LogMiner output, you place the following
entry in the parameter file:

UTL_FILE_DIR= D:\Oracle\Ora10\database

NOTE
You cannot dynamically change the UTL_FILE_DIR parameter using
the alter system command. You must modify the initialization file and
then stop and restart the database.

To execute the DBMS_LOGMNR_D.BUILD procedure, you must specify a filename for the
dictionary, the directory pathname for the file, and whether you want the dictionary written to a
flat file or redo log files. To extract the data dictionary to a flat file located in the directory G:\
Oracle\Ora10\database with the filename mydb_dictionary, you issue the following command:

execute DBMS_LOGMNR_D.BUILD
('mydb_dictionary.ora',
'G:\Oracle\Ora10\database',
options=>DBMS_LOGMNR_D.STORE_IN_FLAT_FILE);

You can use DBMS_LOGMNR_D.STORE_IN_FLAT_FILE as the other option.

■

■

■

502 Oracle Database 11g DBA Handbook

Once you have the dictionary stored in a flat file, you can copy it to another platform to
run LogMiner. You may need to run dbmslmd.sql on the other database to establish the correct
environment. The dbmslmd.sql file can be found in the $ORACLE_HOME\rdbms\admin
directory on a Unix system.

Analyzing One or More Redo Log Files
To analyze redo log files using LogMiner, follow these steps:

 1. Obtain a list of the available redo log files using V$LOGMNR_LOGS.

 2. Start the LogMiner utility using the DBMS_LOGMNR.START_LOGMNR procedure. See
Table 14-2, later in this section, for the START_LOGMNR parameters.

 3. Query V$LOGMNR_CONTENTS to see the results.

 4. Once you have finished viewing the redo logs, issue the following command to end the
session:

execute DBMS_LOGMNR.END_LOGMNR;

The available subprograms for the DBMS_LOGMNR package are described in Table 14-1.
Table 14-2 shows the parameters for the START_LOGMNR procedure.

Subprogram Description

ADD_LOGFILE Adds a file to the list of archive files to process

START_LOGMNR Initializes the LogMiner utility

END_LOGMNR Completes and ends a LogMiner session

MINE_VALUE (function) Returns the undo or redo column value of the
column name specified by the COLUMN_NAME
parameter for any row returned from V$LOGMNR_
CONTENT

COLUMN_PRESENT (function) Determines if undo or redo column values exist
for the column name specified by the COLUMN_
NAME parameter for any row returned from
V$LOGMNR_CONTENT

REMOVE_LOGFILE Removes a log file from the list of log files to be
processed by LogMiner

TABLE 14-1 DBMS_LOGMNR Subprograms

Chapter 14: Miscellaneous High Availability Features 503

To create a list of the redo log files that are available for analysis, you run the procedure
DBMS_LOGMNR.ADD_LOGFILE with the NEW option as follows; this example uses a Linux
file system:

execute DBMS_LOGMNR.ADD_LOGFILE(
LogFileName=> '/oracle/ora10/redo01.ora',
Options=> DBMS_LOGMNR.NEW);
execute DBMS_LOGMNR.ADD_LOGFILE(
LogFileName=> '/oracle/ora10/redo02.ora',
Options=> DBMS_LOGMNR.NEW);

Options Description

COMMITTED_DATA_ONLY Only DMLs corresponding to committed transactions
are returned if this option is set.

SKIP_CORRUPTION Skips any corruption encountered in the redo log file
during a select from V$LOGMNR_CONTENTS. This
option works only if a block in the actual redo log
file is corrupted and does not work if the corruption
is in the header block.

DDL_DICT_TRACKING Enables LogMiner to update the internal data
dictionary if a DDL event occurs, to ensure that
SQL_REDO and SQL_UNDO information is
maintained and correct.

DICT_FROM_ONLINE_CATALOG Instructs LogMiner to use the online data dictionary
instead of a flat file or redo log file stored dictionary.

DICT_FROM_REDO_LOGS Instructs LogMiner to use the data dictionary stored
in one or more redo log files.

NO_SQL_DELIMITER Instructs LogMiner not to place the SQL delimiter (;)
at the end of reconstructed SQL statements.

NO_ROWID_IN_STMT Instructs LogMiner not to include the ROWID clause
in the reconstructed SQL statements.

PRINT_PRETTY_SQL Instructs LogMiner to format the reconstructed SQL
for ease of reading.

CONTINUOUS_MINE Instructs LogMiner to automatically add redo log
files to find the data of interest. Specify the starting
SCN, date, or the first log to mine. LogMiner must
be connected to the same database instance that is
generating the redo log files.

TABLE 14-2 Values for the START_LOGMNR Options

504 Oracle Database 11g DBA Handbook

You can specify the location of the data dictionary file as follows:

execute DBMS_LOGMNR.ADD_LOGFILE(
DictFileName=> '/oracle/ora10/dictionary.ora',

After you’ve told LogMiner the location of the data dictionary and added the redo log files,
you can begin analyzing the redo log files using the DBMS_LOGMNR.START_LOGMNR package.
For example, the following command analyzes log files over a range of times:

execute DBMS_LOGMNR.START_LOGMNR(
DictFileName => '/oracle/dictionary.ora',
StartTime => TO_DATE('01-SEP-2007 12:45:00', DD-MON-YYYY HH:MI:SS')
EndTime => TO_DATE('01-OCT-2007 00:00:00', DD-MON-YYYY HH:MI:SS'));

NOTE
Using the timestamp will not ensure ordering of the redo records.
You must use the SCN numbers to ensure the order of the records.

You can use SCN values to filter data as follows:

execute DBMS_LOGMNR.START_LOGMNR(
DictFileName => '/oracle/dictionary.ora',
StartScn => 125,
EndScr => 300);

If you do not enter start and end times or a range of SCN numbers, the entire file is read for every
select statement that you issue.

To look at the redo and undo code, you select the SQL_REDO and SQL_UNDO columns as
follows:

select sql_redo, sql_undo
 from V$LOGMNR_CONTENTS;

You can use the OEM Server Manager Console to launch the Java-based LogMiner Viewer to
view redo and archived redo logs. To launch the LogMiner Viewer on a Windows platform, use
the Start | Programs | Oracle_Home | Oracle Enterprise Manager Console option. Once you have
connected to the Java-based OEM Server Console (Oracle Database 10g and earlier), select the
database on which you want to run the LogMiner Viewer. Ensure that the database has been started.

To start the LogMiner Viewer, highlight the database and right-click. Move the cursor to the
Related Tools option and then move to the LogMiner Viewer option. When the LogMiner Viewer
Console screen is displayed, create an object query by either clicking the top icon in the icon
panel or selecting Create Query from the Object pull-down menu. The LogMiner Viewer
automatically looks for available archived redo log files from which to create a query. If there are
no archived redo log files available, you receive an error message. You can create filtering options
(by creating query criteria), see the beginning and ending SCN for each redo log file available,
and choose the columns to display. The OEM LogMiner Viewer may simplify the process of sifting
through the log file contents. Additionally, you can use the Grid Control screens to access and
view the LogMiner output.

LogMiner Features Introduced in Oracle Database 10g
If you have used LogMiner with versions that preceded Oracle Database 10g, the following
enhancements are now available to you.

Chapter 14: Miscellaneous High Availability Features 505

As shown earlier in Table 14-1, DBMS_LOGMNR now has a REMOVE_LOGFILE procedure
that removes files from the list to be analyzed. You should no longer use the REMOVEFILE option
of the ADD_LOGFILE procedure.

You can use the NO_ROWID_IN_STMT option (refer back to Table 14-2) of START_LOGMNR
to filter out the rowid clause from reconstructed SQL commands.

You can expand supplemental logging via the alter database command to include foreign key
or all changes for rows. Using these settings will increase the amount of data written to the redo
log files.

You can expand supplemental logging at the table level to track primary key, foreign key,
unique index, and all changes. You can also use the no log option to prevent a column in a
user-defined log group from being logged.

See the Oracle Utilities guide for further details on the use of LogMiner and its procedures.

LogMiner Features Introduced in Oracle Database 11g
Until Oracle Database 11g, a DBA had to use the Java-based LogMiner console, which was
difficult to install and not completely integrated with Oracle Enterprise Manager Database
Control. The integration with OEM DB Control further enhances ease of use by integrating
a task-based log mining operation with Flashback Transaction. Figure 14-1 shows the OEM
interface for LogMiner.

FIGURE 14-1 OEM LogMiner and Flashback Transaction interface

506 Oracle Database 11g DBA Handbook

Online Object Reorganization
You can reorganize many database objects online. Options include the following:

Creating indexes online

Rebuilding indexes online

Coalescing indexes online

Rebuilding index-organized tables online

Using the DBMS_REDEFINITION package to redefine a table online

In the following sections, you will see examples of each of these operations.

Creating Indexes Online
You can create and rebuild indexes while the base tables are accessible to end users. DDL operations
are not allowed while the index is being built. To build an index online, use the online clause of
the create index command, as shown in the following example:

create index AUTH$NAME on AUTHOR (AuthorName) online;

Rebuilding Indexes Online
When you use the rebuild clause of the alter index command, Oracle uses the existing index as
the data source for the new index. As a result, you must have adequate space to store two copies
of the index while the operation is taking place. You can use the alter index rebuild command to
change the storage characteristics and tablespace assignment for an index.

To rebuild the index online, use the rebuild online clause of the alter table command, as
shown in the following example:

alter index AUTH$NAME rebuild online;

Coalescing Indexes Online
You can coalesce an index to reclaim space within the index. When you coalesce an index, you
cannot move it to another tablespace (as you can with a rebuild). Coalescing does not require
storage space for multiple copies of the index, so it may be useful when you are attempting to
reorganize an index in a space-constrained environment.

To coalesce an index, use the coalesce clause of the alter index command. All index
coalesces are online operations. The following is a sample coalesce:

alter index AUTH$NAME coalesce;

Rebuilding Index-Organized Tables Online
You can use the alter table . . . move online command to rebuild an index-organized table online.
The overflow data segment, if present, is rebuilt if you specify the overflow keyword. For example,
if the BOOKSHELF table is an index-organized table, you can rebuild it online via the following
command:

alter table BOOKSHELF move online;

■

■

■

■

■

Chapter 14: Miscellaneous High Availability Features 507

When using this command, you cannot perform parallel DML. Also, the move online option
is only available for nonpartitioned index-organized tables.

Redefining Tables Online
You can change a table’s definition while it is accessible by the application users. For example,
you can partition a previously nonpartitioned table while it is being used—a significant capability
for high-availability OLTP applications.

As of Oracle Database 11g, there are very few restrictions on what types of tables cannot be
redefined online. Here are the key restrictions:

After redefining a table with materialized view logs, the dependent materialized views
must be refreshed with a complete refresh.

The overflow table of an IOT must be redefined at the same time as the base IOT.

Tables with fine-grained access control cannot be redefined online.

Tables with BFILE columns cannot be redefined online.

Table with LONG and LONG RAW columns can be redefined, but the LONG and LONG
RAW columns must be converted to CLOBs and BLOBs.

Tables in the SYS and SYSTEM schemas cannot be redefined online.

Temporary tables cannot be redefined online.

The following example shows the steps involved in redefining a table online. First, verify that
the table can be redefined. For this example, the CUSTOMER table will be created in the SCOTT
schema and then redefined:

create table CUSTOMER
(Name VARCHAR2(25) primary key,
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

Next, verify that the table can be redefined by executing the CAN_REDEF_TABLE procedure
of the DBMS_REDEFINITION package. Its input parameters are the username and the table name:

execute DBMS_REDEFINITION.CAN_REDEF_TABLE('SCOTT','CUSTOMER');

The table is a candidate for online redefinition if the procedure returns the message

PL/SQL procedure successfully completed.

If it returns an error, the table cannot be redefined online, and the error message will give the
reason.

Next, create an interim table, in the same schema, with the desired attributes of the redefined
table. For example, we can partition the CUSTOMER table (to simplify this example, the tablespace
and storage clauses for the partitions are not shown):

create table CUSTOMER_INTERIM
(Name VARCHAR2(25) primary key,

■

■

■

■

■

■

■

508 Oracle Database 11g DBA Handbook

 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER)
partition by range (Name)
 (partition PART1 values less than ('L'),
 partition PART2 values less than (MAXVALUE))
;

You can now execute the START_REDEF_TABLE procedure of the DBMS_REDEFINITION
package to start the redefinition process. Its input variables are the schema owner, the table to be
redefined, the interim table name, and the column mapping (similar to the list of column names
in a select query). If no column mapping is supplied, all the column names and definitions in the
original table and the interim table must be the same.

execute DBMS_REDEFINITION.START_REDEF_TABLE -
 ('SCOTT','CUSTOMER','CUSTOMER_INTERIM');

Next, create any triggers, indexes, grants, or constraints required on the interim table. In this
example, the primary key has already been defined on CUSTOMER_INTERIM; you could add the
foreign keys, secondary indexes, and grants at this point in the redefinition process. Create the
foreign keys disabled until the redefinition process is complete.

NOTE
To avoid that manual step, you can use the COPY_TABLE_
DEPENDENTS procedure to create all dependent objects on the
interim table. Dependent objects supported via this method include
triggers, indexes, grants, and constraints.

When the redefinition process completes, the indexes, triggers, constraints, and grants on the
interim table will replace those on the original table. The disabled referential constraints on the
interim table will be enabled at that point.

To finish the redefinition, execute the FINISH_REDEF_TABLE procedure of the DBMS_
REDEFINITION package. Its input parameters are the schema name, original table name, and
interim table name:

execute DBMS_REDEFINITION.FINISH_REDEF_TABLE -
 ('SCOTT','CUSTOMER','CUSTOMER_INTERIM');

You can verify the redefinition by querying the data dictionary:

select table_name, high_value
 from DBA_TAB_PARTITIONS
 where owner = 'SCOTT';

TABLE_NAME HIGH_VALUE
----------------------- ------------------------
CUSTOMER MAXVALUE
CUSTOMER 'L'

To abort the process after executing the START_REDEF_TABLE procedure, execute the
ABORT_REDEF_TABLE procedure (the input parameters are the schema, original table name,
and interim table name).

PART
IV

Networked Oracle

This page intentionally left blank

CHAPTER
15

Oracle Net

511

512 Oracle Database 11g DBA Handbook

istributing computing power across servers and sharing information across networks
greatly enhances the value of the computing resources available. Instead of being a
stand-alone server, the server becomes an entry point for intranets, the Internet, and
associated websites.

Oracle’s networking tool, Oracle Net, can be used to connect to distributed databases. Oracle
Net facilitates the sharing of data between databases, even if those databases are on different
types of servers running different operating systems and communications protocols. It also
allows for client/server applications to be created; the server can then function primarily for
database I/O while the application can be fielded to a middle-tier application server. Also,
the data presentation requirements of an application can be moved to front-end client machines.
In this chapter, you will see how to configure, administer, and tune Oracle Net and the Oracle
Net Services.

The installation and configuration instructions for Oracle Net depend on the particular
hardware, operating system, and communications software you are using. The material provided
here will help you get the most out of your database networking, regardless of your configuration.

Overview of Oracle Net
Using Oracle Net distributes the workload associated with database applications. Because many
database queries are performed via applications, a server-based application forces the server to
support both the CPU requirements of the application and the I/O requirements of the database
(see Figure 15-1a). Using a client/server configuration (also referred to as a two-tier architecture)
allows this load to be distributed between two machines. The first, called the client, supports the
application that initiates the request from the database. The back-end machine on which the
database resides is called the server. The client bears the burden of presenting the data, whereas
the database server is dedicated to supporting queries, not applications. This distribution of
resource requirements is shown in Figure 15-1b.

When the client sends a database request to the server, the server receives and executes the
SQL statement that is passed to it. The results of the SQL statement, plus any error conditions
that are returned, are then sent back to the client. The client resources required have caused the
client/server configuration to sometimes be dubbed fat-client architecture. Although workstation
costs have dropped appreciably over recent years, the cost impact to a company can still be
substantial.

The more common, cost-effective architecture used with Oracle Net is a thin-client configuration
(also referred to as a three-tier architecture). The application code is housed and executed using
Java applets on a separate server from the database server. The client resource requirements
become very low, and the cost is reduced dramatically. The application code becomes isolated
from the database. Figure 15-2 shows the thin-client configuration.

The client connects to the application server. Once the client is validated, display
management code is downloaded to the client in the form of Java applets. A database request
is sent from the client through the application server to the database server; the database server

D

Chapter 15: Oracle Net 513

FIGURE 15-1 Client/server architecture

then receives and executes the SQL statement that is passed to it. The results of the SQL statement,
plus any error conditions that are returned, are then sent back to the client through the application
server. In some versions of the three-tier architecture, some of the application processing is
performed on the application server and the rest is performed on the database server. The
advantage of a thin-client architecture is that you have low resource requirements and maintenance
on the client side, medium resource requirements and central maintenance on the application
server, and high resource but lower maintenance requirements on one or more back-end database
servers.

In addition to client/server and thin-client implementations, server/server configurations are
often needed. In this type of environment, databases on separate servers share data with each
other. You can then physically isolate each server from every other server without logically isolating
the servers. A typical implementation of this type involves corporate headquarters servers that
communicate with departmental servers in various locations. Each server supports client applications,
but it also has the ability to communicate with other servers in the network. This architecture is
shown in Figure 15-3.

514 Oracle Database 11g DBA Handbook

When one of the servers sends a database request to another server, the sending server acts
like a client. The receiving server executes the SQL statement passed to it and returns the results
plus error conditions to the sender.

When run on the clients and the servers, Oracle Net allows database requests made from one
database (or application) to be passed to another database on a separate server. In most cases,
machines can function both as clients and servers; the only exceptions are operating systems with
single-user architectures, such as network appliances. In such cases, those machines can only
function as clients.

The end result of an Oracle Net implementation is the ability to communicate with all databases
that are accessible via the network. You can then create synonyms that give applications true

FIGURE 15-2 Thin-client architecture

Chapter 15: Oracle Net 515

FIGURE 15-3 Server/server architecture

network transparency: The user who submits the query will not know the location of the data that
is used to resolve it. In this chapter, you will see the main configuration methods and files used to
manage inter-database communications, along with usage examples. You will see more detailed
examples of distributed database management in Chapter 17.

Each object in a database is uniquely identified by its owner and name. For example, there
will only be one table named EMPLOYEE owned by the user HR; there cannot be two tables of
the same name and type within the same schema.

Within distributed databases, two additional layers of object identification must be added.
First, the name of the instance that accesses the database must be identified. Next, the name of
the server on which that instance resides must be identified. Putting together these four parts of
the object’s name—its server, its instance, its owner, and its name—results in a global object
name. In order to access a remote table, you must know the table’s global object name. DBAs and
application administrators can set up access paths to automate the selection of all four parts of the
global object name. In the following sections, you will see how to set up the access paths used by
Oracle Net.

The foundation of Oracle Net is the Transparent Network Substrate (TNS), which resolves
all server-level connectivity issues. Oracle Net relies on configuration files on the client and the
server to manage the database connectivity. If the client and server use different communications
protocols, the Oracle Connection Manager (described in a later section of this chapter) manages
the connections. The combination of the Oracle Connection Manager and the TNS allows Oracle
Net connections to be made independent of the operating system and communications protocol
run by each server. Oracle Net also has the capability to send and receive data requests in an
asynchronous manner; this allows it to support the shared server architecture.

Connect Descriptors
The server and instance portions of an object’s global object name in Oracle Net are identified
by means of a connect descriptor. A connect descriptor specifies the communications protocol,
the server name, and the instance’s service name to use when performing the query. Because
of the protocol-independence of Oracle Net, the descriptor also includes hardware connectivity
information. The generic format for an Oracle Net connect descriptor is shown in the following

516 Oracle Database 11g DBA Handbook

example, which uses the TCP/IP protocol and specifies a connection to an instance named LOC
on a server named HQ (note that the keywords are protocol specific):

(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

In this connect descriptor, the protocol is set to TCP/IP, the server (HOST) is set to HQ, and
the port on that host that should be used for the connection is port 1521 (which is the Oracle
registered port assignment for Oracle Net). The instance name is specified in a separate part of
the descriptor as the SID assignment. The instance name or SID can be specified, but neither is
required when the service name is specified. When a service name is specified, an instance name
is only needed if you want to connect to a specific instance in a RAC database. The SID parameter
is used when the service name is not specified as part of the database initialization parameters.

The structure for this descriptor is consistent across all protocols. Also, the descriptors can be
automatically generated via the Net Configuration Assistant. As previously noted, the keywords
used by the connect descriptors are protocol specific. The keywords to use and the values to give
them are provided in the operating system–specific documentation for Oracle Net.

Net Service Names
Users are not expected to type in a connect descriptor each time they want to access remote data.
Instead, the DBA can set up net service names (or aliases), which refer to these connect descriptors.
Service names are stored in a file called tnsnames.ora. This file should be copied to all servers on
the database network. Every client and application server should have a copy of this file.

On the server, the tnsnames.ora file should be located in the directory specified by the TNS_
ADMIN environment variable. The file is usually stored in a common directory, such as the
$ORACLE_HOME/network/admin directory on Unix or Linux systems. For a Windows NT/2000/
XP/Vista server or client, this would be in the \network\admin subdirectory under your Oracle
software home directory.

A sample entry in the tnsnames.ora file is shown in the following listing. This example assigns
a net service name of LOC to the connect descriptor given earlier:

LOC =(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

A user wishing to connect to the LOC instance on the HQ server can now use the LOC net
service name, as shown in this example:

sqlplus hr/hr@LOC;

Chapter 15: Oracle Net 517

The @ sign tells the database to use the net service name that follows it to determine which
database to log into. If the username and password are correct for that database, a session is
opened there and the user can begin using the database.

Net service names create aliases for connect descriptors, so you do not need to give the net
service name the same name as the instance. For example, you could give the LOC instance the
service name PROD or TEST, depending on its use within your environment. The use of synonyms
to further enhance location transparency will be described in the section “Using Database Links”
later in this chapter.

Replacing tnsnames.ora with Oracle Internet Directory
A directory is a specialized electronic database in which you store information about one or more
objects. Your electronic mail address book is an example of a directory. Within each of your e-mail
address entries is information about the contact’s name, e-mail address, home and business
addresses, and so on. You can use the address book to locate a specific person with whom
you want to correspond.

Oracle provides an electronic database tool called the Oracle Internet Directory (OID) for
|use in resolving user, server, and database locations as well as password and other important
information storage. As of Oracle9i, the emphasis moved from supporting many separate
tnsnames.ora files on distributed machines to supporting one or more directories on centralized
machines. See the section “Directory Naming with Oracle Internet Directory,” later in this
chapter, for more information about OID.

Listeners
Each database server on the network must contain a listener.ora file. The listener.ora file lists the
names and addresses of all the listener processes on the machine and the instances they support.
Listener processes receive connections from Oracle Net clients.

A listener.ora file has four parts:

Header section

Protocol address list

Instance definitions

Operational parameters

The listener.ora file is automatically generated by the Oracle Net Configuration Assistant tool
(netca on Linux). You can edit the resultant file as long as you follow its syntax rules. The following
listing shows sample sections of a listener.ora file—an address definition and an instance definition:

LISTENER =
 (ADDRESS_LIST =
 (ADDRESS=
 (PROTOCOL=IPC)
 (KEY= loc.world)
)
 (ADDRESS=

■

■

■

■

518 Oracle Database 11g DBA Handbook

 (PROTOCOL=TCP)
 (HOST= HR)
 (PORT=1521)
)
)
SID_LIST_LISTENER =
 (SID_DESC =
 (GLOBAL_DBNAME = loc.world)
 (ORACLE_HOME = D:\oracle\ora11)
 (SID_NAME = loc)
)
)

The first portion of this listing contains the protocol address list—one entry per instance. The
protocol address list defines the protocol addresses on which a listener is accepting connections,
including an interprocess calls (IPC) address-definition section. In this case, the listener is listening
for connections to the service identified as loc.world as well as any requests coming from the HR
machine on PORT 1521 using the TCP/IP protocol. The .world suffix is the default domain name
for Oracle Net connections. As of Net8, the default domain name was changed to be a NULL string.

NOTE
Using SID_LIST_LISTENER is not required in Oracle Database 10g
and 11g; it is required in previous versions of Oracle Net only if you
monitor and manage the instance with Oracle Enterprise Manager.

The second portion of the listing, beginning with the SID_LIST_LISTENER clause, identifies the
global database name as defined in the init.ora file for that database, the Oracle software home
directory for each instance the listener is servicing, and the instance name or SID. The GLOBAL_
DBNAME comprises the database name and database domain. The SID_LIST descriptor is retained
for static database registration, for backward compatibility with earlier versions, and for use by
the Oracle Enterprise Manager. Databases dynamically register with the listener on database
startup; a default installation of Oracle Database 11g (and Oracle Database 10g) on Linux only
includes a listener.ora file with the LISTENER parameter, as in this sample listener.ora file from the
DW database used in examples throughout this book:

listener.ora Network Configuration File:
 /u01/app/oracle/product/11.1.0/db_1/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = dw)(PORT = 1521))
)
)

For the listener on the server dw (for the database instance DW), this listener.ora file does not
even need to exist unless you want to add additional listeners or provide static registration entries:
if there is no listener.ora file, the default listener name is LISTENER, the default value for PROTOCOL
is TCP, the HOST parameter defaults to the server’s host name, and the default value for PORT
(the TCP/IP port number) is 1521.

Chapter 15: Oracle Net 519

NOTE
If you change the Oracle software home directory for an instance, you
need to change the listener.ora file for the server.

listener.ora Parameters
The listener.ora file supports a large number of parameters. The parameters should each be suffixed
with the listener name. For example, the default listener name is LISTENER, so the LOG_FILE
parameter is named LOG_FILE_LISTENER. The listener.ora parameters are listed in Table 15-1.

Parameter Description

DESCRIPTION Serves as a container for listener protocol addresses.

ADDRESS Specifies a single listener protocol address. Embedded
within a DESCRIPTION.

QUEUESIZE Specifies the number of concurrent connection requests
that the listener can accept on a TCP/IP or IPC listening
endpoint.

RECV_BUF_SIZE Specifies, in bytes, the buffer space for receive
operations of sessions. Embedded within a
DESCRIPTION.

SEND_BUF_SIZE Specifies, in bytes, the buffer space for send operations
of sessions. Embedded within a DESCRIPTION.

SID_LIST Lists SID descriptions; configures service information
for the listener; required for OEM, Oracle7, Oracle8
release 8.0, external procedure calls, and heterogeneous
services.

SID_DESC Specifies service information for a specific instance or
service. Embedded within SID_LIST.

ENVS Specifies environment variables for the listener to set
prior to executing a dedicated server program or an
executable specified via the PROGRAM parameter.
Embedded within SID_DESC.

GLOBAL_DBNAME Identifies the database service. Embedded within
SID_DESC.

ORACLE_HOME Specifies the Oracle software home directory for the
service. Embedded within SID_DESC.

PROGRAM Names the service executable program. Embedded
within SID_DESC.

SID_NAME Specifies the Oracle instance name for the service.
Embedded within SID_DESC.

SDU Specifies the session data unit (SDU) size for data packet
transfers. Values are 512 to 32768 bytes. Embedded
within SID_DESC.

ADMIN_RESTRICTIONS_listener_name Disables run-time modification of listener parameters.
Values are ON and OFF (the default).

TABLE 15-1 listener.ora Parameters

520 Oracle Database 11g DBA Handbook

You can modify the listener parameters after the listener has been started. If you use the
SAVE_CONFIG_ON_STOP option, any changes you make to a running listener will be written
to its listener.ora file. See examples of controlling the listener behavior later in this chapter.

Using the Oracle Net Configuration Assistant
The Oracle Net Configuration Assistant performs the initial network configuration steps after the
Oracle software installation and automatically creates the default, basic configuration files. You
can use the Oracle Net Manager tool to administer network services. The tools have graphical
user interfaces for configuring the following elements:

Parameter Description

INBOUND_CONNECT_TIMEOUT_listener_name Specifies the time, in seconds, for the client to complete
its connect request to the listener after the network
connection has been established.

LOG_DIRECTORY_listener_name Specifies the destination directory for the listener log file.

LOG_FILE_listener_name Names the listener log file.

LOGGING_listener_name Turns listener logging ON or OFF.

PASSWORDS_listener_name Specifies an encrypted password for the listener process.
The password can be generated via the Listener Control
Utility (lsnrctl) or Oracle Net Manager.

SAVE_CONFIG_ON_STOP_listener_name TRUE or FALSE parameter to specify whether runtime
configuration changes are automatically saved to the
listener.ora file.

SSL_CLIENT_AUTHENTICATION_listener_name TRUE or FALSE parameter to specify whether a client is
authenticated using SSL.

STARTUP_WAIT_TIME_listener_name Deprecated; do not set.

TRACE_DIRECTORY_listener_name Specifies the destination directory of the listener trace file.

TRACE_FILE_listener_name Names the listener trace file.

TRACE_FILELEN_listener_name Specifies the size, in KB, of the listener trace files.

TRACE_FILENO_listener_name Sets the number of trace files to use for listener tracing;
when this parameter is used with TRACE_FILELEN_
listener_name, the files are used in cyclical fashion.

TRACE_LEVEL_listener_name Enables tracing at specific levels. Values are OFF (the
default), USER, ADMIN, and SUPPORT.

TRACE_TIMESTAMP_listener_name Adds a timestamp to every trace event. Values are ON,
OFF, TRUE, and FALSE.

WALLET_LOCATION Specifies the location of certificates, keys, and trust
points used by SSL for secure connections. For the
WALLET_LOCATION parameter, you can specify the
SOURCE, METHOD, METHOD_DATA, DIRECTORY,
KEY, PROFILE, and INFILE subparameters.

TABLE 15-1 listener.ora Parameters (continued)

Chapter 15: Oracle Net 521

Listener

Naming methods

Local net service names

Directory usage

Figure 15-4 shows the initial screen of the Oracle Net Configuration Assistant. As shown in
Figure 15-4, “Listener configuration” is the default option.

Configuring the Listener
Using the Oracle Net Configuration Assistant, you can configure a listener easily and quickly.
When you select the Listener Configuration options, you are given the choice to add, reconfigure,
delete, or rename a listener. After selecting the Add option, the first step is to select a listener
name. Figure 15-5 shows the Listener Name screen with the default listener name, LISTENER,
displayed.

After selecting a listener name, you must select a protocol. The default protocol selected is
TCP. Figure 15-6 shows the protocol selection screen.

Once a protocol has been selected, you must designate a port number on which the new
listener will listen. The default port number presented is 1521, but you are given the option to
designate another port. The next three screens include a prompt to configure another listener, a
request to indicate a listener you want to start, and a confirmation that the listener configuration
is completed for this listener.

■

■

■

■

FIGURE 15-4 Oracle Net Configuration Assistant: Welcome screen

522 Oracle Database 11g DBA Handbook

FIGURE 15-5 Listener Configuration, Listener Name screen

FIGURE 15-6 Listener Configuration, Select Protocols screen

Chapter 15: Oracle Net 523

Naming Methods Configuration
The Naming Methods Configuration option of the Oracle Net Configuration Assistant configures
net service names. There are many options available for naming methods. A couple of them are
listed here:

Local The tnsnames.ora File

Host Name Uses a TCP naming service. You cannot use connection
pooling or the Oracle Connection Manager with this option.

Sun NIS, DCE CDS, Directory External naming services.

If you accept the Host Name option, you see an informational screen advising you that Host
Name naming does not require any additional configuration “at this time.” You are instructed that
any time you add a database service in the future, you must make an entry in your TCP/IP host
name resolution system.

Once you have selected the naming methods, the Oracle Net Configuration Assistant displays
a confirmation screen.

Local Net Service Name Configuration
You can use the Oracle Net Configuration Assistant’s Local Net Service Name configuration options
to manage net service names. Five options are available for the Oracle Net Configuration Assistant’s
Local Net Service Name configuration tool:

Add

Reconfigure

Delete

Rename

Test

For the Add option, you must first specify the database version you are going to access and
the service name. Once you have entered the global service name or SID, you are prompted to
enter the protocol. You must specify the machine name of the host and designate the listener port.

The next screen offers you the option to verify that the Oracle database you have specified
can be successfully reached. You can choose to skip or perform the connection test. Once you
have either chosen to test the connection, and it has completed successfully, or opted to skip the
test, you are prompted to specify the service name for the new net service. By default, the service
name you entered earlier is used, but you can specify a different name if you so choose. Finally,
you are notified that your new local service name has been successfully created, and you are
asked if you want to configure another one.

You can use the Reconfigure option to select and modify an existing net service name. You
are prompted to select an existing net service name. The Database Version screen, the service
name screen, and the Select Protocols screen are used as well as the TCP/IP Protocol screen. The
option to test the database connection is offered as well as the net service name screen to enable
you to rename the net service you are reconfiguring.

The Test option enables you to verify that your configuration information is correct, that the
database specified can be reached, and that a successful connection can be made.

■

■

■

■

■

524 Oracle Database 11g DBA Handbook

Directory Usage Configuration
A directory service provides a central repository of information for the network. The most common
directory forms support the Lightweight Directory Access Protocol (LDAP). An LDAP server can
provide the following features:

Store net service names and their location resolution

Provide global database links and aliases

Act as a clearinghouse for configuration information for clients across the entire network

Aid in configuring other clients

Update client configuration files automatically

House client information such as usernames and passwords

The Directory Usage Configuration option supports both Oracle Internet Directory and the
Microsoft Active Directory. The directory selection window is shown in Figure 15-7 in a Windows
environment.

Next, you are prompted to supply the directory service location host name, port, and SSL port;
you see this window in Figure 15-8. By default, the port is 389 and the SSL port is 636. Once you
have specified this information, the tool attempts to connect to your directory repository and verify
that you have already established a schema and a context. If you have not, you will receive an
error message instructing you to do so.

■

■

■

■

■

■

FIGURE 15-7 Directory Usage Configuration

Chapter 15: Oracle Net 525

From the second option, “Select the directory server you want to use, and configure the
directory server for Oracle usage…,” you receive the same initial prompts to select the directory
type and enter the host name and ports. Once the information is verified, if your directory does
not contain the required schema, you are given the opportunity to create the directory schema.
You must have the appropriate privileges to perform this task. By default, the initial username with
the appropriate privileges for schema creation for the Oracle Internet Directory is “cn=orcladmin,”
and the password is “welcome.” You should change the password at your earliest opportunity.

The third and fourth options enable you to individually configure a schema and a context.

Using the Oracle Net Manager
There is some overlap between the Oracle Net Configuration Assistant shown in the preceding
section and the Oracle Net Manager utility. Both tools can be used to configure a listener or a net
service name. Both provide ease in configuring a Names service, local profile, and directory service.
The Oracle Net Manager is not quite as user friendly but provides a more in-depth configuration
alternative. You start the Oracle Net Manager on Linux with the netmgr command.

As shown in Figure 15-9, the opening screen of the Oracle Net Manager lists the basic
functionality it provides, as follows:

Naming Defines simple names to identify the location of a service

Naming Methods Defines the way the simple names map to connect descriptors

Listeners Supports the creation and configuration of listeners

■

■

■

FIGURE 15-8 Specifying an LDAP directory service

526 Oracle Database 11g DBA Handbook

You can use Oracle Net Manager to manage your configuration files and test your connections.
Options such as Oracle Advanced Security can be managed via the Oracle Net Manager. The Oracle
Advanced Security option provides end-to-end encryption of data in a distributed environment. By
default, your data will travel in clear text across the network unless you use Oracle’s encryption or a
hardware-based encryption.

You can create a new net service name for your tnsnames.ora file via the Oracle Net Service
Names Wizard. Once you have specified a net service name, you are prompted to select the
network protocol you want to use. The options are as follows:

TCP/IP (Internet Protocol)

TCP/IP with SSL (Secure Internet Protocol)

Named Pipes (Microsoft Networking)

IPC (Local Database)

The Oracle Net Manager will prompt you for each of the parameters required to establish a
database connection and will modify your local tnsnames.ora file to reflect the information you
provide. The information you will be prompted for is host, port number, service or SID name
(depending on the Oracle version), and the connection type (either database default, shared

■

■

■

■

FIGURE 15-9 Oracle Net Manager Console configuration window

Chapter 15: Oracle Net 527

server, or dedicated server). Finally, you are given the opportunity to test the new service name.
You can also test existing net service names by selecting the net service name from the displayed
list of services and then selecting the Test Connection option from the menu options.

The simpler you keep your client and server configurations, and the closer you adhere to the
default values, the simpler the management of your configuration files will be. The Oracle Net
Manager simplifies your configuration file administration. One word of caution: If you are using
your listener to listen for connections from the Internet through a firewall, be sure that you do not
leave a listener listening on the default port, 1521, because a hole through your firewall can leave
you open to potential remote listener reconfiguration. An unsecured listener using default values
can enable a hacker to obtain database information that could compromise your site.

Starting the Listener Server Process
The listener process is controlled by the Listener Control utility, executed via the lsnrctl command.
The options available for the lsnrctl command are described in the next section. To start the listener,
use this command:

lsnrctl start

This command will start the default listener (named LISTENER). If you wish to start a listener
with a different name, include that listener’s name as the second parameter in the lsnrctl command.
For example, if you created a listener called MY_LSNR, you could start it via the following
command:

lsnrctl start my_lsnr

In the next section you will find descriptions of the other parameters available for the Listener
Control utility.

After starting a listener, you can check that it is running by using the status option of the
Listener Control utility. The following command can be used to perform this check:

[oracle@dw ~]$ lsnrctl status

LSNRCTL for Linux: Version 11.1.0.5.0 - Beta on 08-AUG-2007 19:58:40

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=dw)(PORT=1521)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for Linux: Version 11.1.0.5.0 – Beta
Start Date 02-AUG-2007 19:06:23
Uptime 6 days 0 hr. 52 min. 17 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File
 /u01/app/oracle/product/11.1.0/db_1/network/admin/listener.ora
Listener Log File
 /u01/app/oracle/diag/tnslsnr/dw/listener/alert/log.xml

528 Oracle Database 11g DBA Handbook

Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=dw)(PORT=1521)))
Services Summary...
Service "+ASM" has 1 instance(s).
 Instance "+ASM", status READY, has 1 handler(s) for this service...
Service "+ASM_XPT" has 1 instance(s).
 Instance "+ASM", status READY, has 1 handler(s) for this service...
Service "dw.world" has 1 instance(s).
 Instance "dw", status READY, has 1 handler(s) for this service...
Service "dwXDB.world" has 1 instance(s).
 Instance "dw", status READY, has 1 handler(s) for this service...
Service "dw_XPT.world" has 1 instance(s).
 Instance "dw", status READY, has 1 handler(s) for this service...
The command completed successfully
[oracle@dw ~]$

If the listener is named anything other than LISTENER in the listener.ora file, you must add the
name of the listener to the status command. For example, if the listener is named MY_LSNR,
the command is

lsnrctl status my_lsnr

The status output will show if the listener has been started and the services it is currently
supporting, as defined by its listener.ora file. The listener parameter file and its log file location
will be displayed.

If you wish to see the operating system–level processes that are involved, use the following
command. This example uses the Unix ps -ef command to list the system’s active processes. The
grep tnslsnr command then eliminates those rows that do not contain the term “tnslsnr.”

[oracle@dw ~]$ ps -ef | grep tnslsnr
oracle 5931 1 0 Aug04 ? 00:00:46
 /u01/app/oracle/product/11.1.0/db_1/bin/tnslsnr LISTENER –inherit
oracle 25124 23035 0 20:02 pts/2 00:00:00 grep tnslsnr
[oracle@dw ~]$

This output shows two processes: the listener process and the process that is checking for it.
The first line of output is wrapped to the second line and may be truncated by the operating system.

Controlling the Listener Server Process
You can use the Listener Control utility, lsnrctl, to start, stop, and modify the listener process on
the database server. Its command options are listed in Table 15-2. Each of these commands may
be accompanied by a value; for all except the set password command, that value will be a listener
name. If no listener name is specified, the default (LISTENER) will be used. Once within lsnrctl,
you can change the listener being modified via the set current_listener command.

TIP
Oracle best practices dictate always using a listener password in
Oracle9i but never in Oracle Database 10g or 11g; for Oracle
Database 10g and later, the default authentication mode for the
listener is local OS authentication, which requires the listener
administrator to be a member of the local dba group.

Chapter 15: Oracle Net 529

Command Description

CHANGE_PASSWORD Sets a new password for the listener. You will be prompted for the
old password for the listener.

EXIT Exits lsnrctl.

HELP Displays a list of the lsnrctl command options. You can also see
additional options via the help set and help show commands.

QUIT Exits lsnrctl.

RELOAD Allows you to modify the listener services after the listener has
been started. It forces SQL*Net to read and use the most current
listener.ora file.

SAVE_CONFIG New as of Net8. Creates a backup of your existing listener.ora file
and then updates your listener.ora file with parameters you have
changed via lsnrctl.

SERVICES Displays the services available, along with their connection
history. It also lists whether each service is enabled for remote
DBA or autologin access.

SET Sets parameter values. Options include the following:
current_listener changes the listener process whose parameters
are being set or shown.
displaymode changes the format and level of detail for the
services and status commands.
inbound_connect_timeout sets the time, in seconds, for the client
to complete its connection to the listener before being timed out.
log_directory sets the directory for the listener log file.
log_file sets the name of the listener log file.
log_status sets whether logging is ON or OFF.
password sets the listener password.
raw_mode changes the displaymode format to show all data;
only use raw_mode in conjunction with Oracle Support.
save_config_on_stop saves your configuration changes to your
listener.ora file when you exit lsnrctl.
startup_waittime sets the number of seconds the listener sleeps
before responding to a lsnrctl start command.
trc_directory sets the directory for the listener trace file.
trc_file sets the name for the listener trace file.
trc_level sets the trace level (ADMIN, USER, SUPPORT, or OFF).
See lsnrctl trace.

SHOW Shows current parameter settings. Options are the same as the set
options with the sole omission of the password command.

TABLE 15-2 Listener Control (lsnrctl) Utility Commands

530 Oracle Database 11g DBA Handbook

NOTE
Options for lsnrctl may be introduced or removed with each new
version of Oracle Net.

You can enter the lsnrctl command by itself to enter the lsnrctl utility shell, from which all
other commands can then be executed.

The command options listed in Table 15-2 give you a great deal of control over the listener
process, as shown in the following examples. In most of these examples, the lsnrctl command is
first entered by itself. This places the user in the lsnrctl utility (as indicated by the LSNRCTL prompt).
The rest of the commands are entered from within this utility. The following examples show the
use of the lsnrctl utility to stop, start, and generate diagnostic information about the listener.

To stop the listener:

lsnrctl
LSNRCTL> set password lsnr_password
LSNRCTL> stop

To list status information for the listener:

lsnrctl status

To list the status of a listener on another host, add a service name from that host as a
parameter to the status command. The following example uses the HQ service name shown
earlier in this chapter:

lsnrctl status hq

To list version information about the listener:

lsnrctl version

To list information about the services supported by the listener:

Command Description

SPAWN Spawns a program that runs with an alias in the listener.ora file.

START Starts the listener.

STATUS Provides status information about the listener, including the time
it was started, its parameter filename, its log file, and the services
it supports. This can be used to query the status of a listener on a
remote server.

STOP Stops the listener.

TRACE Sets the trace level of the listener to one of four choices: OFF,
USER (limited tracing), ADMIN (high level of tracing), or
SUPPORT (for ORACLE Support).

VERSION Displays version information for the listener, TNS, and the
protocol adapters.

TABLE 15-2 Listener Control (lsnrctl) Utility Commands (continued)

Chapter 15: Oracle Net 531

lsnrctl
LSNRCTL> set password lsnr_password
LSNRCTL> services

NOTE
As of Oracle Database 10g Release 1, the default name for a listener
in a RAC database environment is LISTENER_HOSTNAME.

The Oracle Connection Manager
The Oracle Connection Manager portion of Oracle Net acts as a router used to establish database
communication links between otherwise incompatible network protocols as well as to take
advantage of multiplexing and access control.

The advantage of an Oracle Connection Manager is that all servers do not have to use the same
communications protocol. Each server can use the communications protocol that is best suited
to its environment and will still be able to transfer data back and forth with other databases. This
communication takes place regardless of the communications protocols used on the remote servers;
the Oracle Connection Manager takes care of the differences between the protocols. The protocols
supported by Oracle Connection Manager are IPC, Named Pipes, SDP, TCP/IP, and TCP/IP with SSL.

You can use multiple access paths to handle different client requests. The Oracle Connection
Managers will select the most appropriate path based on path availability and network load. The
relative cost of each path is specified via the Network Manager utility when the Oracle Connection
Managers are set up.

In an intranet environment, the Oracle Connection Manager can be used as a firewall for Oracle
Net traffic. You can establish filtering rules to enable or disable specific client access using the
Oracle Connection Manager. The filtering rules can be based on any of the following criteria:

Destination host names or IP addresses for servers

Destination database service name

Source host names or IP addresses for clients

Whether the client is using the Oracle Advanced Security option

The Oracle Connection Manager is used to enhance your firewall security by filtering out
client access based on one or more aspects of the filtering rules you create. For example, you
could specify that an IP address is to be refused access using the CMAN_RULES parameter within
the cman.ora file.

The file sqlnet.ora may be used to specify additional diagnostics beyond the default
diagnostics provided.

Using Connection Manager
Oracle Net uses the Connection Manager to support connections within homogenous networks,
reducing the number of physical connections maintained by the database. Two main processes
and a control utility are associated with the Connection Manager, as follows:

CMGW The gateway process that acts as a hub for the Connection Manager

CMADMIN A multithreaded process responsible for all administrative tasks and issues

CMCTL A utility that enables basic management functions for Oracle Control Manager
administration

■

■

■

■

532 Oracle Database 11g DBA Handbook

The CMGW Process
The Connection Manager Gateway (CMGW) process registers itself with the CMADMIN process
and listens for incoming connection requests. By default, this process listens on port 1630 using
the TCP/IP protocol. The CMGW process initiates connection requests to listeners from clients
and relays data between the client and server.

The CMADMIN Process
The multithreaded Connection Manager Administrative (CMADMIN) process performs many tasks
and functions. The CMADMIN processes CMGW registrations and registers source route addressing
information about the CMGW and listeners. The CMADMIN process is tasked with identifying all
listener processes that support at least one database. Using Oracle Internet Directory, the CMADMIN
performs the following tasks:

Locates local servers

Monitors registered listeners

Maintains client address information

Periodically updates the Connection Manager’s cache of available services

The CMADMIN process handles source route information about the CMGW and listeners.

Configuring the Oracle Connection Manager
The cman.ora file, located by default in the $ORACLE_HOME/network/admin directory on a
Unix system and in %ORACLE_HOME%\network\admin on a Windows system, contains the
configuration parameters for the Oracle Connection Manager. The file contains protocol addresses
of the listening gateway process, access control parameters, and profile or control parameters.

The complete set of cman.ora parameters is shown in Table 15-3.

■

■

■

■

Parameter Description

ADDRESS Specifies the protocol address (such as the protocol,
the host, and the port) of the Connection Manager.

RULE Specifies an access control rule list to filter incoming
connections. Subparameters allow source and
destination host names, IP addresses, and service
names to be filtered.

PARAMETER_LIST Specifies attribute values when overriding the default
settings. The remainder of the parameters in this
listing are subparameters within the PARAMETER_
LIST setting.

ASO_AUTHENTICATION_FILTER Specifies whether Oracle Advanced Security
authentication settings must be used by the client.
The default is OFF.

CONNECTION_STATISTICS Specifies whether the SHOW_CONNECTIONS
command displays connection statistics. The default
is NO.

TABLE 15-3 cman.ora Parameters

Chapter 15: Oracle Net 533

Parameter Description

EVENT_GROUP Specifies which event groups are logged. The default
is none.

IDLE_TIMEOUT Specifies the amount of time, in seconds, that an
established connection can remain active without
transmitting data. The default is 0.

INBOUND_CONNECT_TIMEOUT Specifies, in seconds, how long the Oracle
Connection Manager listener waits for a valid
connection from a client or another instance of
Oracle Connection Manager. The default is 0.

LOG_DIRECTORY Specifies the destination directory for Oracle
Connection Manager log files. The default is the
/network/log subdirectory under the Oracle home
directory.

LOG_LEVEL Specifies the logging level (OFF, USER, ADMIN, or
SUPPORT). The default is SUPPORT.

MAX_CMCTL_SESSIONS Specifies the maximum number of concurrent
local or remote sessions of the Oracle Connection
Manager control utility allowable for a given
instance. The default is 4.

MAX_CONNECTIONS Specifies the maximum number of connections a
gateway process can handle. The default is 256.

MAX_GATEWAY_PROCESSES Specifies the maximum number of gateway processes
that an instance of Oracle Connection Manager
supports. The default is 16.

MIN_GATEWAY_PROCESSES Specifies the minimum number of gateway processes
that an instance of Oracle Connection Manager must
support. The default is 2.

OUTBOUND_CONNECT_TIMEOUT Specifies, in seconds, the length of time that the
Oracle Connection Manager instance waits for a
valid connection to be established with the database
server or with another Oracle Connection Manager
instance. The default is 0.

PASSWORD_instance_name The encrypted instance password, if set.

REMOTE_ADMIN Specifies whether remote access to an Oracle
Connection Manager is allowed. The default is NO.

SESSION_TIMEOUT Specify the maximum time, in seconds, allowed for a
user session. The default is 0.

TRACE_DIRECTORY Specifies the directory for the trace files. The default
is the /network/trace subdirectory under the Oracle
home directory.

TABLE 15-3 cman.ora Parameters (continued)

534 Oracle Database 11g DBA Handbook

The Connection Manager Control Utility (CMCTL)
The Connection Manager Control Utility provides administrative access to CMADMIN and
CMGW. The Connection Manager is started via the cmctl command. The command syntax is

cmctl command process_type

The default startup command from an operating system prompt is as follows:

cmctl start cman

The commands are broken into four basic types:

Operational commands such as start

Modifier commands such as set

Informational commands such as show

Command utility operations such as exit

Using the parameter REMOTE_ADMIN, you can control, but not start, remote managers. Unlike
the Listener utility discussed earlier in this chapter, you cannot interactively set a password for the
Oracle Connection Manager. To set a password for this tool, you put a plain-text password in the
cman.ora file. The available command options for the cmctl command are shown in Table 15-4.

If the Connection Manager has been started, any client that has SOURCE_ROUTE set to YES
in its tnsnames.ora file can use the Connection Manager. The Connection Manager reduces system
resource requirements by maintaining logical connections while reusing physical connections.

Directory Naming with Oracle Internet Directory
Oracle Internet Directory facilitates support for LDAP-compliant directory servers for centralized
network names resolution management in a distributed Oracle network. For localized management,
you can still use the tnsnames.ora file.

The file ldap.ora, located in the $ORACLE_HOME/network/admin directory on a Unix system
and in %ORACLE_HOME%\network\admin in a Windows environment, stores the confguration
parameters to access a directory server. Oracle supports both the Oracle Internet Directory and
Microsoft Active Directory.

■

■

■

■

Parameter Description

TRACE_FILELEN Specifies, in KB, the size of the trace file. The
default is 0.

TRACE_FILENO Specifies the number of trace files, used cyclically.
The default is 0.

TRACE_LEVEL Specifies the trace level (OFF, USER, ADMIN, or
SUPPORT). The default is OFF.

TRACE_TIMESTAMP Adds a timestamp to every trace event in the trace
files. The default is OFF.

TABLE 15-3 cman.ora Parameters (continued)

Chapter 15: Oracle Net 535

Command Description

ADMINISTER Choose an instance of Oracle Connection Manager. The format
is administer -c followed by the instance name, with an optional
using password clause.

CLOSE CONNECTIONS Terminate connections. You can specify the source, destination,
service, state, and gateway process ID for the connections to
terminate.

EXIT Exit the Oracle Connection Manager Control utility.

HELP List all CMCTL commands.

QUIT Exit the Oracle Connection Manager Control utility.

RELOAD Dynamically re-read parameters and rules from the cman.ora file.

RESUME GATEWAYS Resume suspended gateway processes.

SAVE_PASSWORD Save the current password to the cman.ora configuration
parameter file.

SET Display a list of parameters that can be modified within CMCTL.
You can set values for aso_authentication_filter, connection_
statistics, event, idle_timeout, inbound_connect_timeout,
log_directory, log_level, outbound_connect_timeout, password,
session_timeout, trace_directory, and trace_level.

SHOW Display a list of parameters whose values can be displayed. You
can show their values individually by specifically listing them
after the SHOW command (for example, SHOW TRACE_LEVEL).

SHOW ALL Display the values of all parameters and rules.

SHOW DEFAULTS Display the default parameter settings.

SHOW EVENTS Display the events.

SHOW GATEWAYS Display the current status of specific gateway processes.

SHOW PARAMETERS Display current parameter settings.

SHOW RULES Display the current access control list.

SHOW SERVICES Display information on the Oracle Connection Manager services,
including gateway handlers and the number of connections.

SHOW STATUS Display basic information about the instance and its current
statistics.

SHOW VERSION Display the current version and name of the CMCTL utility.

SHUTDOWN Shut down specific gateway processes or the entire Oracle
Connection Manager instance.

STARTUP Start the Oracle Connection Manager.

SUSPEND GATEWAY Prevent gateway processes from accepting new client connections.

TABLE 15-4 cmctl Command Options

536 Oracle Database 11g DBA Handbook

To resolve a connect descriptor using a centralized directory server, the steps are as follows:

 1. Oracle Net, on behalf of the client, contacts the directory server to obtain the resolution
for the connect identifier to a connect descriptor.

 2. The directory server takes the connect identifier, locates the associated connect
descriptor, and returns the descriptor to Oracle Net.

 3. Oracle Net uses the resolved descriptor to make the connection request to the correct
listener.

The directory server uses a tree structure in which to store its data. Each node in the tree is
an entry. A hierarchical structure of entries is used, called a directory information tree (DIT), and
each entry is identified by a unique distinguished name (DN) that tells the directory server exactly
where the entry resides. DITs can be structured to use an existing Domain Name System (DNS),
organizational or geographical lines, or Internet naming scheme.

Using a DIT that is organized along organizational lines, for example, the DN for the HR server
could be this: (dn: cn=HR, cn=OracleContext, dc=us, dc=ourcompany, dc=com). The lowest
component of a DN is placed at the leftmost location of the DIT and moved progressively up
the tree. The following illustration shows the DIT for this example.

The commonly used LDAP attributes are as follows:

CommonName (cn) Common name of an entry

Country (c) Name of the country

Domain component (dc) Domain component

Organization (o) Name of organization

OrganizationalUnitName (ou) Name of unit within the organization

NOTE
The value cn=OracleContext is a special entry in the directory server
that supports directory-enabled features such as directory naming. The
Oracle Context is created using the Oracle Net Configuration Assistant
discussed earlier in this chapter.

■

■

■

■

■

Chapter 15: Oracle Net 537

Setting Up an Oracle Internet Directory
As detailed earlier, you can use the Oracle Net Configuration Assistant or the Oracle Net Manager
to perform the initial configuration tasks. Once the directory schema and Oracle Context have
been established, you can begin to register service names with the directory service using the
Oracle Net Manager. The Oracle Context area is the root of the directory subtree where all
information relevant to Oracle software is stored.

When the Oracle Context is installed, two entities are created: OracleDBCreators and
OracleNetAdmins. The OracleDBCreators entity with a DN of (cn=OracleDBCreators,
cn=OracleContext) is created. Any user who is a member of OracleDBCreators can register a
database server entry or directory client entry using the Oracle Database Configuration Assistant.
A user assigned as a member of OracleNetAdmins can create, modify, and delete net service
names and modify Oracle Net attributes of database servers using the Oracle Net Manager. If
you are a directory administrator, you can add users to these groups.

Clients who want to look up information in the directory must meet the following minimum
requirements:

They must be configured to use the directory server.

They must be able to access the Oracle Net entries in the Oracle Context.

They must have anonymous authentication with the directory server.

The clients can use the common names of database servers and net service entries to perform
the lookups, or additional directory location information may be required in the connection string.

Using Easy Connect Naming
As I mentioned earlier in this chapter, starting with Oracle Database 10g, you can use the easy
connect naming method to eliminate the need for service name files in a TCP/IP environment;
in fact, you may not need a tnsnames.ora file at all. Clients can connect to a database server by
specifying the full connection information in their connect strings, in this format as follows with
the SQL*Plus connect command:

connect username/password@[//]host[:port]
 [/service_name][/server][/instance_name]

The connection identifier elements are as follows:

Element Description

// Optional. Specify // for a URL.

Host Required. Specify the host name or the IP address.

Port Optional. Specify the port or use the default (1521).

service_name Optional. Specify the service name. The default value is the host name of
the database server.

server Optional. Also known as connect_type in OCI, specifies the type of
service handler: dedicated, shared, or pooled.

instance_name Optional. Corresponds to the INSTANCE_NAME initialization parameter.

■

■

■

538 Oracle Database 11g DBA Handbook

For example, you can connect to the LOC service with this syntax:

connect username/password@hq:1521/loc

In order to use easy connect naming, you must have Oracle Net Services 10g (or later) software
installed on your client. You must be using the TCP/IP protocol, and no features requiring a more
advanced connect descriptor are supported.

CAUTION
Oracle Database 11g clients and database no longer support the use
of Oracle Names; however, earlier versions of the client can still
use Oracle Names to resolve naming for an Oracle Database 10g
database.

For URL or JDBC connections, prefix the connect identifier with a double slash (//):

connect username/password@[//][host][:port][/service_name]

Easy connect naming is automatically configured at installation. In your sqlnet.ora file, make
sure EZCONNECT is added to the list of values in the NAME.DIRECTORY_PATH parameter
listing; the default contents of sqlnet.ora for client installations of Oracle Database 11g and later
have these two lines:

SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

In other words, when resolving service names, the Oracle client will first attempt a lookup using
the tnsnames.ora file, then use Easy Connect.

Using Database Links
You should create database links to support frequently used connections to remote databases.
Database links specify the connect descriptor to be used for a connection, and they may also
specify the username to connect to in the remote database.

A database link is typically used to create local objects (such as views or synonyms) that
access remote databases via server/server communications. The local synonyms for remote
objects provide location transparency to the local users. When a database link is referenced by a
SQL statement, it opens a session in the remote database and executes the SQL statement there.
The data is then returned, and the remote session may stay open in case it is needed again.
Database links can be created as public links (by DBAs, making the links available to all users
in the local database) or as private links.

The following example creates a private database link called HR_LINK:

create database link HR_LINK
connect to HR identified by HR
using 'loc';

The create database link command, as shown in this example, has three parameters:

The name of the link (HR_LINK, in this example)■

Chapter 15: Oracle Net 539

The account to connect to

The net service name

A public database link can be created by adding the keyword public to the create database
link command, as shown in the following example:

create public database link HR_LINK
 connect to HR identified by HR
using 'loc';

NOTE
Best practices for public database links would favor including the
using clause but not the connect to clause. You could then create a
private database link with the same name that includes the connect
to clause but not the using clause. Subsequent changes to the service
name for the data would require re-creating only the public link, while
the private links and the user passwords would be unchanged.

If the LOC instance is moved to a different server, you can redirect the database links to LOC’s
new location simply by distributing a tnsnames.ora file that contains the modification or by
revising the listing in the directory server. You can generate the revised entry for the tnsnames.ora
file or directory server by using either the Oracle Net Configuration Assistant tool or the Oracle
Net Manager, described previously in this chapter.

To use these links, simply add them as suffixes to the table names in commands. The
following example creates a local view of a remote table, using the HR_LINK database link:

create view LOCAL_EMPLOYEE_VIEW
as
select * from EMPLOYEE@HR_LINK
where Office='ANNAPOLIS';

The from clause in this example refers to EMPLOYEE@HR_LINK. Because the HR_LINK database
link specifies the server name, instance name, and owner name, the global object name for the
table is known. If no account name had been specified, the user’s account name would have
been used instead. If HR_LINK was created without a connect to clause, the current username
and password would be used to connect to the remote database.

In this example, a view was created in order to limit the records that users could retrieve. If no
such restriction is necessary, a synonym can be used instead. This is shown in the following example:

create public synonym EMPLOYEE for EMPLOYEE@HR_LINK;

Local users who query the local public synonym EMPLOYEE will automatically have their queries
redirected to the EMPLOYEE table in the LOC instance on the HQ server. Location transparency
has thus been achieved.

By default, a single SQL statement can use up to four database links. This limit can be increased
via the OPEN_LINKS parameter in the database’s SPFILE or init.ora file. If this value is set to 0, no
distributed transactions are allowed.

■

■

540 Oracle Database 11g DBA Handbook

Tuning Oracle Net
Tuning Oracle Net applications is fairly straightforward: Wherever possible, reduce the amount
of data that is sent across the network, particularly for online transaction-processing applications.
Also, reduce the number of times data is requested from the database. The basic procedures that
should be applied include the following:

The use of distributed objects, such as materialized views, to replicate static data to
remote databases.

The use of procedures to reduce the amount of data sent across the network. Rather than
data being sent back and forth, only the procedure’s error status is returned.

The use of homogenous servers wherever possible to eliminate the need for connection
managers.

For OLTP applications only, the use of shared servers to support more clients with fewer
processes.

The buffer size used by Oracle Net should take advantage of the packet sizes used by the
network protocols (such as TCP/IP). If you send large packets of data across the network, the
packets may be fragmented. Because each packet contains header information, reducing packet
fragmentation reduces network traffic.

You can tune the size of the service layer buffer. The specification for the service layer data
buffer is called SDU (Session Data Unit); if it is changed, this must be specified in your client and
server configuration files. Oracle Net builds data into buffers the size of the SDU, so altering that
size may improve your performance. The default size for the SDU is 8KB in Oracle Database 11g,
and 2KB in earlier versions. If you will frequently be sending messages that are much larger than
that, you can increase the SDU (up to a maximum of 32KB).

To configure the client to use a nondefault SDU, add the new SDU setting to the client
configuration files. For the change to apply to all connections, add the following parameter
to the sqlnet.ora file:

DEFAULT_SDU_SIZE=32767

For the change to apply to only specific service names, modify their entries in the tnsnames.
ora file:

LOC =(DESCRIPTION=
 (SDU=32767)
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

On the database server, configure the default SDU setting in the sqlnet.ora file:

DEFAULT_SDU_SIZE=32767

For shared server processes, add the SDU setting to the DISPATCHERS setting in the instance
initialization parameter file:

■

■

■

■

Chapter 15: Oracle Net 541

DISPATCHERS="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp))(SDU=32767))"

For dedicated server processes, edit the entries in the listener.ora file:

SID_LIST_listener_name=
 (SID_LIST=
 (SID_DESC=
(SDU=32767)
(SID_NAME=loc)))

Oracle Net Services provides support for the SDP protocol for Infiniband high-speed networks.
Applications using SDP place most of the messaging burden on the network interface card, thus
reducing the CPU requirements of the application. If you are using an Infiniband high-speed
network (such as for communications among your application tiers), see the Oracle documentation
for hardware and software configuration details.

Limiting Resource Usage
To limit the impact of unauthorized users on your system, you can reduce the duration for which
resources can be held prior to authentication. The time-limiting parameters listed earlier in this
chapter help to mitigate the performance problems caused by these unauthorized accesses. In the
listener.ora file, set the INBOUND_CONNECT_TIMEOUT_listener_name parameter to terminate
connections that are not authenticated by the listener within the specified time period. Failed
connections will be logged to the listener log file. In the server-side sqlnet.ora file, set the
SQLNET.INBOUND_CONNECT_TIMEOUT parameter to terminate connection attempts that
cannot establish and authenticate connections within the specified interval. Set the server-side
SQLNET.INBOUND_CONNECT_TIMEOUT parameter to a higher value than the INBOUND_
CONNECT_TIMEOUT_listener_name parameter in the listener.ora file.

Debugging Connection Problems
Oracle Net connections require that a number of communication mechanisms be properly
configured. The connections involve host-to-host communication, proper identification of
services and databases, and proper configuration of the listener server processes. In the event
of connection problems when using Oracle Net, it is important to eliminate as many of these
components as possible.

Start by making sure that the host the connection is trying to reach is accessible via the
network. This can be checked via the ssh command:

ssh host_name

If this command is successful, you will be prompted for a username and password on the
remote host. If the ping command is available to you, you may use it instead. The following
command will check to see if the remote host is available and will return a status message:

ping host_name

If the host is available on the network, the next step is to check if the listener is running; you
can use the tnsping utility provided by Oracle to verify Oracle Net connectivity to a remote
database listener. The tnsping utility has two parameters—the service name to connect to and
the number of connections to attempt. The output from tnsping will include a listing showing the
time required to connect to the remote database.

542 Oracle Database 11g DBA Handbook

For example, to determine if the Oracle database on your Linux server identified by the dw
service name in your local tnsnames.ora file is accessible from a Windows client, use the tnsping
command as follows:

C:\> tnsping dw

TNS Ping Utility for 32-bit Windows:
 Version 11.1.0.4.0 - Beta on 08-AUG-2007 21:39:42

Copyright (c) 1997, 2006, Oracle. All rights reserved.

Used parameter files:
C:\app\Administrator\product\11.1.0\client_1\network\admin\sqlnet.ora

Used EZCONNECT adapter to resolve the alias
Attempting to contact (DESCRIPTION=(CONNECT_DATA=(SERVICE_NAME=))
 (ADDRESS=(PROTOCOL=TCP)(HOST=192.168.2.95)(PORT=1521)))

OK (0 msec)
C:\>

Note how tnsping under Windows used Easy Connect to obtain the TCP/IP address of the
server dw, filled in default values, and located the Oracle instance DW on the Linux server
successfully.

In addition to tnsping, you can use the trcroute utility to discover the path a connection takes
to a remote database. The trcroute utility (similar to the Linux utility traceroute) reports on the
TNS addresses of every node it travels through and reports any errors that occur. The command
format is as follows:

trcroute net_service_name

In client/server communications, the same principles for debugging connection problems
apply. First, verify that the remote host is accessible; most communications software for clients
includes a telnet or ping command. If the remote host is not accessible, the problem may be on
the client side. Verify that other clients are able to access the host on which the database resides.
If they can, the problem is isolated to the client. If they cannot, the problem lies on the server
side, and the server, its listener processes, and its database instances should be checked.

CHAPTER
16

Managing Large Databases

543

544 Oracle Database 11g DBA Handbook

n Chapter 6, we talked about bigfile tablespaces and how they not only allow the
total size of the database to be much larger than in previous versions of Oracle, but
also ease administration by moving the maintenance point from the datafile to the
tablespace.

In Chapter 4, I presented an overview of Automatic Storage Management (ASM) and how it
can ease administration, enhance performance, and improve availability. The DBA can add one
or more disk volumes to a rapidly growing VLDB (Very Large Database) without bringing down
the instance.

In this chapter, we’ll revisit many of these database features, but with an emphasis on how
they can be leveraged in a VLDB environment. Although these features surely provide benefits in
all Oracle installations, they are especially useful in databases whose most heavily used resource
is the amount of disk space allocated. First, we’ll review the concepts behind bigfile tablespaces
and delve more deeply into how they are constructed using a new ROWID format. I’ll also show
how transportable tablespaces are a distinct advantage in a VLDB environment because they
bypass some of the export/import steps required in versions prior to Oracle9i to move the contents
of a tablespace from one database to another. When tablespaces in a VLDB environment approach
the exabyte size, both the extra space required for a traditional export and import operation and
the time it takes to perform the export may become prohibitive. If you are using Oracle 11g, your
tablespaces may even be transportable between different hardware and software platforms with
minimal or no extra effort.

Next, we will review the various types of nontraditional (non-heap-based) tables that are often
leveraged in a VLDB environment. Index-organized tables (IOTs) combine the best features of a
traditional table with the fast access of an index into one segment; we’ll review some examples
of how IOTs can now be partitioned in Oracle 11g. Global temporary tables dramatically reduce
space usage in the undo tablespace and redo logs for recovery purposes because the table contents
only persist for the duration of a transaction or a session. External tables make it easy to access
data in a non-Oracle format as if the data was in a table; as of Oracle 10g, external tables can be
created using Oracle Data Pump, covered at the end of this chapter. Finally, the amount of space
occupied by a table can be dramatically reduced by using an internal compression algorithm
when the rows are loaded using direct-path SQL*Loader and create table as select statements.

Table and index partitioning not only improves query performance but tremendously improves
the manageability of tables in a VLDB environment by allowing you to perform maintenance
operations on one partition while users may be accessing other partitions of the table. We will
cover all the different types of partitioning schemes, including some of the new partitioning features
in Oracle 10g: hash-partitioned global indexes, list-partitioned IOTs, and LOB support in all types
of partitioned IOTs. Oracle 11g brings even more partitioning options to the table: composite list-
hash, list-list, list-range, and range-range. Other new partitioning schemes in Oracle Database 11g
include automated interval partitioning, reference partitioning, application-controlled partitioning,
and virtual column partitioning.

Bitmap indexes, available since Oracle 7.3, provide query benefits not only for tables with
columns of low cardinality, but also for special indexes called bitmap join indexes that pre-join
two or more tables on one or more columns. Oracle 10g removes one of the remaining obstacles
for using bitmap indexes in a heavy, single-row insert, update, or delete environment: mitigating
performance problems due to bitmap index fragmentation issues.

Oracle Data Pump, new to Oracle 10g, picks up where the traditional import and export
functions leave off. One of many features supported by Oracle Data Pump performs export
directly to another instance; in addition, most Data Pump operations occur on the server side
instead of the client side.

I

Chapter 16: Managing Large Databases 545

Creating Tablespaces in a VLDB Environment
The considerations for creating tablespaces in a small database (terabyte range or smaller) also
apply to VLDBs: Spread out I/O across multiple devices, use a logical volume manager (LVM)
with RAID capabilities, or use ASM. In this section, I will present more detail and examples for
bigfile tablespaces. Because a bigfile tablespace contains only one datafile, the ROWID format
for objects stored in a bigfile tablespace is different, allowing for a tablespace size as large as
eight million terabytes, depending on the tablespace’s block size.

Bigfile tablespaces are best suited for an environment that uses ASM, Oracle-Managed Files
(OMF), and Recovery Manager (RMAN) with a flash recovery area. See Chapter 4 for a detailed
review of ASM; Chapter 12 presents RMAN from a command-line and EM Database Control
perspective and leverages the flash recovery area for all backups. Finally, Chapter 6 describes
OMF from a space-management perspective.

In the next few sections, I will present an in-depth look at creating a bigfile tablespace and
specifying its characteristics; in addition, we will discuss the impact of bigfile tablespaces on both
initialization parameters and data dictionary views. Finally, I will show you how the dbverify utility
has been revised in Oracle 10g to allow you to analyze a single bigfile datafile using parallel
processes.

Bigfile Tablespace Basics
Using bigfile tablespaces with a block size of 32K, a datafile can be as large as 128 terabytes,
with a maximum database size of 8 exabytes (EB). In contrast, a database using only smallfile
tablespaces can have a maximum datafile size of 128 gigabytes (GB) and therefore a maximum
database size of 8 petabytes (PB). Because a bigfile tablespace can only have one datafile, you
never need to decide whether to add a datafile or autoextend the single datafile for the tablespace.
If you are using ASM and OMF, you won’t even need to know the name of the single datafile.

Given that the maximum number of datafiles in a database on most platforms is 65,533, and
the number of blocks in a bigfile tablespace datafile is 232, you can calculate the maximum amount
of space (M) in a single Oracle database as the maximum number of datafiles (D) multiplied by the
maximum number of blocks per datafile (F) multiplied by the tablespace block size (B):

M = D * F * B

Therefore, the maximum database size, given the maximum block size and the maximum number
of datafiles, is

65,533 datafiles * 4,294,967,296 blocks per datafile * 32,768 block size =
9,223,231,299,366,420,480 = 8EB

For a smallfile tablespace, the number of blocks in a smallfile tablespace datafile is only 222.
Therefore, our calculation yields

65,535 datafiles * 4,194,304 blocks per datafile * 32,768 block size =
9,007,061,815,787,520 = 8PB

In Table 16-1, you can see a comparison of maximum datafile sizes for smallfile tablespaces
and bigfile tablespaces given the tablespace block size. If for some reason your database size
approaches eight exabytes, you may want to consider either some table archiving or splitting the
database into multiple databases based on function. With even the largest commercial Oracle
databases in the petabyte (PB) range in 2007, you may very well not bump up against the 8EB
limit any time in the near future!

546 Oracle Database 11g DBA Handbook

Creating and Modifying Bigfile Tablespaces
Here is an example of creating a bigfile tablespace in a non-ASM environment:

SQL> create bigfile tablespace dmarts
 2 datafile '+DATA' size 2500g
 3 autoextend on next 500g maxsize unlimited
 4 extent management local autoallocate
 5 segment space management auto;

Tablespace created.

In the example, you can see that extent management and segment space management are
explicitly set, even though auto is the default for segment space management; bigfile tablespaces
must be created as locally managed with automatic segment space management. Because the
default allocation policy for both bigfile and smallfile tablespaces is autoallocate, you don’t
need to specify it either. As a rule of thumb, autoallocate is best for tablespaces whose table
usage and growth patterns are indeterminate; as I’ve pointed out in Chapter 5, you use uniform
extent management only if you know the precise amount of space you need for each object in
the tablespace as well as the number and size of extents.

Even though the datafile for this bigfile tablespace is set to autoextend indefinitely, the disk
volume where the datafile resides may be limited in space; when this occurs, the tablespace may
need to be relocated to a different disk volume. Therefore, you can see the advantages of using
ASM: You can easily add another disk volume to the disk group where the datafile resides, and
Oracle will automatically redistribute the contents of the datafile and allow the tablespace to
grow—all of this occurring while the database (and the tablespace itself) is available to users.

By default, tablespaces are created as smallfile tablespaces; you can specify the default tablespace
type when the database is created or at any time with the alter database command, as in this example:

SQL> alter database set default bigfile tablespace;
Database altered.

Bigfile Tablespace ROWID Format
To facilitate the larger address space for bigfile tablespaces, a new extended ROWID format is
used for rows of tables in bigfile tablespaces. First, we will review the ROWID format for smallfile
tablespaces in previous versions of Oracle and for Oracle 11g. The format for a smallfile ROWID
consists of four parts:

OOOOOO FFF BBBBBB RRR

Tablespace Block Size Maximum Smallfile Datafile Size Maximum Bigfile Datafile Size

2K 8GB 8TB

4K 16GB 16TB

8K 32GB 32TB

16K 64GB 64TB

32K 128GB 128TB

TABLE 16-1 Maximum Tablespace Datafile Sizes

Chapter 16: Managing Large Databases 547

Table 16-2 defines each part of a smallfile ROWID.
In contrast, a bigfile tablespace only has one datafile, and its relative datafile number is always

1024. Because the relative datafile number is fixed, it is not needed as part of the ROWID; as a
result, the part of the ROWID used for the relative datafile number can be used to expand the size
of the block number field. The concatenation of the smallfile relative datafile number (FFF) and
the smallfile datablock number (BBBBBB) results in a new construct called an encoded block
number. Therefore, the format for a bigfile ROWID consists of only three parts:

OOOOOO LLLLLLLLL RRR

Table 16-3 defines each part of a bigfile ROWID.

DBMS_ROWID and Bigfile Tablespaces
Because two different types of tablespaces can now coexist in the database along with their
corresponding ROWID formats, some changes have occurred to the DBMS_ROWID package.

The names of the procedures in the DBMS_ROWID package are the same and operate as
before, except for a new parameter, TS_TYPE_IN, which identifies the type of tablespace to which
a particular row belongs: TS_TYPE_IN can be either BIGFILE or SMALLFILE.

Smallfile ROWID Component Definition

OOOOOO Data object number identifying the database segment
(such as table, index, or materialized view)

FFF Relative datafile number within the tablespace of the
datafile that contains the row

BBBBBB The data block containing the row, relative to the datafile

RRR Slot number, or row number, of the row inside a block

TABLE 16-2 Smallfile ROWID Format

Bigfile ROWID Component Definition

OOOOOO Data object number identifying the database segment
(such as table, index, or materialized view)

LLLLLLLLL Encoded block number, relative to the tablespace and
unique within the tablespace

RRR Slot number, or row number, of the row inside a block

TABLE 16-3 Bigfile ROWID Format

548 Oracle Database 11g DBA Handbook

For an example of extracting ROWIDs from a table in a bigfile tablespace, we have a table
called OE.ARCH_ORDERS in a bigfile tablespace named DMARTS:

SQL> select tablespace_name, bigfile from dba_tablespaces
 2 where tablespace_name = 'DMARTS';

TABLESPACE_NAME BIG
------------------------------ ---
DMARTS YES

As with tables in smallfile tablespaces in previous versions of Oracle and Oracle 11g, you
can use the pseudo-column ROWID to extract the entire ROWID, noting that the format of the
ROWID is different for bigfile tables, even though the length of the ROWID stays the same. This
query will also extract the block number in decimal format:

SQL> select rowid,
 2 dbms_rowid.rowid_block_number(rowid,'BIGFILE') blocknum,
 3 order_id, customer_id
 4 from oe.arch_orders
 5 where rownum < 11;

ROWID BLOCKNUM ORDER_ID CUSTOMER_ID
------------------ ---------- ---------- -----------
AAASAVAAAAAAAAUAAA 20 2458 101
AAASAVAAAAAAAAUAAB 20 2397 102
AAASAVAAAAAAAAUAAC 20 2454 103
AAASAVAAAAAAAAUAAD 20 2354 104
AAASAVAAAAAAAAUAAE 20 2358 105
AAASAVAAAAAAAAUAAF 20 2381 106
AAASAVAAAAAAAAUAAG 20 2440 107
AAASAVAAAAAAAAUAAH 20 2357 108
AAASAVAAAAAAAAUAAI 20 2394 109
AAASAVAAAAAAAAUAAJ 20 2435 144

10 rows selected.

For the row with the ORDER_ID of 2358, the data object number is AAASAV, the encoded
block number is AAAAAAAAU, and the row number of the row, or slot, in the block is AAE; the
translated decimal block number is 20.

NOTE
ROWIDs use base-64 encoding.

The other procedures in the DBMS_ROWID package that use the variable TS_TYPE_IN to
specify the tablespace type are ROWID_INFO and ROWID_RELATIVE_FNO.

The procedure ROWID_INFO returns five attributes for the specified ROWID via output
parameters. In Table 16-4 you can see the parameters of the ROWID_INFO procedure.

Chapter 16: Managing Large Databases 549

In the following example, we’ll use an anonymous PL/SQL block to extract the values for
OBJECT_NUMBER, RELATIVE_FNO, BLOCK_NUMBER, and ROW_NUMBER for a row in the
table OE.ARCH_ORDERS:

variable object_number number
variable relative_fno number
variable block_number number
variable row_number number

declare
 oe_rownum rowid;
 rowid_type number;
begin
 select rowid into oe_rownum from oe.arch_orders
 where order_id = 2358 and rownum = 1;
 dbms_rowid.rowid_info (rowid_in => oe_rownum,
 ts_type_in => 'BIGFILE',
 rowid_type => rowid_type,
 object_number => :object_number,
 relative_fno => :relative_fno,
 block_number => :block_number,
 row_number => :row_number);
end;

PL/SQL procedure successfully completed.

SQL> print

OBJECT_NUMBER

 73749

ROWID_INFO Parameter Description

ROWID_IN ROWID to be described

TS_TYPE_IN Tablespace type (SMALLFILE or BIGFILE)

ROWID_TYPE Returns ROWID type (restricted or extended)

OBJECT_NUMBER Returns data object number

RELATIVE_FNO Returns relative file number

BLOCK_NUMBER Returns block number in this file

ROW_NUMBER Returns row number in this block

TABLE 16-4 ROWID_INFO Parameters

550 Oracle Database 11g DBA Handbook

RELATIVE_FNO

 1024

BLOCK_NUMBER

 20

ROW_NUMBER

 4

SQL>

Note that the return value for RELATIVE_FNO is always 1024 for a bigfile tablespace, and
the BLOCK_NUMBER is 20, as you saw in the previous example that used the DBMS_ROWID.
ROWID_BLOCK_NUMBER function.

Using DBVERIFY with Bigfile Tablespaces
The DBVERIFY utility, available since Oracle version 7.3, checks the logical integrity of an offline
database. The files can only be datafiles; DBVERIFY cannot analyze online redo log files or archived
redo log files. In previous versions of Oracle, DBVERIFY could analyze all of a tablespace’s datafiles
in parallel by spawning multiple DBVERIFY commands. However, because a bigfile tablespace has
only one datafile, DBVERIFY has been enhanced to analyze parts of a bigfile tablespace’s datafiles
in parallel.

Using the dbv command at the Unix or Windows prompt, you can use two new parameters:
START and END, representing the first and last block, respectively, of the file to analyze. As a
result, you need to know how many blocks are in the bigfile tablespace’s datafile; the dynamic
performance view V$DATAFILE comes to the rescue, as you can see in the following example:

SQL> select file#, blocks, name from v$datafile;

 FILE# BLOCKS NAME
---------- ---------- --
 1 96000 +DATA/dw/datafile/system.256.630244579
 2 109168 +DATA/dw/datafile/sysaux.257.630244581
 3 7680 +DATA/dw/datafile/undotbs1.258.630244583
 4 640 +DATA/dw/datafile/users.259.632441707
 5 12800 +DATA/dw/datafile/example.265.630244801
 6 64000 +DATA/dw/datafile/users_crypt.267.630456963
 7 12800 +DATA/dw/datafile/inet_star.268.632004213
 8 6400 +DATA/dw/datafile/inet_intl_star.269.632009933
 9 6400 /u02/oradata/xport_dw.dbf
 10 3200 +DATA/dw/datafile/dmarts.271.633226419

10 rows selected.

In the next example, you will see how to analyze datafile #9, the datafile for another bigfile
tablespace in our database, XPORT_DW. At the operating system command prompt, you can
analyze the file with five parallel processes, each processing 500 blocks, except for the last one:

Chapter 16: Managing Large Databases 551

$ dbv file=/u02/oradata/xport_dw.dbf start=1 end=1500 &
[1] 6444
$ dbv file=/u02/oradata/xport_dw.dbf start=1501 end=3000 &
[2] 6457
$ dbv file=/u02/oradata/xport_dw.dbf start=3001 end=4500 &
[2] 6466
$ dbv file=/u02/oradata/xport_dw.dbf start=4501 end=6000 &
[2] 6469
$ dbv file=/u02/oradata/xport_dw.dbf start=6001 &
[5] 6499

In the fifth command, we did not specify end=; if you do not specify end=, it is assumed that
you will be analyzing the datafile from the starting point to the end of the file. All five of these
commands run in parallel. The output from these commands looks similar to the following:

DBVERIFY: Release 11.1.0.6.0 -
 Production on Sat Sep 15 15:15:42 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

DBVERIFY - Verification starting : FILE = /u02/oradata/xport_dw.dbf

DBVERIFY - Verification complete

Total Pages Examined : 1500
Total Pages Processed (Data) : 1476
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 0
Total Pages Failing (Index): 0
Total Pages Processed (Other): 24
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 0
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Total Pages Encrypted : 0
Highest block SCN : 4464912 (0.4464912)

Bigfile Tablespace Initialization Parameter Considerations
Although there are no new initialization parameters specific to bigfile tablespaces, the values of
one initialization parameter and a create database parameter can potentially be reduced because
only one datafile is needed for each bigfile tablespace. The initialization parameter is DB_FILES,
and the create database parameter is MAXDATAFILES.

DB_FILES and Bigfile Tablespaces
As you already know, DB_FILES is the maximum number of datafiles that can be opened for this
database. If you use bigfile tablespaces instead of smallfile tablespaces, the value of this parameter
may be lower; as a result, because there are fewer datafiles to maintain, memory requirements are
lower in the System Global Area (SGA).

552 Oracle Database 11g DBA Handbook

MAXDATAFILES and Bigfile Tablespaces
When creating a new database or a new control file, you can use the MAXDATAFILES parameter
to control the size of the control file section allocated to maintain information about datafiles.
Using bigfile tablespaces, you can make the size of the control file and the space needed in the
SGA for datafile information smaller; more importantly, the same value for MAXDATAFILES using
bigfile tablespaces means that the total database size can be larger.

Bigfile Tablespace Data Dictionary Changes
The changes to data dictionary views due to bigfile tablespaces include a new row in DATABASE_
PROPERTIES and a new column in DBA_TABLESPACES and USER_TABLESPACES.

DATABASE_PROPERTIES and Bigfile Tablespaces
The data dictionary view DATABASE_PROPERTIES, as the name implies, contains a number of
characteristics about the database, such as the names of the default and permanent tablespaces
and various NLS settings. Because of bigfile tablespaces, there is a new property in DATABASE_
PROPERTIES called DEFAULT_TBS_TYPE that indicates the default tablespace type for the
database if no type is specified in a create tablespace command. In the following example,
you can find out the default new tablespace type:

SQL> select property_name, property_value, description
 2 from database_properties
 3 where property_name = 'DEFAULT_TBS_TYPE';

PROPERTY_NAME PROPERTY_VALUE DESCRIPTION
------------------ ---------------- ------------------------
DEFAULT_TBS_TYPE BIGFILE Default tablespace type

1 row selected.

*_TABLESPACES, V$TABLESPACE, and Bigfile Tablespaces
The data dictionary views DBA_TABLESPACES and USER_TABLESPACES have a new column
called BIGFILE. The value of this column is YES if the corresponding tablespace is a bigfile
tablespace, as you saw in the query against DBA_TABLESPACES earlier in this chapter. The
dynamic performance view V$TABLESPACE also contains this column.

Advanced Oracle Table Types
Many other table types provide benefits in a VLDB environment. Index-organized tables, for
example, eliminate the need for both a table and its corresponding index, replacing them with
a single structure that looks like an index but contains data like a table. Global temporary tables
create a common table definition available to all database users; in a VLDB, a global temporary
table shared by thousands of users is preferable to each user creating their own definition of the
table, potentially putting further space pressure on the data dictionary. External tables allow you
to use text-based files outside of the database without actually storing the data in an Oracle table.
Partitioned tables, as the name implies, store tables and indexes in separate partitions to keep the
availability of the tables high while keeping maintenance time low. Finally, materialized views
preaggregate query results from a view and store the query results in a local table; queries that
use the materialized view may run significantly faster because the results from executing the view

Chapter 16: Managing Large Databases 553

do not need to be re-created. We will cover all these table types to varying levels of detail in the
following sections.

Index-Organized Tables
You can store index and table data together in a table known as an index-organized table (IOT).
Significant reductions in disk space are achieved with IOTs because the indexed columns are not
stored twice (once in the table and once in the index); instead, they are stored once in the IOT
along with any non-indexed columns. IOTs are suitable for tables where the primary access
method is through the primary key, although creating indexes on other columns of the IOT is
allowed to improve access by those columns.

In the following example, you will create an IOT with a two-part (composite) primary key:

create table oe.sales_summ_by_date
(sales_date date,
 dept_id number,
 total_sales number(18,2),
 constraint ssbd_pk primary key
 (sales_date, dept_id))
organization index tablespace xport_dw;

Each entry in the IOT contains a date, a department number, and a total sales amount for the
day. All three of these columns are stored in each IOT row, but the IOT is built based on only the
date and department number. Only one segment is used to store an IOT; if you build a secondary
index on this IOT, a new segment is created.

Because the entire row in an IOT is stored as the index itself, there is no ROWID for each
row; the primary key identifies the rows in an IOT. Instead, Oracle creates logical ROWIDs
derived from the value of the primary key; the logical ROWID is used to support secondary
indexes on the IOT.

No special syntax is required to use an IOT; although it is built and maintained much like an
index, it appears as a table to any SQL select statement or other DML statements. Also, IOTs can
be partitioned; information about partitioning IOTs is presented later in this chapter, in the section
“Partitioned Index-Organized Tables.”

Global Temporary Tables
Temporary tables have been available since Oracle8i. They are temporary in the sense of the data
that is stored in the table, not in the definition of the table itself. The command create global
temporary table creates a temporary table; all users who have permissions on the table itself can
perform DML on a temporary table. However, each user sees their own and only their own data
in the table. When a user truncates a temporary table, only the data that they inserted is removed
from the table. Global temporary tables are useful in situations where a large number of users
need a table to hold temporary data for their session or transaction, while only needing one
definition of the table in the data dictionary. Global temporary tables have the added advantage
of reducing the need for redo or undo space for the entries in the table in a recovery scenario. The
entries in a global temporary table, by their nature, are not permanent and therefore do not need
to be recovered during instance or media recovery.

There are two different flavors of temporary data in a temporary table: temporary for the
duration of the transaction, and temporary for the duration of the session. The longevity of the
temporary data is controlled by the on commit clause; on commit delete rows removes all rows

554 Oracle Database 11g DBA Handbook

from the temporary table when a commit or rollback is issued, and on commit preserve rows
keeps the rows in the table beyond the transaction boundary. However, when the user’s session
is terminated, all of the user’s rows in the temporary table are removed.

In the following example, you create a global temporary table to hold some intermediate
totals for the duration of the transaction. Here is the SQL command to create the table:

SQL> create global temporary table subtotal_hrs
 2 (emp_id number,
 3 proj_hrs number)
 4 on commit delete rows;

Table created.

For the purposes of this example, you will create a permanent table that holds the total hours
by employee by project for a given day. Here is the SQL command for the permanent table:

SQL> create table total_hours (emp_id number, wk_dt date, tot_hrs number);

In the following scenario, you will use the global temporary table to keep the intermediate
results, and at the end of the transaction, store the totals in the TOTAL_HOURS table. Here is the
sequence of commands:

SQL> insert into subtotal_hrs values (101, 20);
1 row created.

SQL> insert into subtotal_hrs values (101, 10);
1 row created.

SQL> insert into subtotal_hrs values (120, 15);
1 row created.

SQL> select * from subtotal_hrs;

 EMP_ID PROJ_HRS
---------- ----------
 101 20
 101 10
 120 15

SQL> insert into total_hours
 2 select emp_id, sysdate, sum(proj_hrs) from subtotal_hrs
 3 group by emp_id;
2 rows created.

SQL> commit;
Commit complete.

SQL> select * from subtotal_hrs;
no rows selected

SQL> select * from total_hours;

Chapter 16: Managing Large Databases 555

 EMP_ID WK_DT TOT_HRS
---------- --------- ----------
 101 19-AUG-04 30
 120 19-AUG-04 15

SQL>

Notice that after the commit, the rows are retained in TOTAL_HOURS but are not retained in
SUBTOTAL_HRS because we specified on commit delete rows when we created the table.

NOTE
DDL can be performed on a global temporary table as long as there are
no sessions currently inserting rows into the global temporary table.

There are a few other things to keep in mind when using temporary tables. Although you can
create an index on a temporary table, the entries in the index are dropped along with the data
rows, as with a regular table. Also, due to the temporary nature of the data in a temporary table,
no recovery-related redo information is generated for DML on temporary tables; however, undo
information is created in the undo tablespace and redo information to protect the undo. If all you
do is insert and select from your global temporary tables, very little redo is generated. Because the
table definition itself is not temporary, it persists between sessions until it is explicitly dropped.

External Tables
Sometimes you want to access data that resides outside of the database in a text format, but
|you want to use it as if it were a table in the database. Although you could use a utility such as
SQL*Loader to load the table into the database, the data may be quite volatile or your user base’s
expertise might not include executing SQL*Loader at the Windows or Unix command line.

To address these needs, you can use external tables, which are read-only tables whose
definition is stored within the database but whose data stays external to the database. There are a
few drawbacks to using external tables: You cannot index external tables, and you cannot execute
update, insert, and delete statements against an external table. However, in a data warehouse
environment where an external table is read in its entirety for a merge operation with an existing
table, these drawbacks do not apply.

You might use an external table to gather employee suggestions in a web-based front end that
does not have access to the production database; in this example, you will create an external
table that references a text-based file containing two fields: the employee ID and the comment.

First, you must create a directory object to point to the operating system directory where the
text file is stored. In this example, you will create the directory EMPL_COMMENT_DIR to reference
a directory on the Unix file system, as follows:

SQL> create directory empl_comment_dir as
 2 '/u10/Employee_Comments';
Directory created.

The text file in this directory is called empl_sugg.txt, and it looks like this:

$ cat empl_sugg.txt
101, The cafeteria serves lousy food.
138, We need a raise.

556 Oracle Database 11g DBA Handbook

112, There are not enough bathrooms in Building 5.
138, I like the new benefits plan.
$

Because this text file has two fields, you will create the external table with two columns, the
first being the employee number and the second being the text of the comments. Here is the
create table command:

SQL> create table empl_sugg
 2 (employee_id number,
 3 empl_comment varchar2(250))
 4 organization external
 5 (type oracle_loader
 6 default directory empl_comment_dir
 7 access parameters
 8 (records delimited by newline
 9 fields terminated by ','
 10 (employee_id char,
 11 empl_comment char)
 12)
 13 location('empl_sugg.txt')
 14);
Table created.
SQL>

The first three lines of the command look like a standard create table command. The organization
external clause specifies that this table’s data is stored external to the database. Using the oracle_
loader clause specifies the access driver to create and load an external table as read-only. The file
specified in the location clause, empl_sugg.txt, is located in the Oracle directory empl_comment_
dir, which you created earlier. The access parameters specify that each row of the table is on its
own line in the text file and that the fields in the text file are separated by a comma.

NOTE
Using an access driver of oracle_datapump instead of oracle_loader
allows you to unload your data to an external table; other than this initial
unload, the external table is accessible for read access only through
the oracle_datapump access driver and has the same restrictions as an
external table created with the oracle_loader access driver.

Once the table is created, the data is immediately accessible in a select statement, as if it had
been loaded into a real table, as you can see in this example:

SQL> select * from empl_sugg;

EMPLOYEE_ID EMPL_COMMENT
----------- --
 101 The cafeteria serves lousy food.
 138 We need a raise.
 112 There are not enough bathrooms in Building 5.
 138 I like the new benefits plan.

SQL>

Chapter 16: Managing Large Databases 557

Any changes made to the text file will automatically be available the next time you execute
the select statement.

Partitioned Tables
In a VLDB environment, partitioned tables help to make the database more available and
maintainable. A partitioned table is split up into more manageable pieces, called partitions, and
can be further subdivided into subpartitions. The corresponding indexes on partitioned tables can
be nonpartitioned, partitioned the same way as the table, or partitioned differently from the table.

Partitioned tables can also improve the performance of the database: Each partition of a
partitioned table can be accessed using parallel execution. Multiple parallel execution servers can
be assigned to different partitions of the table or to different index partitions.

For performance reasons, each partition of a table can and should reside in its own tablespace.
Other attributes of a partition, such as storage characteristics, can differ; however, the column
datatypes and constraints for each partition must be identical. In other words, attributes such as
datatype and check constraints are at the table level, not the partition level. Other advantages of
storing partitions of a partitioned table in separate tablespaces include the following:

It reduces the possibility of data corruption in more than one partition if one tablespace is
damaged.

Each partition can be backed up and recovered independently.

You have more control of partition–to–physical device mapping to balance the I/O load.
Even in an ASM environment, you could place each partition in a different disk group; in
general, however, Oracle recommends two disk groups, one for user data and the other
for flashback and recovery data.

Partitioning is transparent to applications, and no changes to SQL statements are required
to take advantage of partitioning. However, in situations where specifying a partition would be
advantageous, you can specify both the table name and the partition name in a SQL statement;
this improves both parse and select performance. Examples of syntax using explicit partition
names in a select statement are found later in this chapter, in the section “Splitting, Adding,
and Dropping Partitions.”

Creating Partitioned Tables
Several methods of partitioning are available in the Oracle database, and some of these are new
to Oracle 10g, such as list-partitioned index-organized tables (IOTs); other methods are new to
Oracle 11g, such as composite list-hash, list-list, list-range, and range-range partitioning. In the
next few sections, we’ll cover the basics of range partitioning, hash partitioning, list partitioning,
six types of composite partitioning, as well as interval partitioning, reference partitioning,
application-controlled partitioning, and virtual column partitioning. I’ll also show you how
to selectively compress partitions within the table to save on I/O and disk space.

Using Range Partitioning Range partitioning is used to map rows to partitions based on ranges
of one or more columns in the table being partitioned. Also, the rows to be partitioned should be
fairly evenly distributed among each partition, such as by months of the year or quarter. If the
column being partitioned is skewed (for example, by population within each state code), another
partitioning method may be more appropriate.

■

■

■

558 Oracle Database 11g DBA Handbook

To use range partitioning, you must specify the following three criteria:

Partitioning method (range)

Partitioning column or columns

Bounds for each partition

In the following example, you want to partition the catalog request table CAT_REQ by season,
resulting in a total of four partitions per year:

create table cat_req
 (cat_req_num number not null,
 cat_req_dt date not null,
 cat_cd number not null,
 cust_num number null,
 req_nm varchar2(50),
 req_addr1 varchar2(75),
 req_addr2 varchar2(75),
 req_addr3 varchar2(75))
partition by range (cat_req_dt)
 (partition cat_req_spr_2007
 values less than (to_date('20070601','YYYYMMDD'))
 tablespace prd01,
 partition cat_req_sum_2007
 values less than (to_date('20070901','YYYYMMDD'))
 tablespace prd02,
 partition cat_req_fal_2007
 values less than (to_date('20071201','YYYYMMDD'))
 tablespace prd03,
 partition cat_req_win_2008
 values less than (maxvalue)
 tablespace prd04);

In the preceding example, the partitioning method is range, the partitioning column is REQ_
DATE, and the values less than clause specifies the upper bound that corresponds to the dates for
each season of the year: March through May (partition CAT_REQ_SPR_2007), June through August
(partition CAT_REQ_SUM_2007), September through November (partition CAT_REQ_FAL_2007),
and December through February (partition CAT_REQ_WIN_2008). Each partition is stored in its
own tablespace—either PRD01, PRD02, PRD03, or PRD04.

You use maxvalue to catch any date values after 12/1/2007; if you had specified to_date(‘200
80301’,’YYYYMMDD’) as the upper bound for the fourth partition, then any attempt to insert rows
with date values after 2/28/2008 would fail. On the other hand, any rows inserted with dates
before 6/1/2007 would end up in partition CAT_REQ_SPR_2007, even rows with a catalog
request date of 10/1/1963! This is one case where the front-end application may provide some
assistance in data verification, both at the low end and the high end of the date range.

The data dictionary view DBA_TAB_PARTITIONS shows you the partition components of the
CAT_REQ table, as you can see in the following query:

SQL> select table_owner, table_name,
 2 partition_name, tablespace_name
 3 from dba_tab_partitions

■

■

■

Chapter 16: Managing Large Databases 559

 4 where table_name = 'CAT_REQ';

TABLE_OWNER TABLE_NAME PARTITION_NAME TABLESPACE_NAME
--------------- ------------ -------------------- ---------------
OE CAT_REQ CAT_REQ_FAL_2007 PRD03
OE CAT_REQ CAT_REQ_SPR_2007 PRD01
OE CAT_REQ CAT_REQ_SUM_2007 PRD02
OE CAT_REQ CAT_REQ_WIN_2008 PRD04

4 rows selected.

Finding out the dates used in the values less than clause when the partitioned table was
created can be done in the same data dictionary view, as you can see in the following query:

SQL> select partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ';

PARTITION_NAME HIGH_VALUE
-------------------- --
CAT_REQ_FAL_2007 TO_DATE(' 2007-12-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SPR_2007 TO_DATE(' 2007-06-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SUM_2007 TO_DATE(' 2007-09-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_WIN_2008 MAXVALUE

4 rows selected.

In a similar fashion, you can use the data dictionary view DBA_PART_KEY_COLUMNS to find
out the columns used to partition the table, as in the following example:

SQL> select owner, name, object_type, column_name,
 2 column_position from DBA_PART_KEY_COLUMNS
 3 where owner = 'OE' and name = 'CAT_REQ';

OWNER NAME OBJECT_TYPE COLUMN_NAME COL
--------- ------------- -------------- --------------- ---
OE CAT_REQ TABLE CAT_REQ_DT 1

1 row selected.

I will show you how to modify the partitions of a partitioned table later in this chapter, in the
section “Managing Partitions.”

560 Oracle Database 11g DBA Handbook

Using Hash Partitioning Hash partitioning is a good option if the distribution of your data does
not easily fit into a range partitioning scheme or the number of rows in the table is unknown, but
you otherwise want to take advantage of the benefits inherent in partitioned tables. Rows are
evenly spread out to two or more partitions based on an internal hashing algorithm using the
partition key as input. The more distinct the values are in the partitioning column, the better
the distribution of rows across the partitions.

To use hash partitioning, you must specify the following three criteria:

Partitioning method (hash)

Partitioning column or columns

The number of partitions and a list of target tablespaces in which to store the partitions

For this example, you are creating a new customer table whose primary key is generated using
a sequence. You want the new rows to be evenly distributed across four partitions; therefore, hash
partitioning would be the best choice. Here is the SQL you use to create a hash-partitioned table:

create table oe.cust
 (cust_num number not null primary key,
 ins_dt date,
 first_nm varchar2(25),
 last_nm varchar2(35),
 mi char(1),
 addr1 varchar2(40),
 addr2 varchar2(40),
 city varchar2(40),
 state_cd char(2),
 zip_cd varchar2(10))
partition by hash (cust_num)
partitions 4
store in (prd01, prd02, prd03, prd04);

You do not necessarily have to specify the same number of partitions as tablespaces; if you
specify more partitions than tablespaces, the tablespaces are reused for subsequent partitions in a
round-robin fashion. If you specify fewer partitions than tablespaces, the extra tablespaces at the
end of the tablespace list are ignored.

If you run the same queries that you ran for range partitioning, you may find some unexpected
results, as you can see in this query:

SQL> select partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE_NAME HIGH_VALUE
-------------------- --------------- --------------------
SYS_P1130 PRD01
SYS_P1131 PRD02
SYS_P1132 PRD03
SYS_P1133 PRD04

4 rows selected.

Because you are using hash partitioning, the HIGH_VALUE column is NULL.

■

■

■

Chapter 16: Managing Large Databases 561

TIP
Oracle strongly recommends that the number of partitions in a hash
partitioned table be to a power of 2 to get an even distribution of rows
in each table; Oracle uses the low order bits of the partition key to
determine the destination partition for the row.

Using List Partitioning List partitioning gives you explicit control of how each value in the
partitioning column maps to a partition by specifying discrete values from the partitioning column.
Range partitioning is usually not suitable for discrete values that do not have a natural and
consecutive range of values, such as state codes. Hash partitioning is not suitable for assigning
discrete values to a particular partition because, by its nature, a hash partition may map several
related discrete values into different partitions.

To use list partitioning, you must specify the following three criteria:

Partitioning method (list)

Partitioning column

Partition names, with each partition associated with a discrete list of literal values that
place it in the partition

NOTE
As of Oracle 10g, list partitioning can be used for tables with LOB
columns.

In the following example, you will use list partitioning to record sales information for the data
warehouse into three partitions based on sales region: the Midwest, the western seaboard, and the
rest of the country. Here is the create table command:

create table oe.sales_by_region_by_day
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by list (state_cd)
 (partition midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 partition westcoast values ('CA','OR','WA')
 tablespace prd02,
 partition other_states values (default)
 tablespace prd03);

Sales information for Wisconsin, Illinois, and the other Midwestern states will be stored in
the midwest partition; California, Oregon, and Washington state will end up in the westcoast
partition. Any other value for state code, such as MI, will end up in the other_states partition in
tablespace PRD03.

Using Composite Range-Hash Partitioning As the name implies, range-hash partitioning uses
range partitioning to divide rows first using the range method and then subpartitioning the rows
within each range using a hash method. Composite range-hash partitioning is good for historical
data with the added benefit of increased manageability and data placement within a larger
number of total partitions.

■

■

■

562 Oracle Database 11g DBA Handbook

To use composite range-hash partitioning, you must specify the following criteria:

Primary partitioning method (range)

Range partitioning column(s)

Partition names identifying the bounds of the partition

Subpartitioning method (hash)

Subpartitioning column(s)

Number of subpartitions for each partition or subpartition name

In the following example, you will track house and garden tool rentals. Each tool is identified
by a unique tool number; at any given time, only about 400 tools are available for rental, although
there may be slightly more than 400 on a temporary basis. For each partition, we want to use
hash partitioning for each of eight subpartitions, using the tool name in the hashing algorithm.
The subpartitions will be spread out over four tablespaces: PRD01, PRD02, PRD03, and PRD04.
Here is the create table command to create the range-hash partitioned table:

create table oe.tool_rentals
 (tool_num number,
 tool_desc varchar2(50),
 rental_rate number(6,2))
partition by range (tool_num)
 subpartition by hash (tool_desc)
 subpartition template (subpartition s1 tablespace prd01,
 subpartition s2 tablespace prd02,
 subpartition s3 tablespace prd03,
 subpartition s4 tablespace prd04,
 subpartition s5 tablespace prd01,
 subpartition s6 tablespace prd02,
 subpartition s7 tablespace prd03,
 subpartition s8 tablespace prd04)
(partition tool_rentals_p1 values less than (101),
 partition tool_rentals_p2 values less than (201),
 partition tool_rentals_p3 values less than (301),
 partition tool_rentals_p4 values less than (maxvalue));

The range partitions are logical only; there are a total of 32 physical partitions, one for each
combination of logical partition and subpartition in the template list. Note the subpartition
template clause; the template is used for creating the subpartitions in every partition that doesn’t
have an explicit subpartition specification. It can be a real timesaver and reduce typing errors if
the subpartitions are explicitly specified for each partition. Alternatively, you could specify the
following clause, if you do not need the subpartitions explicitly named:

subpartitions 8 store in (prd01, prd02, prd03, prd04)

The physical partition information is available in DBA_TAB_SUBPARTITIONS, as for any
partitioned table. Here is a query to find out the partition components of the TOOL_RENTALS
table:

■

■

■

■

■

■

Chapter 16: Managing Large Databases 563

SQL> select table_name, partition_name, subpartition_name,
 2 tablespace_name
 3 from dba_tab_subpartitions
 4 where table_name = 'TOOL_RENTALS';

TABLE_NAME PARTITION_NAME SUBPARTITION_NAME TABLESPACE
--------------- -------------------- ---------------------- ----------
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S1 PRD01
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S2 PRD02
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S3 PRD03
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S4 PRD04
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S5 PRD01
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S6 PRD02
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S7 PRD03
TOOL_RENTALS TOOL_RENTALS_P1 TOOL_RENTALS_P1_S8 PRD04
TOOL_RENTALS TOOL_RENTALS_P2 TOOL_RENTALS_P2_S1 PRD01
TOOL_RENTALS TOOL_RENTALS_P2 TOOL_RENTALS_P2_S2 PRD02
. . .
TOOL_RENTALS TOOL_RENTALS_P4 TOOL_RENTALS_P4_S8 PRD04

32 rows selected.

At the logical partition level, we still need to query DBA_TAB_PARTITIONS to obtain the
range values, as you can see in the following query:

SQL> select table_name, partition_name,
 2 subpartition_count, high_value
 3 from dba_tab_partitions
 4 where table_name = 'TOOL_RENTALS';

TABLE_NAME PARTITION_NAME SUBPARTITION_COUNT HIGH_VALUE
---------------- ------------------- ------------------ -------------
TOOL_RENTALS TOOL_RENTALS_P1 8 101
TOOL_RENTALS TOOL_RENTALS_P2 8 201
TOOL_RENTALS TOOL_RENTALS_P3 8 301
TOOL_RENTALS TOOL_RENTALS_P4 8 MAXVALUE

4 rows selected.

Also note that either the partition name or subpartition name can be specified to perform
manual partition pruning, as in these two examples:

select * from oe.tool_rentals partition (tool_rentals_p1);
select * from oe.tool_rentals subpartition (tool_rentals_p3_s2);

In the first query, a total of eight subpartitions are searched, TOOL_RENTALS_P1_S1 through
TOOL_RENTALS_P1_S8; in the second query, only one out of the 32 total subpartitions is searched.

Using Composite Range-List Partitioning Similar to composite range-hash partitioning,
composite range-list partitioning uses range partitioning to divide rows first using the range
method and then subpartitioning the rows within each range using the list method. Composite

564 Oracle Database 11g DBA Handbook

range-list partitioning is good for historical data to place the data in each logical partition, further
subdividing each logical partition using a discontinuous or discrete set of values.

NOTE
Range-list partitioning is new as of Oracle 10g.

To use composite range-list partitioning, you must specify the following criteria:

Primary partitioning method (range)

Range partitioning column(s)

Partition names identifying the bounds of the partition

Subpartitioning method (list)

Subpartitioning column

Partition names, with each partition associated with a discrete list of literal values that
place it in the partition

In the following example, we will expand on the previous “Sales by Region” list partitioning
example and make the partitioned table more scalable by using the sales date for range
partitioning, and we will use the state code for subpartitioning. Here is the create table command
to accomplish this:

create table sales_by_region_by_quarter
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by range (sales_dt)
 subpartition by list (state_cd)
 (partition q1_2007 values less than (to_date('20070401','YYYYMMDD'))
 (subpartition q1_2007_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q1_2007_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q1_2007_other_states values (default)
 tablespace prd03
),
 partition q2_2007 values less than (to_date('20070701','YYYYMMDD'))
 (subpartition q2_2007_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q2_2007_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q2_2007_other_states values (default)
 tablespace prd03
),
 partition q3_2007 values less than (to_date('20071001','YYYYMMDD'))
 (subpartition q3_2007_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q3_2007_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q3_2007_other_states values (default)

■

■

■

■

■

■

Chapter 16: Managing Large Databases 565

 tablespace prd03
),
 partition q4_2007 values less than (maxvalue)
 (subpartition q4_2007_midwest values ('WI','IL','IA','IN','MN')
 tablespace prd01,
 subpartition q4_2007_westcoast values ('CA','OR','WA')
 tablespace prd02,
 subpartition q4_2007_other_states values (default)
 tablespace prd03
)
);

Each row stored in the table SALES_BY_REGION_BY_QUARTER is placed into one of 12
subpartitions, depending first on the sales date, which narrows the subpartition choice to three
subpartitions. The value of the state code then determines which of the three subpartitions will be
used to store the row. If a sales date falls beyond the end of 2007, it will still be placed in one of
the subpartitions of Q4_2007 until you create a new partition and subpartitions for Q1_2008.
Reorganizing partitioned tables is covered later in this chapter.

Using Composite List-Hash, List-List, and List-Range Partitioning Using list-hash, list-list,
and list-range composite partitioning is similar to using range-hash, range-list, and range-range
partitioning as discussed earlier in this section, except that you use the partition by list clause
instead of the partition by range clause as the primary partitioning strategy.

NOTE
Composite list-hash partitioning and all subsequent partitioning
methods in this chapter are new as of Oracle 11g.

As an example, I’ll recreate the sales_by_region_by_quarter table (which uses a range-list
scheme) using a list-range partitioning scheme instead, as follows:

create table sales_by_region_by_quarter
 (state_cd char(2),
 sales_dt date,
 sales_amt number(16,2))
partition by list (state_cd)
 subpartition by range(sales_dt)
 (partition midwest values ('WI','IL','IA','IN','MN')
 (
 subpartition midwest_q1_2007 values less than
 (to_date('20070401','YYYYMMDD')),
 subpartition midwest_q2_2007 values less than
 (to_date('20070701','YYYYMMDD')),
 subpartition midwest_q3_2007 values less than
 (to_date('20071001','YYYYMMDD')),
 subpartition midwest_q4_2007 values less than (maxvalue)
),
 partition westcoast values ('CA','OR','WA')
 (
 subpartition westcoast_q1_2007 values less than
 (to_date('20070401','YYYYMMDD')),

566 Oracle Database 11g DBA Handbook

 subpartition westcoast_q2_2007 values less than
 (to_date('20070701','YYYYMMDD')),
 subpartition westcoast_q3_2007 values less than
 (to_date('20071001','YYYYMMDD')),
 subpartition westcoast_q4_2007 values less than (maxvalue)
),
 partition other_states values (default)
 (
 subpartition other_states_q1_2007 values less than
 (to_date('20070401','YYYYMMDD')),
 subpartition other_states_q2_2007 values less than
 (to_date('20070701','YYYYMMDD')),
 subpartition other_states_q3_2007 values less than
 (to_date('20071001','YYYYMMDD')),
 subpartition other_states_q4_2007 values less than (maxvalue)
)
);

This alternate partitioning scheme makes sense if the regional managers perform their
analyses by date only within their regions.

Using Composite Range-Range Partitioning As the name implies, the range-range partitioning
method uses a range of values in two table columns. Both columns would otherwise lend themselves
to a range-partitioned table, but the columns do not need to have the same datatype. For example,
a medical analysis table can use a primary range column of patient birth date, and a secondary
range column of patient birth weight in ounces. Here is an example of a patient table using these
two attributes:

create table patient_info
 (patient_id number,
 birth_date date,
 birth_weight_oz number)
partition by range (birth_date)
 subpartition by range (birth_weight_oz)
 (
 partition bd_1950 values less than (to_date('19501231','YYYYMMDD'))
 (
 subpartition bd_1950_4lb values less than (64),
 subpartition bd_1950_6lb values less than (96),
 subpartition bd_1950_8lb values less than (128),
 subpartition bd_1950_12lb values less than (192),
 subpartition bd_1950_o12lb values less than (maxvalue)
),
 partition bd_1960 values less than (to_date('19601231','YYYYMMDD'))
 (
 subpartition bd_1960_4lb values less than (64),
 subpartition bd_1960_6lb values less than (96),
 subpartition bd_1960_8lb values less than (128),
 subpartition bd_1960_12lb values less than (192),
 subpartition bd_1960_o12lb values less than (maxvalue)
),

Chapter 16: Managing Large Databases 567

 partition bd_1970 values less than (to_date('19701231','YYYYMMDD'))
 (
 subpartition bd_1970_4lb values less than (64),
 subpartition bd_1970_6lb values less than (96),
 subpartition bd_1970_8lb values less than (128),
 subpartition bd_1970_12lb values less than (192),
 subpartition bd_1970_o12lb values less than (maxvalue)
),
 partition bd_1980 values less than (to_date('19801231','YYYYMMDD'))
 (
 subpartition bd_1980_4lb values less than (64),
 subpartition bd_1980_6lb values less than (96),
 subpartition bd_1980_8lb values less than (128),
 subpartition bd_1980_12lb values less than (192),
 subpartition bd_1980_o12lb values less than (maxvalue)
),
 partition bd_1990 values less than (to_date('19901231','YYYYMMDD'))
 (
 subpartition bd_1990_4lb values less than (64),
 subpartition bd_1990_6lb values less than (96),
 subpartition bd_1990_8lb values less than (128),
 subpartition bd_1990_12lb values less than (192),
 subpartition bd_1990_o12lb values less than (maxvalue)
),
 partition bd_2000 values less than (to_date('20001231','YYYYMMDD'))
 (
 subpartition bd_2000_4lb values less than (64),
 subpartition bd_2000_6lb values less than (96),
 subpartition bd_2000_8lb values less than (128),
 subpartition bd_2000_12lb values less than (192),
 subpartition bd_2000_o12lb values less than (maxvalue)
),
 partition bd_2010 values less than (maxvalue)
 (
 subpartition bd_2010_4lb values less than (64),
 subpartition bd_2010_6lb values less than (96),
 subpartition bd_2010_8lb values less than (128),
 subpartition bd_2010_12lb values less than (192),
 subpartition bd_2010_o12lb values less than (maxvalue)
)
);

Using Interval Partitioning Interval partitioning automates the creation of new range partitions.
For example, November, 2007 will almost certainly follow October, 2007, so using Oracle’s
interval partitioning saves you the effort and creates and maintain new partitions when needed.
Here is an example of a range-partitioned table with four partitions and an interval definition of
one month:

create table order_hist_interval
 (order_num NUMBER(15),
 cust_id NUMBER(12),

568 Oracle Database 11g DBA Handbook

 order_dt date,
 order_total NUMBER(10,2)
)
 partition by range (order_dt)
 interval(numtoyminterval(1,'month'))
 (partition p0 values less than (to_date('20051231','YYYYMMDD')),
 partition p1 values less than (to_date('20060701','YYYYMMDD')),
 partition p2 values less than (to_date('20061231','YYYYMMDD')),
 partition p3 values less than (to_date('20070701','YYYYMMDD'))
);

Rows inserted with an ORDER_DT of July 1, 2007, or earlier will reside in one of the four
initial partitions of ORDER_HIST_INTERVAL. Rows inserted with an ORDER_DT after July 1,
2007, will trigger the creation of a new partition with a range of one month each; the upper
bound of each new partition will always be the first of the month, based on the value of the
highest partition’s upper limit. Looking in the data dictionary, this table looks like a pre–Oracle
11g range partitioned table:

SQL> select table_name, partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'ORDER_HIST_INTERVAL';

TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
HIGH_VALUE

ORDER_HIST_INTERVAL P0
TO_DATE(' 2005-12-31 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
ORDER_HIST_INTERVAL P1
TO_DATE(' 2006-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P2
TO_DATE(' 2006-12-31 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
ORDER_HIST_INTERVAL P3
TO_DATE(' 2007-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',

SQL>

However, suppose you add a row for November 11, 2007, as in this example:

SQL> insert into order_hist_interval
 2 values (19581968,1963411,to_date('20071111','YYYYMMDD'),420.11);

1 row created.

SQL>

There is now a new partition, as you can see when you query DBA_TAB_PARTITIONS again:

SQL> select table_name, partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'ORDER_HIST_INTERVAL';

Chapter 16: Managing Large Databases 569

TABLE_NAME PARTITION_NAME
------------------------------ ------------------------------
HIGH_VALUE

ORDER_HIST_INTERVAL P0
TO_DATE(' 2005-12-31 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
ORDER_HIST_INTERVAL P1
TO_DATE(' 2006-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS'
ORDER_HIST_INTERVAL P2
TO_DATE(' 2006-12-31 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
ORDER_HIST_INTERVAL P3
TO_DATE(' 2007-07-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',
ORDER_HIST_INTERVAL SYS_P41
TO_DATE(' 2007-12-01 00:00:00', 'SYYYY-MM-DD HH24:MI:SS',

SQL>

Note that partitions for July, August, September, and October will not be created until order
history rows are inserted containing dates within those months.

Using Reference Partitioning Reference partitioning leverages the parent-child relationships
between tables to optimize partition characteristics and ease maintenance for tables that are
frequently joined. In this example, the partitioning defined for the parent table ORDER_HIST
is inherited by the ORDER_ITEM_HIST table:

create table order_hist
 (order_num NUMBER(15),
 cust_id NUMBER(12),
 order_dt date,
 order_total NUMBER(10,2),
 constraint order_hist_pk primary key(order_num)
)
 partition by range (order_dt)
 (partition q1_2007 values less than (to_date('20070401','YYYYMMDD')),
 partition q2_2007 values less than (to_date('20070701','YYYYMMDD')),
 partition q3_2007 values less than (to_date('20071001','YYYYMMDD')),
 partition q4_2007 values less than (to_date('20080101','YYYYMMDD'))
)
;

create table order_item_hist
 (order_num number(15),
 line_item_num number(3),
 product_num number(10),
 item_price number(8,2),
 item_qty number(8),
 constraint order_item_hist_fk
 foreign key (order_num) references order_hist(order_num)
)
partition by reference(order_item_hist_fk)
;

570 Oracle Database 11g DBA Handbook

Oracle automatically creates corresponding partitions with the same name for the ORDER_
ITEM_HIST as in ORDER_HIST.

Using Application-Controlled (System) Partitioning Application-controlled partitioning, also
known as system partitioning, relies on the application logic to place rows into the appropriate
partition. Only the partition names and the number of partitions are specified when the table is
created, as in this example:

create table order_hist_sys_part
 (order_num NUMBER(15),
 cust_id NUMBER(12),
 order_dt date,
 order_total NUMBER(10,2)
)
 partition by system
 (partition p1 tablespace users1,
 partition p2 tablespace users2,
 partition p3 tablespace users3,
 partition p4 tablespace users4
)
;

Any insert statements on this table must specify the partition number; otherwise, the insert
will fail. Here is an example:

SQL> insert into order_hist_sys_part
 2 partition (p3)
 3 values (49809233,93934011,sysdate,122.12);

1 row created.

SQL>

Using Virtual Column Partitioning Virtual columns, available in Oracle Database 11g, can
also be used as a partition key; any partition method that uses a regular column can use a virtual
column. In this example, you create a partitioned table for order items based on the total cost of
the line item, in other words, number of items multiplied by the item price:

create table line_item_value
 (order_num number(15) not null,
 line_item_num number(3) not null,
 product_num number(10),
 item_price number(8,2),
 item_qty number(8),
 total_price as (item_price * item_qty)
)
partition by range (total_price)
(
 partition small values less than (100),
 partition medium values less than (500),
 partition large values less than (1000),
 partition xlarge values less than (maxvalue)
);

Chapter 16: Managing Large Databases 571

Compressed Partitioned Tables Partitioned tables can be compressed just as nonpartitioned
tables can; in addition, the partitions of a partitioned table can be selectively compressed. For
example, you may only want to compress the older, less often accessed partitions of a partitioned
table and leave the most recent partition uncompressed to minimize the CPU overhead for retrieval
of recent data. In this example, you will create a new version of the CAT_REQ table you created
earlier in this chapter, compressing the first two partitions only. Here is the SQL command:

create table cat_req_2

 (cat_req_num number not null,
 cat_req_dt date not null,
 cat_cd number not null,
 cust_num number null,
 req_nm varchar2(50),
 req_addr1 varchar2(75),
 req_addr2 varchar2(75),
 req_addr3 varchar2(75))
partition by range (cat_req_dt)
 (partition cat_req_spr_2007
 values less than (to_date('20070601','YYYYMMDD'))
 tablespace prd01 compress,
 partition cat_req_sum_2007
 values less than (to_date('20070901','YYYYMMDD'))
 tablespace prd02 compress,
 partition cat_req_fal_2007
 values less than (to_date('20071201','YYYYMMDD'))
 tablespace prd03 nocompress,
 partition cat_req_win_2008
 values less than (maxvalue)
 tablespace prd04 nocompress);

You do not have to specify nocompress, because it is the default. To find out which partitions
are compressed, you can use the column COMPRESSION in the data dictionary table DBA_TAB_
PARTITIONS, as you can see in the following example:

SQL> select table_name, partition_name, compression
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ_2';

TABLE_NAME PARTITION_NAME COMPRESS
---------------- -------------------- --------
CAT_REQ_2 CAT_REQ_FAL_2007 DISABLED
CAT_REQ_2 CAT_REQ_SPR_2007 ENABLED
CAT_REQ_2 CAT_REQ_SUM_2007 ENABLED
CAT_REQ_2 CAT_REQ_WIN_2008 DISABLED

4 rows selected.

Indexing Partitions
Local indexes on partitions reflect the structure of the underlying table and in general are easier
to maintain than nonpartitioned or global partitioned indexes. Local indexes are equipartitioned
with the underlying partitioned table; in other words, it is partitioned on the same columns as the

572 Oracle Database 11g DBA Handbook

underlying table and therefore has the same number of partitions and the same partition bounds
as the underlying table.

Global partitioned indexes are created irrespective of the partitioning scheme of the underlying
table and can be partitioned using range partitioning or hash partitioning. In this section, first I’ll
show you how to create a local partitioned index; next, I’ll show you how to create both range-
partitioned and hash-partitioned global indexes. In addition, I’ll show you how to save space in a
partitioned index by using key compression.

Creating Local Partitioned Indexes A local partitioned index is very easy to set up and maintain
because the partitioning scheme is identical to the partitioning scheme of the base table. In other
words, the number of partitions in the index is the same as the number of partitions and subpartitions
in the table; in addition, for a row in a given partition or subpartition, the index entry is always
stored in the corresponding index’s partition or subpartition.

Figure 16-1 shows the relationship between a partitioned local index and a partitioned table.
The number of partitions in the table is exactly the same as the number of partitions in the index.

In the following example, you will create a local index on the CUST table you created earlier
in the chapter. Here is the SQL statement that retrieves the table partitions for the CUST table:

SQL> select partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE_NAME HIGH_VALUE
-------------------- --------------- --------------------
SYS_P1130 PRD01
SYS_P1131 PRD02
SYS_P1132 PRD03
SYS_P1133 PRD04

4 rows selected.

FIGURE 16-1 Local partitioned index on a partitioned table

Chapter 16: Managing Large Databases 573

The command for creating the local index on this table is very straightforward, as you can see
in this example:

SQL> create index oe.cust_ins_dt_ix on oe.cust (ins_dt)
 2 local store in (idx_1, idx_2, idx_3, idx_4);
Index created.

The index partitions are stored in four tablespaces—IDX_1 through IDX_4—to further improve
the performance of the table, because each index partition is stored in a tablespace separate from
any of the table partitions. You can find out about the partitions for this index by querying DBA_
IND_PARTITIONS, as follows:

SQL> select partition_name, tablespace_name from dba_ind_partitions
 2 where index_name = 'CUST_INS_DT_IX';

PARTITION_NAME TABLESPACE_NAME
-------------------- ---------------
SYS_P1130 IDX_1
SYS_P1131 IDX_2
SYS_P1132 IDX_3
SYS_P1133 IDX_4

4 rows selected.

Notice that the index partitions are automatically named the same as their corresponding
table partitions. One of the benefits of local indexes is that when you create a new table partition,
the corresponding index partition is built automatically; similarly, dropping a table partition
automatically drops the index partition without invalidating any other index partitions, as would
be the case for a global index.

Creating Range-Partitioned Global Indexes Creating a range-partitioned global index
involves rules similar to those you use when creating range-partitioned tables. In a previous
example, you created a range-partitioned table called CAT_REQ that contained four partitions
based on the CAT_REQ_DT column. In this example, you will create a partitioned global index
that will only contain two partitions (in other words, not partitioned the same way as the
corresponding table):

create index cat_req_dt_ix on oe.cat_req(cat_req_dt)
 global partition by range(cat_req_dt)
 (partition spr_sum_2007
 values less than (to_date('20070901','YYYYMMDD'))
 tablespace idx_4,
 partition fal_win_2007
 values less than (maxvalue)
 tablespace idx_8);

Note that you specify two tablespaces to store the partitions for the index that are different
from the tablespaces used to store the table partitions. If any DDL activity occurs on the underlying
table, global indexes are marked as UNUSABLE and need to be rebuilt unless you include the
update global indexes clause (invalidate global indexes is the default). In the section “Managing
Partitions” later in this chapter, we will review the update index clause when you are performing
partition maintenance operations on partitioned indexes.

574 Oracle Database 11g DBA Handbook

Figure 16-2 shows the relationship between a partitioned global index and a partitioned table.
The number of partitions in the table may or may not be the same as the number of partitions in
the index.

Creating Hash-Partitioned Global Indexes As with range-partitioned global indexes, hash-
partitioned global index create statements share a syntax with hash-partitioned table create
statements. Hash-partitioned global indexes can improve performance in situations where a
small number of a nonpartitioned index’s leaf blocks are experiencing high contention in an
OLTP environment. Queries that use either an equality or IN operator in the WHERE clause
can benefit significantly from a hash-partitioned global index.

NOTE
Hash-partitioned global indexes are new in Oracle 10g.

Building on our example using hash-partitioning for the table CUST, you can create a hash-
partitioned global index on the ZIP_CD column:

create index oe.cust_zip_cd_ix on oe.cust(zip_cd)
 global partition by hash(zip_cd)
 (partition z1 tablespace idx_1,
 partition z2 tablespace idx_2,
 partition z3 tablespace idx_3,
 partition z4 tablespace idx_4,
 partition z5 tablespace idx_5,
 partition z6 tablespace idx_6,
 partition z7 tablespace idx_7,
 partition z8 tablespace idx_8);

FIGURE 16-2 Global partitioned index on a partitioned table

Chapter 16: Managing Large Databases 575

Note that the table CUST is partitioned using the CUST_NUM column, and it places its four
partitions in PRD01 through PRD04; this index partition uses the ZIP_CD column for the hashing
function and stores its eight partitions in IDX_1 through IDX_8.

Creating Nonpartitioned Global Indexes Creating a nonpartitioned global index is the same
as creating a regular index on a nonpartitioned table; the syntax is identical. Figure 16-3 shows
the relationship between a nonpartitioned global index and a partitioned table.

Using Key Compression on Partitioned Indexes If your index is nonunique and has a large
number of repeating values for the index key or keys, you can use key compression on the index
just as you can with a traditional nonpartitioned index. When only the first instance of the index
key is stored, both disk space and I/O are reduced. In the following example, you can see how
easy it is to create a compressed partitioned index:

create index oe.cust_ins_dt_ix on oe.cust (ins_dt)
 compress local
 store in (idx_1, idx_2, idx_3, idx_4);

You can specify that a more active index partition not be compressed by using
NOCOMPRESS, which may save a noticeable amount of CPU for recent index entries that are
more frequently accessed than the others in the index.

Partitioned Index-Organized Tables
Index-organized tables (IOTs) can be partitioned using either the range, list, or hash partitioning
method; creating partitioned index-organized tables is syntactically similar to creating partitioned
heap organized tables. In this section, we’ll cover some of the notable differences in how partitioned
IOTs are created and used.

FIGURE 16-3 Global nonpartitioned index on a partitioned table

576 Oracle Database 11g DBA Handbook

For a partitioned IOT, the organization index, including, and overflow clauses are used as
they are for standard IOTs. In the partition clause, you can specify the overflow clause as well
as any other attributes of the overflow segment specific to a partition.

As of Oracle 10g, there is no longer the restriction that the set of partitioning columns must be
a subset of the IOT’s primary key columns; in addition, LIST partitioning is supported in addition
to range and hash partitioning. In previous releases of Oracle, LOB columns were supported
only in range-partitioned IOTs; as of Oracle 10g, they are supported in hash and list partitioning
methods as well.

Managing Partitions
Fourteen maintenance operations can be performed on a partitioned table, including splitting a
partition, merging partitions, and adding a new partition. These operations may or may not be
available depending on the partitioning scheme used (range, hash, list, or one of the six composite
methods). For composite partitions, these operations sometimes apply to both the partition and
the subpartition, and sometimes to the subpartition only.

For partitioned indexes, there are seven different types of maintenance operations that vary
depending on both the partitioning method (range, hash, list, or composite) as well as whether
the index is a global or a local index. In addition, each type of partitioned index may support
automatic updates when the partitioning scheme is changed, thus reducing the occurrences of
unusable indexes.

In the next couple sections, I’ll present a convenient chart for both partitioned tables and
partitioned indexes that shows you what kinds of operations are allowed on which partition types.
For some of the more common maintenance operations, I’ll give you some examples of how they
are used, extending some of the examples I have presented earlier in this chapter.

Maintaining Table Partitions To maintain one or more table partitions or subpartitions, you use
the alter table command just as you would on a nonpartitioned table. In Table 16-5 are the types
of partitioned table operations and the keywords you would use to perform them. The format of
the alter table command is as follows:

alter table <tablename> <partition_operation> <partition_operation_options>;

Table 16-6 contains the subpartition table operations.

CAUTION
Using the add partition clause only works if there are no existing
entries for new partitions in the default partition.

In many cases, partitioned table maintenance operations invalidate the underlying index;
while you can always rebuild the index manually, you can specify update indexes in the table
partition maintenance command. Although the table maintenance operation will take longer, the
most significant benefit of using update indexes is to keep the index available during the partition
maintenance operation.

Chapter 16: Managing Large Databases 577

Partition
Operation

Range & Composite
Range-*

Interval &
Composite
Interval-*

Hash List &
Composite
List-*

Reference

Add a partition ADD PARTITION

ADD PARTITION ADD
PARTITION

ADD
PARTITION

N/A

Coalesce a
partition

N/A N/A COALESCE
PARTITION

N/A N/A

Drop a partition DROP PARTITION DROP
PARTITION

DROP
PARTITION

N/A N/A

Exchange a
partition

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

EXCHANGE
PARTITION

Merge partitions MERGE PARTITIONS MERGE
PARTITIONS

N/A MERGE
PARTITIONS

N/A

Modify default
attributes

MODIFY DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

Modify real
attributes

MODIFY PARTITION MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

MODIFY
PARTITION

Modify list
partitions: Add
values

N/A N/A N/A MODIFY
PARTITION
… ADD
VALUES

N/A

Modify list
partitions:Drop
values

N/A N/A N/A MODIFY
PARTITION
… DROP
VALUES

N/A

Move a partition MOVE PARTITION MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

MOVE
PARTITION

Rename a
partition

RENAME PARTITION RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

RENAME
PARTITION

Split a partition SPLIT PARTITION SPLIT
PARTITION

N/A SPLIT
PARTITION

N/A

Truncate a
partition

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TRUNCATE
PARTITION

TABLE 16-5 Maintenance Operations for Partitioned Tables

Splitting, Adding, and Dropping Partitions In many environments, a “rolling window”
partitioned table will contain the latest four quarters’ worth of rows. When the new quarter starts,
a new partition is created, and the oldest partition is archived and dropped. In the following
example, you will split the last partition of the CAT_REQ table you created earlier in this chapter

578 Oracle Database 11g DBA Handbook

Partition
Operation

Composite *-Range Composite *-Hash Composite *-List

Add a
subpartition

MODIFY
PARTITION … ADD
SUBPARTITION

MODIFY PARTITION … ADD
SUBPARTITION

MODIFY PARTITION …
ADD SUBPARTITION

Coalesce a
subpartition

N/A MODIFY PARTITION …
COALESCE SUBPARTITION

N/A

Drop a
subpartition

DROP
SUBPARTITION

N/A DROP SUBPARTITION

Exchange a
subpartition

EXCHANGE
SUBPARTITION

N/A EXCHANGE
SUBPARTITION

Merge
subpartitions

MERGE
SUBPARTITIONS

N/A MERGE SUBPARTITIONS

Modify default
attributes

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION

MODIFY DEFAULT
ATTRIBUTES FOR
PARTITION

Modify real
attributes

MODIFY
SUBPARTITION

MODIFY SUBPARTITION MODIFY SUBPARTITION

Modify list
subpartitions:
Add values

N/A N/A MODIFY SUBPARTITION
… ADD VALUES

Modify List
subpartitions:
drop values

N/A N/A MODIFY SUBPARTITION
… DROP VALUES

Move a
subpartition

MOVE
SUBPARTITION

MOVE SUBPARTITION MOVE SUBPARTITION

Rename a
subpartition

RENAME
SUBPARTITION

RENAME SUBPARTITION RENAME SUBPARTITION

Split a
subpartition

SPLIT
SUBPARTITION

N/A SPLIT SUBPARTITION

Truncate a
subpartition

TRUNCATE
SUBPARTITION

TRUNCATE SUBPARTITION TRUNCATE
SUBPARTITION

TABLE 16-6 Maintenance Operations for Subpartitions of Partitioned Tables

at a specific date and maintain the new partition with maxvalue, back up the oldest partition, and
then drop the oldest partition. Here are the commands you can use:

SQL> alter table oe.cat_req split partition
 2 cat_req_win_2008 at (to_date('20080101','YYYYMMDD')) into
 3 (partition cat_req_win_2008 tablespace prd04,
 4 partition cat_req_spr_2008 tablespace prd01);
Table altered.

SQL> create table oe.arch_cat_req_spr_2007 as
 2 select * from oe.cat_req partition(cat_req_spr_2007);

Chapter 16: Managing Large Databases 579

Table created.

SQL> alter table oe.cat_req
 2 drop partition cat_req_spr_2007;
Table altered.

The data dictionary view DBA_TAB_PARTITIONS reflects the new partitioning scheme, as you
can see in this example:

SQL> select partition_name, high_value
 2 from dba_tab_partitions
 3 where table_name = 'CAT_REQ';

PARTITION_NAME HIGH_VALUE
-------------------- --
CAT_REQ_FAL_2007 TO_DATE(' 2007-12-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_SUM_2007 TO_DATE(' 2007-09-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')

CAT_REQ_WIN_2008 TO_DATE(' 2008-01-01 00:00:00', 'SYYYY-M
 M-DD HH24:MI:SS', 'NLS_CALENDAR=GREGORIA
 N')
CAT_REQ_SPR_2008 MAXVALUE

4 rows selected.

Note that if you had dropped any partition other than the oldest partition, the next highest
partition “takes up the slack” and contains any new rows that would have resided in the dropped
partition; regardless of what partition is dropped, the rows in the partition are no longer in the
partitioned table. To preserve the rows, you would use merge partition instead of drop partition.

Coalescing a Table Partition You can coalesce a partition in a hash-partitioned table to
redistribute the contents of the partition to the remaining partitions and reduce the number of
partitions by one. For the new CUST table you created earlier in this chapter, you can do this in
one easy step:

SQL> alter table oe.cust coalesce partition;
Table altered.

The number of partitions in CUST is now three instead of four:

SQL> select partition_name, tablespace_name
 2 from dba_tab_partitions
 3 where table_name = 'CUST';

PARTITION_NAME TABLESPACE
-------------------- ----------
SYS_P1130 PRD01

580 Oracle Database 11g DBA Handbook

SYS_P1131 PRD02
SYS_P1132 PRD03

3 rows selected.

Merging Two Table Partitions You may find out through various Oracle advisors that one
partition of a partitioned table is infrequently used or not used at all; in this situation, you may
want to combine two partitions into a single partition to reduce your maintenance effort. In this
example, you will combine the partitions MIDWEST and WESTCOAST in the partitioned table
SALES_BY_REGION_BY_DAY into a single partition, MIDWESTCOAST:

SQL> alter table oe.sales_by_region_by_day
 2 merge partitions midwest, westcoast
 3 into partition midwestcoast tablespace prd04;
Table altered.

Looking at the data dictionary view DBA_TAB_PARTITIONS, you can see that the table now
has only two partitions:

SQL> select table_name, partition_name, tablespace_name, high_value
 2 from dba_tab_partitions
 3 where table_owner = 'OE' and
 4 table_name = 'SALES_BY_REGION_BY_DAY';

TABLE_NAME PARTITION_NAME TABLESPACE HIGH_VALUE
---------------------- ----------------- ---------- ---------------------
SALES_BY_REGION_BY_DAY MIDWESTCOAST PRD04 'WI', 'IL', 'IA', 'IN
 ', 'MN', 'CA', 'OR',
 'WA'

SALES_BY_REGION_BY_DAY OTHER_STATES PRD03 default

2 rows selected.

Maintaining Index Partitions To maintain one or more index partitions or subpartitions, you
use the alter index command just as you would on a nonpartitioned index. Table 16-7 lists the
types of partitioned index operations and the keywords you would use to perform them for the
different types of partitioned indexes (range, hash, list, and composite). The format of the alter
index command is

alter index <indexname> <partition_operation> <partition_operation_options>;

As with table partition maintenance commands, not all operations are available for every
index partition type. You should note that many of the index partition maintenance options do
not apply to local index partitions. By its nature, a local index partition matches the partitioning
scheme of the table and will change when you modify the table’s partitioning scheme.

Splitting a Global Index Partition Splitting a global index partition is much like splitting a
table’s partition. One particular global index partition may be a hotspot due to the index entries

Chapter 16: Managing Large Databases 581

being stored in that particular partition; as with a table partition, you can split the index partition
into two or more partitions. In the following example, you’ll split one of the partitions of the
global index OE.CAT_REQ_DT_IX into two partitions:

SQL> alter index oe.cat_req_dt_ix split partition
 2 fal_win_2007 at (to_date('20071201','YYYYMMDD')) into
 3 (partition fal_2007 tablespace idx_7,
 4 partition win_2008 tablespace idx_8);
Index altered.

The index entries for the FAL_WIN_2007 partition will now reside in two new partitions, FAL_
2007 and WIN_2008.

Renaming a Local Index Partition Most characteristics of a local index are updated
automatically when the corresponding table partition is modified. However, a few operations still
may need to be performed on a local index partition, such as rebuilding the partition or renaming
a partition that was originally named with a default system-assigned name. In this example, you

Partition
Operation

Index Type Range Hash/List Composite

Add a partition Global N/A ADD PARTITION
(hash)

N/A

Local N/A N/A N/A

Drop a partition Global DROP PARTITION N/A N/A

Local N/A N/A N/A

Modify default
attributes

Global MODIFY DEFAULT
ATTRIBUTES

N/A N/A

Local MODIFY DEFAULT
ATTRIBUTES

MODIFY
DEFAULT
ATTRIBUTES

MODIFY DEFAULT
ATTRIBUTES [FOR
PARTITION]

Modify real
attributes

Global MODIFY PARTITION N/A N/A

Local MODIFY PARTITION MODIFY
PARTITION

MODIFY
[SUB]PARTITION

Rebuild a partition Global REBUILD PARTITION N/A N/A

Local REBUILD PARTITION REBUILD
PARTITION

REBUILD
SUBPARTITION

Rename a partition Global RENAME PARTITION N/A N/A

Local RENAME PARTITION RENAME
PARTITION

RENAME
[SUB]PARTITION

Split a partition Global SPLIT PARTITION N/A N/A

Local N/A N/A N/A

TABLE 16-7 Maintenance Operations for Partitioned Indexes

582 Oracle Database 11g DBA Handbook

will rename the local index partitions in the index OE.CUST_INS_DT_IX using more meaningful
names:

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1130 to cust_ins_dt_ix_P1;
Index altered.

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1131 to cust_ins_dt_ix_P2;
Index altered.

SQL> alter index oe.cust_ins_dt_ix
 2 rename partition sys_P1132 to cust_ins_dt_ix_P3;
Index altered.

Managing Partitions with EM Database Control
Creating and managing table and index partitions using EM Database Control saves you time and
also spares you the potential for errors. In the web pages displayed in the following figures, I’ll show
you the steps required to create a partitioned table to support a new order-entry and quotation
system. In Figure 16-4, on the Create Table page, you specify the table name, the schema where
the table will reside, and the tablespace. You also specify the column names and their attributes.

FIGURE 16-4 EM Database Control Create Table page

Chapter 16: Managing Large Databases 583

So far, we’re only creating a standard heap-based table with no partitioning. However, when
you click the Partitions tab, you can specify the partitioning method as shown in Figure 16-5.

For the ORDER_QUOTE table, you will choose range partitioning because you will use the
ORD_DATE column to put each row into a specific partition. In Figure 16-6, on the Create Range
Partitions: Partitioning Columns page, you specify which columns to use for partitioning using the
range method. In this case, you’re only using one column, ORD_DATE.

After clicking Next, you proceed to the Partitioning Specification page, as presented in Figure
16-7. Initially, you want to create 12 partitions, one partition for each month of 2007. As a result,
you specify 12 for the number of partitions, 1/1/2007 as the starting date, and one month for each
partition.

In Figure 16-8, you specify the tablespaces used to hold the partitions. In this case, you accept
the default: the tablespace originally specified for the table before partitioning was specified, which
in this case is the default tablespace for the database. Another option on this page is to spread out
the partitions among several tablespaces.

After clicking Next, you see the Partition Definitions page in Figure 16-9, where the partition
names, high values for each range, and tablespace are presented. Any changes to partition names
or locations can be made on this page—for example, changing the name of each partition to
include the high value for the partition key.

Clicking Finish brings you back to the Create Table page, as you can see in Figure 16-10. You
have one more opportunity to change the characteristics of the partitioned table.

FIGURE 16-5 EM Database Control Partitioning Method page

584 Oracle Database 11g DBA Handbook

FIGURE 16-6 EM Database Control Partitioning Columns page

FIGURE 16-7 EM Database Control Partitioning Specification page

Chapter 16: Managing Large Databases 585

FIGURE 16-8 EM Database Control Partition Tablespaces page

FIGURE 16-9 EM Database Control Partition Definitions page

586 Oracle Database 11g DBA Handbook

This page also has a Show SQL button so that you can see the SQL command that will be run
to create the partitioned table. Here is the SQL command:

CREATE TABLE "OE"."ORDER_QUOTE"
 ("ORD_QUOTE_NUM" NUMBER(12),
 "ORD_DATE" DATE,
 "CUST_NUM" NUMBER(15),
 "ORD_TYP_CD" NUMBER(1),
 "ORD_SRC_CD" NUMBER(1))
TABLESPACE "USERS" PARTITION BY RANGE ("ORD_DATE")
 (PARTITION "ORDER_QUOTE_P1"
 VALUES LESS THAN (TO_DATE('2/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P2"
 VALUES LESS THAN (TO_DATE('3/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P3"
 VALUES LESS THAN (TO_DATE('4/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P4"
 VALUES LESS THAN (TO_DATE('5/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P5"
 VALUES LESS THAN (TO_DATE('6/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P6"
 VALUES LESS THAN (TO_DATE('7/1/2007','MM/DD/YYYY')),

FIGURE 16-10 EM Database Control Create Table summary

Chapter 16: Managing Large Databases 587

 PARTITION "ORDER_QUOTE_P7"
 VALUES LESS THAN (TO_DATE('8/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P8"
 VALUES LESS THAN (TO_DATE('9/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P9"
 VALUES LESS THAN (TO_DATE('10/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P10"
 VALUES LESS THAN (TO_DATE('11/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P11"
 VALUES LESS THAN (TO_DATE('12/1/2007','MM/DD/YYYY')),
 PARTITION "ORDER_QUOTE_P12" VALUES LESS THAN (MAXVALUE));

Clicking Create runs the SQL command and confirms that the partitioned table has been
created, as you can see in Figure 16-11.

Editing the characteristics of a partitioned table is just as easy as creating the partitioned table
in the first place. As shown in Figure 16-12, on the Edit Table: OE.ORDER_QUOTE page you
select the Partitions tab and select the partition ORDER_QUOTE_P4 to change its characteristics.

When you select a partition (in this case, ORDER_QUOTE_P4) and click Advanced Options,
you have the ability to change the partition’s characteristics as you would for a nonpartitioned
heap-based table. In Figure 16-13, you change the compression option for this partition only;
when rows are inserted during a direct path insert, the rows in this segment are compressed to save
space with only a slight increase in overhead to uncompress the rows when they are retrieved.

FIGURE 16-11 EM Database Control create partition confirmation

588 Oracle Database 11g DBA Handbook

FIGURE 16-12 OE.ORDER_QUOTE page

FIGURE 16-13 EM Database Control partition storage advanced options

Chapter 16: Managing Large Databases 589

Materialized Views
Another type of table, called a materialized view, shares the characteristics of a table and a view. It
is like a view in that it derives its results from a query against one or more tables; it is like a table in
that it persists the result set of a view in a segment. Materialized views are useful in both OLTP and
DSS systems. Frequent user queries against operational data may be able to use materialized views
instead of the repeated joining of many highly normalized tables, and in a data warehouse
environment the historical data can be aggregated ahead of time to make DSS queries run in a
fraction of the time it would take to aggregate the data “on the fly.”

The data in a materialized view can be refreshed on demand or incrementally, depending
on the business need. Depending on the complexity of the view’s underlying SQL statement, the
materialized view can be quickly brought up to date with incremental changes via a materialized
view log.

To create a materialized view, you use the create materialized view command; the syntax for
this command is similar to creating a standard view. Because a materialized view stores the result
of a query, you can also specify storage parameters for the view as if you were creating a table. In
the create materialized view command, you also specify how the view will be refreshed. The
materialized view can be refreshed either on demand or whenever one of the base tables changes.
Also, you can force a materialized view to use materialized view logs for an incremental update,
or you can force a complete rebuild of the materialized view when a refresh occurs.

Materialized views can automatically be used by the optimizer if the optimizer determines that a
particular materialized view already has the results of a query that a user has submitted; the user does
not even have to know that their query is using the materialized view directly instead of the base
tables. However, to use query rewrite, the user must have the QUERY REWRITE system privilege and
you have to set the value of the initialization parameter QUERY_REWRITE_ENABLED to TRUE.

Using Bitmap Indexes
An alternative to B-tree indexes, called bitmap indexes, provides query optimization benefits in
environments that frequently perform joins on columns with low cardinality. In this section, we’ll
review the basics of bitmap indexes, create a bitmap index, and show how bitmap indexes can be
created ahead of time against columns in two or more tables.

Understanding Bitmap Indexes
A bitmap index is extremely useful in a VLDB environment when the column being indexed has
a very low number of possible values, such as gender, where the possible values are usually ‘M’
and ‘F’. A bitmap index uses a string of binary ones and zeros to represent the existence or
nonexistence of a particular column value. Using bitmap indexes makes multiple AND and OR
operations against several table columns very efficient in a query. Bitmap indexes are common in
data warehouse and other VLDB environments where many low-cardinality columns exist, DML
commands are done in bulk, and the query conditions frequently use columns with bitmap indexes.

The space requirements for a bitmap index are low as long as the cardinality is low; for example,
a bitmap index on the GENDER column of the EMPLOYEES table would contain two bitmaps
with a length equal to the number of rows in the table. If the EMPLOYEES table had 15 rows, the
bitmaps for the GENDER column might look like the following:

GENDER_BM_IX:
 F: 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0
 M: 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

590 Oracle Database 11g DBA Handbook

As you can see, the size of the bitmap index is directly proportional to the cardinality of the
column being indexed. A bitmap index on the LAST_NAME column of the employee table would
be significantly larger, and many of the benefits of a bitmap index in this case might be outweighed
by the space consumed by the index! Although there are exceptions to every rule, the cardinality
can be up to ten percent of the rows and bitmap indexes will still perform well; in other words, a
table with 1000 rows and 100 distinct values in a particular column will still most likely benefit
from a bitmap index.

NOTE
The Oracle optimizer dynamically converts bitmap index entries
to ROWIDs during query processing. This allows the optimizer to
use bitmap indexes with B-tree indexes on columns that have many
distinct values.

Previous to Oracle 10g, the performance of a bitmap would often deteriorate over time with
frequent DML activity against the table containing the bitmap index. To take advantage of the
improvements to the internal structure of bitmap indexes, you must set the COMPATIBLE
initialization parameter to 10.0.0.0 or greater. Bitmap indexes that performed poorly before
the COMPATIBLE parameter was adjusted should be rebuilt; bitmap indexes that performed
adequately before the COMPATIBLE parameter was changed will perform better after the change.
Any new bitmap indexes created after the COMPATIBLE parameter is adjusted will take advantage
of all improvements.

Using Bitmap Indexes
Bitmap indexes are easy to create; the syntax is identical to that for creating any other index, with
the addition of the BITMAP keyword. In the following example, you will add a GENDER column
to the EMPLOYEES table and then create a bitmap index on it:

SQL> alter table hr.employees
 2 add (gender char(1));
Table altered.

SQL> create bitmap index
 2 hr.gender_bm_ix on hr.employees(gender);
Index created.

Using Bitmap Join Indexes
As of Oracle9i, you can create an enhanced type of bitmap index called a bitmap join index. A
bitmap join index is a bitmap index representing the join between two or more tables. For each
value of a column in the first table of the join, the bitmap join index stores the ROWIDs of the
corresponding rows in the other tables with the same value as the column in the first table.
Bitmap join indexes are an alternative to materialized views that contain a join condition; the
storage required for storing the related ROWIDs can be significantly lower than storing the result
of the view itself.

In this example, you find out that the HR department is frequently joining the EMPLOYEES
and DEPARTMENTS table on the DEPARTMENT_ID column. As an alternative to creating a
materialized view, you decide to create a bitmap join index. Here is the SQL command to create
the bitmap join index:

Chapter 16: Managing Large Databases 591

SQL> create bitmap index
 2 hr.emp_dept_bj_ix on hr.employees(hr.departments.department_id)
 3 from hr.employees, hr.departments
 4 where hr.employees.department_id = hr.departments.department_id;
Index created.

There are a few restrictions on bitmap join indexes:

Only one of the tables in the bitmap join index can be updated concurrently by different
transactions when the bitmap join index is being used.

No table can appear more than once in the join.

Bitmap join indexes cannot be created on an IOT or a temporary table.

A bitmap join index cannot be created with the UNIQUE attribute.

The join column(s) used for the index must be the primary key or have a unique
constraint in the table being joined to the table with the bitmap index.

Oracle Data Pump
Oracle Data Pump, new to Oracle 10g, provides similar functionality to the original export (exp)
and import (imp) utilities, but the infrastructure for Data Pump Export and Import is more server-
centric. In fact, the original exp and imp utilities should only be used if you must import a dump
set from a previous version of Oracle into an Oracle 10g database, or if you must export a dump
set from an Oracle 10g database to be imported into a previous version of Oracle. I gave a brief
introduction to Oracle Data Pump in Chapter 11 from the perspective of data recovery; I’ll
elaborate on the features of Data Pump in this chapter from a VLDB perspective.

The new command-line clients, expdp and impdp, use DBMS_METADATA to extract the
object definitions from the data dictionary as XML or DDL or use DBMS_DATAPUMP to perform
the transfer of both metadata and data from one database to another. All Data Pump Export and
Import processing is done on the server instead of the client, which requires directory objects on
the source and target databases.

Here are a few of the other enhancements and features over the original exp and imp utilities:

The job that exports or imports can control the number of parallel threads used for the job.

A Data Pump job can be restarted if the job fails or is stopped.

Export and import are supported over the network without using dump file sets.

The ability is provided to attach and detach from a running job by a client process.

Space can be estimated, without actually performing the export.

You can specify the database version of objects to be exported or imported.

Support is included for fine-grained filtering of metadata as well as data filtering on a
table-by-table basis.

We will also cover transportable tablespaces using the features of Data Pump and the package
DBMS_FILE_TRANSFER to create and move a tablespace dump set to another database.

■

■

■

■

■

■

■

■

■

■

■

■

592 Oracle Database 11g DBA Handbook

Data Pump Export
Data Pump Export, or just Export, unloads data and metadata into a set of operating system files
called a dump file set. The dump file set is only readable by Data Pump Import. The dump file set
consists of one or more disk files containing the metadata, data, and control information, and it’s
written in a proprietary binary format. You use expdp at the operating system command line to
start Export.

Export can unload data in a number of different modes, depending on what types of objects
you are exporting, from a single table to the entire database. The supported modes are Full Export,
Schema, Table, Tablespace, and Transportable Tablespace.

Full Export Mode
A full export uses the full parameter to the expdp command. The entire database is unloaded; you
must have the EXP_FULL_DATABASE role to export the entire database.

Schema Mode
You export one or more schemas with the schemas parameter in expdp; this is the default. If you
have the EXP_FULL_DATABASE role, you can export any schema; otherwise, you can export only
your own schema.

Table Mode
The table mode of expdp exports a specified set of tables; you use the tables parameter with
expdp. If you have the EXP_FULL_DATABASE role, you can export tables in any schema;
otherwise, you can only export tables in your own schema.

Tablespace Mode
You must have the EXP_FULL_DATABASE role to export an entire tablespace. Tablespace mode
is essentially shorthand for exporting all tables within one or more specified tablespaces. Any
dependent objects of tables that reside in the specified tablespaces are exported even if they
reside in another tablespace. You use the tablespaces parameter with the expdp command to
specify one or more tablespaces to export.

Transportable Tablespace Mode
Transporting a tablespace exports only the metadata for the objects within one or more tablespaces;
unlike tablespace mode, the objects within the tablespace must be completely self-contained. You
use the transport_tablespaces parameter on the expdp command line to specify the tablespaces.
Once you create the dump set with the metadata, you copy the datafiles for the tablespace(s) to
be transported to the destination server to be “plugged in” to the target database using impdp.
Later in this chapter, in the section “Using Transportable Tablespaces,” you will see how to
transport a tablespace from one database to another using directory objects, expdp, and impdp.
As with many of the other modes, transportable tablespace mode requires you to have the EXP_
FULL_DATABASE role.

Data Pump Import
Data Pump Import, or just Import, loads an export dump file set created with Data Pump Export
into a target system. Import is initiated at the operating system command line by using the impdp
command.

The modes available for Import match the modes in Export: Full Import, Schema, Table,
Tablespace, and Transportable Tablespace.

Chapter 16: Managing Large Databases 593

Full Import Mode
A full import uses the full parameter on the impdp command line. When you perform a full
import, the entire dump file set (or the entire database, when performing a network import
without a dump file set) is loaded into the target. You must have the IMP_FULL_DATABASE role
if you’re importing another database directly or if the dump file set was exported using the EXP_
FULL_DATABASE role.

Schema Mode
You use the schemas parameter with impdp to import the objects in your own schema or, if you
have the IMP_FULL_DATABASE role, any number of schemas in the dump file set.

Table Mode
To import specific tables from a dump file set that contains either a full, schema, tablespace, or
table-only export operation, use the tables parameter with impdp. The source can also be another
database. If the tables you are importing are not in your schema, you must have the IMP_FULL_
DATABASE role.

Tablespace Mode
The parameter tablespaces is used at the impdp command line to import one or more tablespaces
into the current database. The source for the tablespace import can be a tablespace export, a full
database export, a schema export, a table-mode export, or another database.

Transportable Tablespace Mode
Using the transport_tablespaces parameter, you import the metadata from a transportable tablespace
export dump file set or another database. The transport_datafiles parameter references the location
where the datafiles for the transported tablespace are located.

Using Transportable Tablespaces
Transportable tablespaces make it easy to move large volumes of data between databases a
tablespace at a time; Oracle 10g provides a number of enhancements to transportable tablespaces,
making it easier to move data between databases that reside on different hardware and software
platforms. Data Pump Export and Import play key roles in transporting a tablespace between
databases.

NOTE
As of Oracle Database 10g, transportable tablespaces no longer need
to be marked read-only if you use an RMAN tablespace backup with
the RMAN transport tablepsace command to perform the transport;
the backup of the tablespace can therefore be performed while the
tablespace is open for read and write.

In the following scenario, you will use expdp and impdp along with DBMS_FILE_TRANSFER
to copy the XPORT_DW tablespace from the dw database to the rac1 database. Here are the
high-level steps:

 1. Set up the directories on the source and target databases for the dump file sets and the
tablespace datafiles (one-time setup).

 2. Check for tablespace self-consistency with DBMS_TTS.TRANSPORT_SET_CHECK.

594 Oracle Database 11g DBA Handbook

 3. Use expdp to create the metadata for the XPORT_DW tablespace.

 4. Use DBMS_FILE_TRANSFER to copy the dump file set(s) and datafile(s) to the target
database.

 5. On the target database, use impdp to “plug in” the tablespace.

Set Up Directory Objects
On the source database, dw, you need to create the directory objects that will hold the dump file
set as well as a directory object that points to the location where the datafile for the XPORT_DW
tablespace is stored. Here are the SQL commands on the ord database; the file system directory /
Temp is common to all servers:

SQL> create directory src_dpump_dir as '/Temp';
Directory created.
SQL> create directory src_dbf_dir as '/u02/oradata';
Directory created.

TIP
If the source or target tablespace are stored in an ASM disk group,
you must use ftp with the /sys/asm virtual directory in the XML
DB repository, DBMS_FILE_TRANSFER, or the cp command in the
asmcmd utility.

On the destination database, rac1, you will execute similar commands, as you can see here:

SQL> create directory dest_dpump_dir as '/Temp';
Directory created.
SQL> create directory dest_dbf_dir as '/u05/oradata';
Directory created.

These directory objects are persistent, and you may use these in the future for other Data
Pump or file-transfer operations.

Check for Tablespace Self-Consistency
Before transporting the XPORT_DW tablespace, you should check to make sure that all objects
in the tablespace are self-contained with the procedure DBMS_TTS.TRANSPORT_SET_CHECK,
as follows:

SQL> exec dbms_tts.transport_set_check('xport_dw', TRUE);
PL/SQL procedure successfully completed.
SQL> select * from transport_set_violations;
no rows selected

Not finding any rows in TRANSPORT_SET_VIOLATIONS means that the tablespace has no
external dependent objects or any objects owned by SYS. This view is re-created every time you
run DBMS_TTS.TRANSPORT_SET_CHECK.

Use expdp to Create Metadata
On the ord database, you will execute the expdp command to export the metadata associated
with the XPORT_DW tablespace after making the XPORT_DW tablespace read-only:

Chapter 16: Managing Large Databases 595

SQL> alter tablespace XPORT_DW read only;
Tablespace altered.

To run expdp, you open an operating system command prompt and perform the metadata
export as follows:

[oracle@dw ~]$ expdp rjb/rjb dumpfile=expdat.dmp
 directory=src_dpump_dir transport_tablespaces=xport_dw

Export: Release 11.1.0.6.0 –
 Production on Sunday, 16 September, 2007 11:59:41

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition
 Release 11.1.0.6.0 – Production
With the Partitioning, OLAP, Data Mining
 and Real Application Testing options

Starting "RJB"."SYS_EXPORT_TRANSPORTABLE_01": rjb/********
 dumpfile=expdat.dmp directory=src_dpump_dir transport_tablespaces=xport_dw
Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK
Processing object type TRANSPORTABLE_EXPORT/TABLE
Processing object type TRANSPORTABLE_EXPORT/POST_INSTANCE/PLUGTS_BLK
Master table "RJB"."SYS_EXPORT_TRANSPORTABLE_01" successfully
 loaded/unloaded
**
Dump file set for RJB.SYS_EXPORT_TRANSPORTABLE_01 is:
 /Temp/expdat.dmp
**
Datafiles required for transportable tablespace XPORT_DW:
 /u02/oradata/xport_dw.dbf

Job "RJB"."SYS_EXPORT_TRANSPORTABLE_01" successfully completed at 12:00:51

[oracle@dw ~]$ ls -l /Temp/exp*
-rwxrwxrwx 1 root root 86016 Sep 16 12:00 /Temp/expdat.dmp
-rwxrwxrwx 1 root root 1089 Sep 16 12:00 /Temp/export.log
[oracle@dw ~]$

Use DBMS_FILE_TRANSFER to Copy Files
In this step, you will copy the tablespace’s datafile to the remote database using DBMS_FILE_
TRANSFER, as follows (although you could use the /Temp directory for this step as well):

SQL> execute dbms_file_transfer.put_file(
 2 'src_dbf_dir', 'xport_dw.dbf',
 3 'dest_dbf_dir', 'xport_dw.dbf', 'rac1');
PL/SQL procedure successfully completed.

If the tablespace was created using OMF, you will have to use the value of DB_FILE_CREATE_
DEST and some detective work, or use the dynamic performance views V$DATAFILE and

596 Oracle Database 11g DBA Handbook

V$TABLESPACE, to track down the actual subdirectory and datafile name on the host operating
system.

Use impdp to Import Metadata
In the final step, you will run impdp on the target database to read the metadatafile and “plug in”
the tablespace datafile. Here is the output from this operation:

[oracle@oc1 ~]$ impdp rjb/rjb directory=dest_dpump_dir
dumpfile=expdat.dmp transport_datafiles=/u05/oradata/xport_dw.dbf

Import: Release 11.1.0.6.0 -
 Production on Sunday, 16 September, 2007 12:59:30

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition
 Release 11.1.0.6.0 – Production
With the Partitioning, Real Application Clusters, OLAP,
Data Mining and Real Application Testing options
Master table "RJB"."SYS_IMPORT_TRANSPORTABLE_01"
successfully loaded/unloaded
Starting "RJB"."SYS_IMPORT_TRANSPORTABLE_01": rjb/********
 directory=dest_dpump_dir dumpfile=expdat.dmp
 transport_datafiles=/u05/oradata/xport_dw.dbf
Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK
Processing object type TRANSPORTABLE_EXPORT/TABLE
Processing object type TRANSPORTABLE_EXPORT/POST_INSTANCE/PLUGTS_BLK
Job "RJB"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed at 12:59:44

[oracle@oc1 ~]$ sqlplus / as sysdba

SQL*Plus: Release 11.1.0.6.0 - Production on Sun Sep 16 13:01:11 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production

With the Partitioning, Real Application Clusters, OLAP,
Data Mining and Real Application Testing options

SQL> select * from v$tablespace;

 TS# NAME INC BIG FLA ENC
---------- ------------------------- --- --- --- ---
 0 SYSTEM YES NO YES
 1 SYSAUX YES NO YES
 2 UNDOTBS1 YES NO YES
 4 USERS YES NO YES
 3 TEMP NO NO YES
 6 EXAMPLE YES NO YES
 5 UNDOTBS2 YES NO YES

Chapter 16: Managing Large Databases 597

 7 UNDOTBS3 YES NO YES
 9 RMAN YES NO YES
 11 XPORT_DW YES NO YES

10 rows selected.

SQL> alter tablespace xport_dw read write;

Tablespace altered.
SQL>

Note that you must change the tablespace from READ ONLY back to READ WRITE; when a
tablespace is transported to another database, by default the copy of the tablespace is online but
read-only. You also need to change the source tablespace back to READ WRITE after the
completion of the tablespace transport if you made it read-only during a non-RMAN tablespace
transport operation.

This page intentionally left blank

CHAPTER
17

Managing Distributed
Databases

599

600 Oracle Database 11g DBA Handbook

n a distributed environment, databases on separate servers (hosts) may be accessed
during a single transaction or query. Each server can be physically isolated without
being logically isolated from the other servers.

A typical distributed database implementation involves corporate headquarters servers that
replicate data to departmental servers in various locations. Each database supports local client
applications and also has the ability to communicate with other databases in the network. This
architecture is shown in Figure 17-1.

Oracle Net allows this architecture to become reality. Run on all the servers involved, Oracle
Net allows database requests made from one database (or application) to be passed to another
database on a separate server. With this functionality, you can communicate with all the databases
that are accessible via your network. You can then create synonyms that give applications true
network transparency; the user who submits a query will not know the location of the data that
is used to resolve it.

You can configure Oracle to support multimaster replication (in which all databases involved
own the data and can serve as the source for data propagation) or single-master replication (in
which only one database owns the data). When designing a replication configuration, you should
try to restrict the ownership of data as much as possible. As the number of sources for propagation
increases, the potential for errors to occur increases, as does the potential administration workload.
In the following sections, you will see examples of the different replication capabilities available,
followed by management techniques.

I

FIGURE 17-1 Server/Server architecture

Chapter 17: Managing Distributed Databases 601

Remote Queries
To query a remote database, you must create a database link in the database in which the query
will originate. The database link specifies the service name for the remote database and may also
specify the username to connect to in the remote database. When a database link is referenced by
a SQL statement, Oracle opens a session in the remote database, executes the SQL statement there,
and returns the data. You can create database links as public links (created by DBAs, making the
links available to all users in the local database) or as private links.

The following example creates a public database link called HR_LINK:

create public database link HR_LINK
connect to HR identified by employeeservices202
using 'hq';

NOTE
As of Oracle Database 11g, passwords are case-sensitive unless you
set the initialization parameter SEC_CASE_SENSITIVE_LOGON to
FALSE (the default is TRUE).

The create database link command shown in this example has several parameters:

The optional keyword public, which allows DBAs to create links for all users in a
database. An additional optional keyword, shared, is described later in this chapter.

The name of the link (HR_LINK, in this example).

The account to connect to. You can configure the database link to use the local username
and password in the remote database. This link connects to a fixed username in the
remote database.

The service name (hq, in this example).

To use the newly created link, simply add it as a suffix to table names in commands. The
following example queries a remote table by using the HR_LINK database link:

select * from EMPLOYEES@hr_link
 where office = 'ANNAPOLIS';

When you execute this query, Oracle will establish a session via the HR_LINK database link and
query the EMPLOYEES table in that database. The where clause will be applied to the EMPLOYEES
rows, and the matching rows will be returned. The execution of the query is shown graphically in
Figure 17-2.

The from clause in this example refers to EMPLOYEES@HR_LINK. Because the HR_LINK
database link specifies the server name, instance name, and owner name, the full name of the
table is known. If no account name had been specified in the database link, the user’s account
name and password in the local database would have been used during the attempt to log into
the remote database.

■

■

■

■

602 Oracle Database 11g DBA Handbook

The management of database links is described in the section “Managing Distributed Data,”
later in this chapter.

Remote Data Manipulation: Two-Phase Commit
To support data manipulation across multiple databases, Oracle relies on Two-Phase Commit
(2PC). 2PC allows groups of transactions across several nodes to be treated as a unit; either the
transactions all commit or they all get rolled back. A set of distributed transactions is shown in
Figure 17-3. In that figure, two update transactions are performed. The first update goes against
a local table (EMPLOYEES); the second, against a remote table (EMPLOYEES@HR_LINK). After

FIGURE 17-2 Sample remote query

FIGURE 17-3 Sample distributed transaction

Chapter 17: Managing Distributed Databases 603

the two transactions are performed, a single commit is then executed. If either transaction cannot
commit, both transactions will be rolled back.

Distributed transactions yield two important benefits: databases on other servers can be
updated, and those transactions can be grouped together with others in a logical unit. The second
benefit occurs because of the database’s use of 2PC. Here are the two phases:

The prepare phase An initiating node called the global coordinator notifies all sites
involved in the transaction to be ready either to commit or to roll back the transaction.

The commit phase If there is no problem with the prepare phase, all sites commit their
transactions. If a network or node failure occurs, all sites roll back their transactions.

The use of 2PC is transparent to the users. If the node that initiates the transaction forgets
about the transaction, a third phase, the forget phase, is performed. The detailed management of
distributed transactions is discussed in the section “Managing Distributed Transactions,” later in
this chapter.

Dynamic Data Replication
To improve the performance of queries that use data from remote databases, you may wish to
replicate that data on the local server. There are several options for accomplishing this, depending
on which Oracle features you are using.

You can use database triggers to replicate data from one table into another. For example, after
every insert into a table, a trigger may fire to insert that same record into another table—and that
table may be in a remote database. Thus, you can use triggers to enforce data replication in simple
configurations. If the types of transactions against the base table cannot be controlled, the trigger
code needed to perform the replication will be unacceptably complicated.

When using Oracle’s distributed features, you can use materialized views to replicate data
between databases. You do not have to replicate an entire table or limit yourself to data from just
one table. When replicating a single table, you may use a where clause to restrict which records
are replicated, and you may perform group by operations on the data. You can also join the table
with other tables and replicate the result of the queries.

NOTE
You cannot use materialized views to replicate data using LONG,
LONG RAW, or user-defined datatypes.

The data in the local materialized view of the remote table(s) will need to be refreshed. You
can specify the refresh interval for the materialized view, and the database will automatically take
care of the replication procedures. In many cases, the database can use a materialized view log
to send over only transaction data (changes to the table); otherwise, the database will perform
complete refreshes on the local materialized view. The dynamic replication of data via materialized
views is shown in Figure 17-4.

You can use Data Guard to create and manage a standby database whose content is updated
whenever the primary database’s data changes. The standby database can be used as a read-only
database to support reporting requirements and then returned to its status as a standby database.
See Chapter 13 for details on the use and management of standby databases.

■

■

604 Oracle Database 11g DBA Handbook

Managing Distributed Data
Before you can worry about managing transactions against remote databases, you have to get the
data there and make it globally accessible to other databases. The following sections describe the
requisite management tasks: enforcing location transparency and managing the database links,
triggers, and materialized views.

NOTE
The examples in this chapter assume that you are using tnsnames.ora
files for your database service name resolution.

The Infrastructure: Enforcing Location Transparency
To properly design your distributed databases for long-term use, you must start by making the
physical location of the data transparent to the application. The name of a table within a database
is unique within the schema that owns it. However, a remote database may have an account with
the same name, which may own a table with the same name.

Within distributed databases, two additional layers of object identification must be added.
First, the name of the instance that accesses the database must be identified. Next, the name of
the host on which that instance resides must be identified. Putting together these four parts of the

FIGURE 17-4 Replication with materialized views

Chapter 17: Managing Distributed Databases 605

object’s name—its host, its instance, its owner, and its name—results in a global object name. To
access a remote table, you must know that table’s global object name.

The goal of location transparency is to make the first three parts of the global object name—
the host, the instance, and the schema—transparent to the user. The first three parts of the global
object name are all specified via database links, so any effort at achieving location transparency
should start there. First, consider a typical database link:

create public database link HR_LINK
connect to HR identified by employeeservices202
using 'hq';

NOTE
If the GLOBAL_NAMES initialization parameter is set to TRUE, the
database link name must be the same as the global name of the
remote database.

By using a service name (in this example, HQ), the host and instance name remain
transparent to the user. These names are resolved via the local host’s tnsnames.ora file.
A partial entry in this file for the service name HQ is shown in the following listing:

HQ =(DESCRIPTION=
 (ADDRESS=
 (PROTOCOL=TCP)
 (HOST=HQ_MW)
 (PORT=1521))
 (CONNECT DATA=
 (SERVICE_NAME=LOC)))

The two lines in bold in this listing fill in the two missing pieces of the global object name.
When a user references the HQ service name, the host name is HQ_MW and the service name is
LOC. The SERVICE_NAME can be the instance name of the remote database. It is specified by the
initialization parameter SERVICE_NAMES, and it can include several services. The default value
for SERVICE_NAME is DB_UNIQUE_NAME.DB_DOMAIN. In a RAC database environment, each
node can have additional service names in addition to the service name. A service specified by
SERVICE_NAMES can run on several (or all, or just one) of the RAC instances. You would specify
INSTANCE_NAME in tnsnames.ora instead of SERVICE_NAME if you want a specific database
instance.

This tnsnames.ora uses parameters for the TCP/IP protocol; other protocols may use different
keywords, but their usage is the same. The tnsnames.ora entries provide transparency for the
server and instance names.

The HR_LINK database link created via the code given earlier in this section will provide
transparency for the first two parts of the global object name. But what if the data moves from the
HR schema, or the HR account’s password changes? The database link would have to be dropped
and re-created. The same would be true if account-level security were required; you may need to
create and maintain multiple database links.

To resolve the transparency of the schema portion of the global object name, you can modify
the database link syntax. Consider the database link in the following listing:

create public database link HR_LINK
connect to current_user
using 'hq';

606 Oracle Database 11g DBA Handbook

This database link uses the connect to current_user clause. It will use what is known as a
connected user database link: the remote database authenticates the connection request using
the user’s credentials on the server where the user executes the query. The previous examples
were fixed user connections—the same credentials are used to authenticate the connection
request regardless of the user making the request. Here is an example of using the connected
user database link; not surprisingly, it looks identical to using a fixed user database link:

select * from EMPLOYEES@HR_LINK;

When the user references this link, the database will attempt to resolve the global object
name in the following order:

 1. It will search the local tnsnames.ora file to determine the proper host name, port, and
instance name or service name.

 2. It will check the database link for a connect to specification. If the connect to current_
user clause is found, it will attempt to connect to the specified database using the connected
user’s username and password.

 3. It will search the from clause of the query for the object name.

Connected user links are often used to access tables whose rows can be restricted according
to the username that is accessing the tables. For example, if the remote database had a table
named HR.EMPLOYEES, and every employee were allowed to see their own row in the table,
then a database link with a specific connection, such as

create public database link HR_LINK
connect to HR identified by employeeservices202
using 'hq';

would log in as the HR account (the owner of the table). If this specific connection is used, you
cannot restrict the user’s view of the records on the remote host. However, if a connected user
link is used, and a view is created on the remote host using the USER pseudo-column, then only
that user’s data would be returned from the remote host. A sample database link and view of this
type is shown in the following listing:

-- In the local database:
--
create public database link HR_LINK
connect to current_user
using 'hq';

create view REMOTE_EMP as
 select * from EMPLOYEES@HR_LINK
 where login_id=USER;

Either way, the data being retrieved can be restricted. The difference is that when a connected
user link is used, the data can be restricted based on the username in the remote database; if a
fixed connection is used, the data can be restricted after it has been returned to the local database.
The connected user link reduces the amount of network traffic needed to resolve the query and
adds an additional level of location transparency to the data.

Chapter 17: Managing Distributed Databases 607

NOTE
If you are using the Virtual Private Database features of the Oracle
Database, you can restrict access to rows and columns without
maintaining views for this purpose. See Chapter 9 for details on
Virtual Private Database options.

Connected user database links raise a different set of maintenance issues. The tnsnames.ora
file must be synchronized across the servers (which in turn drives the adoption of an LDAP
solution such as OID), and the username/password combinations in multiple databases must be
synchronized. These issues are addressed in the next sections.

Database Domains
A domain name service allows hosts within a network to be hierarchically organized. Each node
within the organization is called a domain, and each domain is labeled by its function. These
functions may include COM for companies and EDU for schools. Each domain may have many
subdomains. Therefore, each host will be given a unique name within the network; its name
contains information about how it fits into the network hierarchy. Host names within a network
typically have up to four parts; the leftmost portion of the name is the host’s name, and the rest
of the name shows the domain to which the host belongs.

For example, a host may be named HQ.MYCORP.COM. In this example, the host is named
HQ and identified as being part of the MYCORP subdomain of the COM domain.

The domain structure is significant for two reasons. First, the host name is part of the global
object name. Second, Oracle allows you to specify the DNS version of the host name in database
link names, simplifying the management of distributed database connections.

To use DNS names in database links, you first need to add two parameters to your initialization
file for the database. The first of these, DB_NAME, should be set to the instance name. The second
parameter, DB_DOMAIN, is set to the DNS name of the database’s host or is set to WORLD by
default; the value cannot be NULL. DB_DOMAIN specifies the network domain in which the host
resides. If a database named LOC is created on the HQ.MYCORP.COM server, its entries will be

DB_NAME = loc
DB_DOMAIN = hq.mycorp.com

NOTE
In a RAC environment, the INSTANCE_NAME cannot be the same
as the DB_NAME. Typically, a sequential number is appended to the
DB_NAME for each instance. See Chapter 10 for more information
on configuring a RAC database.

To enable the usage of the database domain name, you must set the GLOBAL_NAMES
parameter to TRUE in your SPFILE or initialization parameter file, as in this example:

GLOBAL_NAMES = true

NOTE
GLOBAL_NAMES is set to FALSE by default in Oracle Database 10g
and 11g.

608 Oracle Database 11g DBA Handbook

Once you have set these parameters, the database must be shut down and restarted for
changes to DB_NAME or DB_DOMAIN.

NOTE
If you set GLOBAL_NAMES to TRUE, all your database link names
must follow the rules described in this section; in other words,
GLOBAL_NAMES ensures that database links have the same name
as the database to which you connect using the link.

When you use this method of creating global database names, the names of the database links
are the same as the databases to which they point. Therefore, a database link that points to the LOC
database instance listed earlier would be named LOC.HQ.MYCORP.COM. Here is an example:

CREATE PUBLIC DATABASE LINK loc.hq.mycorp.com
USING 'LOCSVC';

LOCSVC is the service name in tnsnames.ora. Oracle will append the local database’s DB_
DOMAIN value to the name of the database link. For example, if the database is in the
HQ.MYCORP.COM domain, and the database link is named LOC, the database link will resolve
to LOC.HQ.MYCORP.COM whenever it is referenced.

Using global database names establishes a link between the database name, database domain,
and database link names. This, in turn, may make it easier to identify and manage database links.
For example, you can create a public database link (with no connect string, as shown in the
preceding example) in each database that points to every other database. Users within a database
no longer need to guess at the proper database link to use; if they know the global database name,
they know the database link name. If a table is moved from one database to another, or if a
database is moved from one host to another, it is easy to determine which of the old database
links must be dropped and re-created. Using global database names is part of migrating from
standalone databases to true networks of databases.

Using Shared Database Links
If you use a shared server configuration for your database connections and your application will
employ many concurrent database link connections, you may benefit from using shared database
links. A shared database link uses shared server connections to support the database link connections.
If you have multiple concurrent database link accesses into a remote database, you can use
shared database links to reduce the number of server connections required.

To create a shared database link, use the shared keyword of the create database link
command. As shown in the following listing, you will also need to specify a schema and
password for the remote database:

create shared database link HR_LINK_SHARED
connect to current_user
authenticated by HR identified by employeeservices202
using 'hq';

The HR_LINK_SHARED database link uses the connected user’s username and password when
accessing the HQ database, since this link specifies the connect to current_user clause. In other
to prevent unauthorized attempts to use shared links, the authenticated by clause is required for
shared links. In this example, the account used for authentication is an application user’s account,

Chapter 17: Managing Distributed Databases 609

but you can also use an empty schema (that no user will ever log into) for authentication. The
authentication account must have the CREATE SESSION system privilege. When users use the
HR_LINK_SHARED link, connections will use the HR account on the remote database.

NOTE
The authentication username and password are visible to users with
access to the SYS.LINK$ table in Oracle Database 10g Release 1 or
earlier.

If you change the password on the authentication account, you will need to drop and recreate
each database link that references the account. To simplify maintenance, create an account that is
only used for authentication of shared database link connections. The account should only have
the CREATE SESSION privilege; it should not have any privileges on any of the application tables.

If your application uses database links infrequently, you should use traditional database links
without the shared clause. Without the shared clause, each database link connection requires a
separate connection to the remote database. In general, use shared database links when the
number of users accessing a database link is expected to be much larger than the number of
server processes in the local database.

Managing Database Links
You can retrieve information about public database links via the DBA_DB_LINKS data dictionary
view. You can view private database links via the USER_DB_LINKS data dictionary view. Whenever
possible, separate your users among databases by application so that they may all share the same
public database links. As a side benefit, these users will usually also be able to share public grants
and synonyms.

The columns of the DBA_DB_LINKS data dictionary view are listed in the following table.
The password for the link to use is not viewable via DBA_DB_LINKS; it is encrypted in the SYS.
LINK$ table starting with Oracle Database 10g Release 2.

Column Name Description

OWNER The owner of the database link

DB_LINK The name of the database link (such as HR_LINK in this chapter’s examples)

USERNAME The name of the account to use to open a session in the remote database if
a specific connection is used

HOST The connect string that will be used to connect to the remote database

CREATED The creation date for the database link

NOTE
The number of database links that can be used by a single query is
limited by the OPEN_LINKS parameter in the database’s initialization
file. Its default value is 4.

The managerial tasks involved for database links depend on the level to which you have
implemented location transparency in your databases. In the best-case scenario, connected user
links are used with service names or aliases; minimal link management in this scenario requires

610 Oracle Database 11g DBA Handbook

a consistent tnsnames.ora file among all hosts in the domain (or all hosts using the same LDAP
server for name resolution) and that user account/password combinations are the same within
the domain.

Synchronizing account/password combinations across databases may be difficult, but there
are several alternatives. First, you may force all changes to user account passwords to go through
a central authority. This central authority would have the responsibility for updating the password
for the account in all databases in the network—a time-consuming but valuable task.

Second, you may audit user password changes made via the alter user command by auditing
the usage of that command (see Chapter 9). If a user’s password changes in one database, it must
be changed on all databases available in the network that are accessed via connected user links.

If any part of the global object name—such as a username—is embedded in the database link,
a change affecting that part of the global object name requires that the database link be dropped
and re-created. For example, if the HR user’s password were changed, the HR_LINK database link
with a specific connection defined earlier would be dropped with

drop database link HR_LINK;

and the link would have to be re-created using the new account password:

create public database link HR_LINK
connect to HR identified by employeeservices404
using 'hq';

You cannot create a database link in another user’s account. Suppose you attempt to create a
database link in OE’s account, as shown here:

create database link OE.HR_LINK
connect to HR identified by OE2HR
using 'hq';

In this case, Oracle will not create the HR_LINK database link in OE’s account. Instead, Oracle
will create a database link named OE.HR_LINK in the account that executed the create database
link command. To create private database links, you must be logged into the database in the
account that will own the link.

NOTE
To see which links are currently in use in your session, query
V$DBLINK.

Managing Database Triggers
If your data replication needs require synchronized changes in multiple databases, you can use
database triggers to replicate data from one table into another. Database triggers are executed when
specific actions happen. Triggers can be executed for each row of a transaction, for an entire
transaction as a unit, or when system-wide events occur. When dealing with data replication,
you will usually be concerned with triggers affecting each row of data.

Before creating a replication-related trigger, you must create a database link for the trigger to
use. In this case, the link is created in the database that owns the data, accessible to the owner of
the table being replicated:

Chapter 17: Managing Distributed Databases 611

create public database link TRIGGER_LINK
connect to current_user
using 'rmt_db_1';

This link, named TRIGGER_LINK, uses the service name RMT_DB_1 to specify the connection to
a remote database. The link will attempt to connect to the database RMT_DB_1 using the same
username and password as the account using the link.

The trigger shown in the following listing uses this link. The trigger is fired after every row is
inserted into the EMPLOYEES table. Because the trigger executes after the row has been inserted,
the row’s data has already been validated in the local database. The trigger inserts the same row
into a remote table with the same structure, using the TRIGGER_LINK database link just defined.
The remote table must already exist.

create trigger COPY_DATA
after insert on EMPLOYEES
for each row
begin
 insert into EMPLOYEES@TRIGGER_LINK
 values
 (:new.Empno, :new.Ename, :new.Deptno,
 :new.Salary, :new.Birth_Date, :new.Soc_Sec_Num);
end;
/

This trigger uses the new keyword to reference the values from the row that was just inserted into
the local EMPLOYEES table.

NOTE
If you use trigger-based replication, your trigger code must account
for potential error conditions at the remote site, such as duplicate key
values, space-management problems, or a shut down database.

select Trigger_Type,
 Triggering_Event,
 Table_Name
 from DBA_TRIGGERS
 where Trigger_Name = 'COPY_DATA';

Sample output from this query is as follows:

TYPE TRIGGERING_EVENT TABLE_NAME
---------------- ---------------------- ------------
AFTER EACH ROW INSERT EMPLOYEES

You can query the text of the trigger from DBA_TRIGGERS, as shown in this example:

set long 1000
select Trigger_Body
 from DBA_TRIGGERS
 where Trigger_Name = 'COPY_DATA';

612 Oracle Database 11g DBA Handbook

TRIGGER_BODY

begin
 insert into EMPLOYEES@TRIGGER_LINK
 values
 (:new.Empno, :new.Ename, :new.Deptno,
 :new.Salary, :new.Birth_Date, :new.Soc_Sec_Num);
end;

It is theoretically possible to create a trigger to replicate all possible permutations of data-
manipulation actions on the local database, but this quickly becomes difficult to manage. For
a complex environment, you should consider the use of materialized views. For the limited
circumstances described earlier, triggers are a very easy solution to implement.

NOTE
If you use triggers for your data replication, the success of a transaction
in the master database is dependent on the success of the remote
transaction.

Managing Materialized Views
You can use materialized views to aggregate, pre-join, or replicate data. In an enterprise database
environment, data generally flows from an online transaction-processing database into a data
warehouse. Normally the data is prestaged, cleansed, or otherwise processed and then moved
into the data warehouse. From there, the data may be copied to other databases or data marts.

You can use materialized views to pre-compute and store aggregate information within a
database, to dynamically replicate data between distributed databases, and synchronize data
updates within replicated environments. In replication environments, materialized views enable
local access to data that would normally have to be accessed remotely. A materialized view may
be based on another materialized view.

In large databases, materialized views help to improve the performance of queries that involve
aggregates (including sum, count, average, variance, standard deviation, minimum, and maximum)
or table joins. Oracle’s query optimizer will automatically recognize that the materialized view
could be used to satisfy the query—a feature known as query rewrite.

NOTE
For best results, make sure the statistics on the materialized view
are kept current. As of Oracle Database 10g, statistics on all
database objects are collected on a regular basis during predefined
maintenance windows as part of the automated maintenance tasks
infrastructure (AutoTask).

You can use initialization parameters to configure the optimizer to automatically rewrite queries
to use the materialized views whenever possible. Because materialized views are transparent to
SQL applications, they can be dropped or created without any impact on the execution of the
SQL code. You can also create partitioned materialized views, and you can base materialized
views on partitioned tables.

Unlike regular views, materialized views store data and take up physical space in your database.
Materialized views are populated with data generated from their base queries, and they are

Chapter 17: Managing Distributed Databases 613

refreshed on demand or on a scheduled basis. Therefore, whenever the data accessed by the base
query changes, the materialized views should be refreshed to reflect the data changes. The data
refresh frequency depends on how much data latency your business can tolerate in the processes
supported by the materialized views. You’ll see how to establish your refresh rate later in this
chapter.

The materialized view will create several objects in the database. The user creating the
materialized view must have the CREATE MATERIALIZED VIEW, CREATE TABLE, and CREATE
VIEW privileges as well as the SELECT privilege on any tables that are referenced but are owned
by another schema. If the materialized view is going to be created in another schema, the user
creating the materialized view must have the CREATE ANY MATERIALIZED VIEW privilege and
the SELECT privilege to the tables that are referenced in the materialized view if the tables are
owned by another schema. To enable query rewrite on a materialized view that references tables
within another schema, the user enabling query rewrite must have the GLOBAL QUERY REWRITE
privilege or be explicitly granted the QUERY REWRITE privilege on any referenced table within
another schema. The user must also have the UNLIMITED TABLESPACE privilege. Materialized
views can be created in the local database, and pull data from the remote master database or
materialized views can reside on the same database server on which the data is located.

If you plan to use the query rewrite feature, you must put the following entry in your
initialization parameter file:

QUERY_REWRITE_ENABLED=TRUE

NOTE
If the OPTIMIZER_FEATURES_ENABLE parameter is set to 10.0.0
or higher, then QUERY_REWRITE_ENABLED defaults to TRUE.

A second parameter, QUERY_REWRITE_INTEGRITY, sets the degree to which Oracle must
enforce query rewriting. At the safest level, Oracle does not use query rewrite transformations
that rely on unenforced relationships. The valid values for QUERY_REWRITE_INTEGRITY are
ENFORCED (Oracle enforces and guarantees consistency and integrity), TRUSTED (query rewrite
is supported for declared relationships), and STALE_TOLERATED (query rewrite is supported
even if the materialized views are inconsistent with their underlying data). By default, QUERY_
REWRITE_INTEGRITY is set to ENFORCED.

Materialized View Decisions
Before you can create a materialized view, you must make several decisions, including:

Whether the materialized view is to be populated with data during creation or after

How often the materialized view is to be refreshed

What type of refreshes to perform

Whether to maintain a materialized view log or not

You can either have data loaded to the materialized view upon its creation using the build
immediate option of the create materialized view command, or you can add the build deferred
clause to pre-create the materialized view but not populate it until the first time it is used. The
advantage of populating the view on creation is that the data will be available immediately when
you make the materialized view available. However, if the materialized view is not going to be

■

■

■

■

614 Oracle Database 11g DBA Handbook

used right away and the underlying data changes rapidly, the data in the materialized view will
become stale rapidly. If you wait to have the materialized view populated, the view will not be
populated with data until the package DBMS_MVIEW.REFRESH is automatically executed, and
your users must wait for the view to populate before any data is returned, thus causing a one-time
performance degradation. If a standard view already exists and you want to convert it to a
materialized view, you can use the prebuilt keyword option.

You must decide how much stale data is tolerable in terms of your company’s needs. You can
base your decision on how frequently the data changes in the table on which the materialized
view is based. If your management does not have to have up-to-the-minute information on which
to base decisions, you might only need to refresh your materialized view once an hour or once a
day. If it is critical for the data to be absolutely accurate at all times, you may need to perform fast
refreshes every five minutes throughout the day and night.

There are four forms of refresh when specifying a refresh method during materialized view
creation: refresh complete, refresh fast, refresh force, and never refresh. In a fast refresh,
materialized view logs are used to track the data changes that have occurred within the table
since the last refresh. Only changed information is populated back to the materialized view, on
a periodic basis, based on the refresh criteria you have established. The materialized view log
is maintained in the same database and schema as the master table for the materialized view.
Because the fast refresh just applies changes made since the last refresh, the time taken to perform
the refresh should generally be very short.

In a complete refresh, the data within the materialized view is completely replaced each time
the refresh is run. The time required to perform a complete refresh of the materialized view can
be substantial. You can either have the refresh performed each time transactions are committed
on the master table (refresh on commit) or only when the DBMS_MVIEW.REFRESH procedure is
run (refresh on demand).

When you specify force refresh, the refresh process first evaluates whether or not a fast refresh
can be run. If it can’t, a complete refresh will be performed. If you specify never refresh as the
refresh option, the materialized view will not be refreshed.

If you do not have a materialized view log created and populated, only complete refreshes
can be executed.

Creating a Materialized View
A sample command used to create the materialized view is shown in the following listing. In
this example, the materialized view is given a name (STORE_DEPT_SAL_MV) and its storage
parameters are specified as well as its refresh interval and the time at which it will be populated
with data. In this case, the materialized view is told to use the complete refresh option and to not
populate the data until the DBMS_MVIEW.REFRESH procedure is run. Query rewrite is enabled.
This materialized view’s base query is as follows:

create materialized view STORE_DEPT_SAL_MV
tablespace MVIEWS
build deferred
refresh complete
enable query rewrite
as
select d.DNAME, sum(SAL) as tot_sum
 from DEPT d, EMP e
 where d.DEPTNO = e.DEPTNO
group by d.DNAME;

Chapter 17: Managing Distributed Databases 615

NOTE
A materialized view query cannot reference tables or views owned by
the user SYS.

The following example shows another example of a materialized view creation, using the
refresh fast on commit clause. To support fast refreshes when commits occur, you will need to
create a materialized view log on the base table. See “Managing Materialized View Logs” later
in this chapter for details.

create materialized view STORE_DEPT_SAL_MV
tablespace MYMVIEWS
parallel
build immediate
refresh fast on commit
enable query rewrite
as
select d.DNAME, sum(SAL) as tot_sum
 from DEPT d, EMP e
 where d.DEPTNO = e.DEPTNO
group by d.DNAME;

In this example, the same base query is used, but the materialized view is created with refresh
fast on commit so that a fast refresh occurs every time a transaction is committed in any of the
materialized view’s base queries. This materialized view will be populated with data on creation,
and the inserted rows will be loaded in parallel. Query rewrite is enabled as well.

NOTE
The fast refresh option will not be used unless a materialized view
log is created on the base table for the materialized view. Oracle can
perform fast refreshes of joined tables in materialized views.

For both of these examples, the materialized view uses the default storage parameters for its
tablespace. You can alter the materialized view’s storage parameters via the alter materialized
view command, as in this example:

alter materialized view STORE_DEPT_SAL_MV pctfree 5;

The two most frequently used operations against a materialized view are query execution
and fast refresh. Each of these actions requires different resources and has different performance
requirements. You may index the base table of the materialized view; for example, adding an
index to improve query performance. If you have a materialized view that only uses join conditions
and fast refresh, indexes on the primary key columns may improve the fast refresh operations. If
your materialized view uses both joins and aggregates and is fast refreshable, as shown in the last
example, an index is automatically created for the materialized view unless you specify using no
index in the create materialized view command.

To drop a materialized view, use the drop materialized view command:

drop materialized view STORE_DEPT_SAL_MV;

616 Oracle Database 11g DBA Handbook

Using DBMS_MVIEW and DBMS_ADVISOR
There are multiple supplied packages you can use to manage and evaluate your materialized
views, including DBMS_MVIEW, DBMS_ADVISOR, and DBMS_DIMENSION.

The DBMS_MVIEW package subprograms are shown in Table 17-1; this package is used to
perform management tasks such as evaluating, registering, or refreshing a materialized view.

Subprogram Description

BEGIN_TABLE_
REORGANIZATION

A process to preserve the data needed for a materialized
view refresh is performed, used prior to reorganizing the
master table.

END_TABLE_REORGANIZATION Ensures that the materialized view master table is in the
proper state and that the master table is valid, at the end
of a master table reorganization.

ESTIMATE_MVIEW_SIZE Estimates the size of a materialized view, in bytes and rows.

EXPLAIN_MVIEW Explains what is possible with an existing or proposed
materialized view. (Is it fast refreshable? Is query rewrite
available?)

EXPLAIN_REWRITE Explains why a query failed to rewrite, or which
materialized views will be used if it rewrites.

I_AM_A_REFRESH The value of the I_AM_REFRESH package state is
returned, called during replication.

PMARKER Used for Partition Change Tracking. Returns a partition
marker from a RowID.

PURGE_DIRECT_LOAD_LOG Used with data warehousing, this subprogram purges
rows from the direct loader log after they are no longer
needed by a materialized view.

PURGE_LOG Purges rows from the materialized view log.

PURGE_MVIEW_FROM_LOG Purges rows from the materialized view log.

REFRESH Refreshes one or more materialized views that are not
members of the same refresh group.

REFRESH_ALL_MVIEWS Refreshes all materialized views that do not reflect
changes to their master table or master materialized view.

REFRESH_DEPENDENT Refreshes all table-based materialized views that depend
on either a specified master table or master materialized
view. The list can contain one or more master tables or
master materialized views.

REGISTER_MVIEW Enables an individual materialized view’s administration.

UNREGISTER_MVIEW Used to unregister a materialized view at a master site or
master materialized view site.

TABLE 17-1 DBMS_MVIEW Subprograms

Chapter 17: Managing Distributed Databases 617

To refresh a single materialized view, use DBMS_MVIEW.REFRESH. Its two main parameters
are the name of the materialized view to be refreshed and the method to use. For the method,
you can specify ‘c’ for a complete refresh, ‘f’ for fast refresh, and ‘?’ for force. Here’s an example:

execute DBMS_MVIEW.REFRESH('store_dept_sal_mv','c');

If you are refreshing multiple materialized views via a single call to DBMS_MVIEW.REFRESH,
list the names of all the materialized views in the first parameter and their matching refresh
methods in the second parameter, as in this example:

execute DBMS_MVIEW.REFRESH('mv1,mv2,mv3','cfc');

In this example, the materialized view MV2 will be refreshed via a fast refresh, whereas the other
will use a complete refresh.

You can use a separate procedure in the DBMS_MVIEW package to refresh all the materialized
views that are scheduled to be automatically refreshed. This procedure, named REFRESH_ALL,
will refresh each materialized view separately. It does not accept any parameters. The following
listing shows an example of its execution:

execute DBMS_MVIEW.REFRESH_ALL;

Because the materialized views will be refreshed via REFRESH_ALL consecutively, they are
not all refreshed at the same time (in other words, not in parallel). Therefore, a database or server
failure during this procedure may cause the local materialized views to be out of sync with each
other. In this case, simply rerun this procedure after the database has been recovered. As an
alternative, you can create refresh groups, as described in the next section.

Using the SQL Access Advisor
As of Oracle Database 10g, you can use the SQL Access Advisor to generate recommendations
for the creation and indexing of materialized views. The SQL Access Advisor may recommend
specific indexes (and types of indexes) to improve the performance of joins and other queries. The
SQL Access Advisor may also generate recommendations for altering a materialized view so that
it supports query rewrite or fast refreshes. You can execute the SQL Access Advisor from within
Oracle Enterprise Manager or via executions of the DBMS_ADVISOR package.

NOTE
For best results from the DBMS_ADVISOR package, you should
gather statistics about all tables, indexes, and join columns prior
to generating recommendations.

To use the SQL Access Advisor, either from Oracle Enterprise Manager or via DBMS_
ADVISOR, perform the following steps:

 1. Create a task.

 2. Define the workload.

 3. Generate recommendations.

 4. View and implement recommendations.

You can create a task in one of two ways: by executing the DBMS_ADVISOR.CREATE_TASK
procedure or by using the DBMS_ADVISOR.QUICK_TUNE procedure (as shown in the next
section).

618 Oracle Database 11g DBA Handbook

The workload consists of one or more SQL statements plus the statistics and attributes that
relate to the statement. The workload may include all SQL statements for an application. The SQL
Access Advisor ranks the entries in the workload according to statistics and business importance.
The workload is created using the DBMS_ADVISOR.CREATE_SQLWKLD procedure. To associate
a workload with a parent Advisor task, use the DBMS_ADVISOR.ADD_SQLWKLD_REF procedure.
If a workload is not provided, the SQL Access Advisor can generate and use a hypothetical workload
based on the dimensions defined in your schema.

Once a task exists and a workload is associated with the task, you can generate recommendations
via the DBMS_ADVISOR.EXECUTE_TASK procedure. The SQL Access Advisor will consider the
workload and the system statistics and will attempt to generate recommendations for tuning the
application. You can see the recommendations by executing the DBMS_ADVISOR.GET_TASK_
SCRIPT function or via data dictionary views. Each recommendation can be viewed via USER_
ADVISOR_RECOMMENDATIONS (there are “ALL” and “DBA” versions of this view available as
well). To relate recommendations to a SQL statement, you will need to use the USER_ADVISOR_
SQLA_WK_STMTS view and USER_ADVISOR_ACTIONS.

NOTE
See Chapter 6 for more examples of using the DBMS_ADVISOR
package.

When you execute the GET_TASK_SCRIPT procedure, Oracle generates an executable SQL
file that will contain the commands needed to create, alter, or drop the recommended objects.
You should review the generated script prior to executing it, particularly noting the tablespace
specifications. Later in this chapter, you will see how to use the QUICK_TUNE procedure to
simplify the tuning advisor process for a single command.

To tune a single SQL statement, use the QUICK_TUNE procedure of the DBMS_ADVISOR
package. QUICK_TUNE has two input parameters, a task name and a SQL statement. Using
QUICK_TUNE shields the user from the steps involved in creating workloads and tasks via
DBMS_ADVISOR.

For example, the following procedure call evaluates a query:

execute DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, -
 'MV_TUNE','SELECT PUBLISHER FROM BOOKSHELF');

NOTE
The user executing this command needs the ADVISOR system
privilege.

The recommendations generated by QUICK_TUNE can be viewed via the data dictionary
view USER_ADVISOR_ACTIONS, but they are easier to read if you use the DBMS_ADVISOR
procedures to generate a script file. The recommendation in this example is to create a materialized
view to support the query. Because only one SQL statement was provided, this recommendation
is given in isolation and does not consider any other aspects of the database or application.

You can use the CREATE_FILE procedure to automate the generation of a file containing the
scripts needed to implement the recommendations. First, create a directory object to hold the file:

create directory scripts as 'e:\scripts';
grant read on directory scripts to public;
grant write on directory scripts to public;

Chapter 17: Managing Distributed Databases 619

Next, execute the CREATE_FILE procedure. It has three input variables: the script (generated
by GET_TASK_SCRIPT, to which you pass the name of the task), the output directory, and the
name of the file to be created.

execute DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('MV_TUNE'),-
'SCRIPTS','MV_TUNE.sql');

The MV_TUNE.sql file created by the CREATE_FILE procedure will contain commands similar
to those shown in the following listing. Depending on the specific version of Oracle, the
recommendations may differ.

Rem Username: PRACTICE
Rem Task: MV_TUNE
Rem

set feedback 1
set linesize 80
set trimspool on
set tab off
set pagesize 60

whenever sqlerror CONTINUE

CREATE MATERIALIZED VIEW "PRACTICE"."MV$$_021F0001"
 REFRESH FORCE WITH ROWID
 ENABLE QUERY REWRITE
 AS SELECT PRACTICE.BOOKSHELF.ROWID C1,
"PRACTICE"."BOOKSHELF"."PUBLISHER" M1
FROM PRACTICE.BOOKSHELF;

begin
 dbms_stats.gather_table_stats('"PRACTICE"',
'"MV$$_021F0001"',NULL,dbms_stats.auto_sample_size);
end;
/

whenever sqlerror EXIT SQL.SQLCODE

begin
dbms_advisor.mark_recommendation('MV_TUNE',1,'IMPLEMENTED');
end;
/

The MARK_RECOMMENDATION procedure allows you to annotate the recommendation
so that it can be skipped during subsequent script generations. Valid actions for MARK_
RECOMMENDATION include ACCEPT, IGNORE, IMPLEMENTED, and REJECT.

You can use the TUNE_MVIEW procedure of the DBMS_ADVISOR package to generate
recommendations for the reconfiguration of your materialized views. TUNE_MVIEW generates
two sets of output results, one for the creation of new materialized views and the other for the
removal of previously created materialized views. The end result should be a set of materialized
views that can be fast refreshed, replacing materialized views that cannot be fast refreshed.

620 Oracle Database 11g DBA Handbook

You can view the TUNE_MVIEW output via the USER_TUNE_MVIEW data dictionary view, or
you can generate its scripts via the GET_TASK_SCRIPT and CREATE_FILE procedures shown in the
previous listings.

The supplied programs for the DBMS_ADVISOR package are shown in Table 17-2.

Subprocedure Description

ADD_SQLWKLD_REF Add a workload reference to an Advisor task.

ADD_SQLWKLD_STATEMENT Add a single statement to a workload.

CANCEL_TASK Cancel a currently executing task operation.

CREATE_FILE Create an external file from a PL/SQL CLOB
variable.

CREATE_OBJECT Create a new task object.

CREATE_SQLWKLD Create a new workload object.

CREATE_TASK Create a new Advisor task in the repository.

DELETE_SQLWKLD Delete an entire workload object.

DELETE_SQLWKLD_REF Delete an entire workload object.

DELETE_SQLWKLD_STATEMENT Delete one or more statements from a workload.

DELETE_TASK Delete the specified task from the repository.

EXECUTE_TASK Execute the specified task.

GET_REC_ATTRIBUTES Retrieve specific recommendation attributes
from a task.

GET_TASK_SCRIPT Create and return an executable SQL script of the
Advisor recommendations.

IMPORT_SQLWKLD_SCHEMA Import data into a workload from the current
SQL cache.

IMPORT_SQLWKLD_SQLCACHE Import data into a workload from the current
SQL cache.

IMPORT_SQLWKLD_STS Import data into a workload from a SQL Tuning Set.

IMPORT_SQLWKLD_SUMADV Import data into a workload from the current
SQL cache.

IMPORT_SQLWKLD_USER Import data into a workload from the current
SQL cache.

INTERRUPT_TASK Stop a currently executing task, ending its
operations as it would at a normal exit.

MARK_RECOMMENDATION Set the annotation status for a particular
recommendation.

QUICK_TUNE Perform an analysis on a single SQL statement.

TABLE 17-2 DBMS_ADVISOR Subprograms

Chapter 17: Managing Distributed Databases 621

An additional package, DBMS_DIMENSION, provides these two procedures:

DESCRIBE_DIMENSION Show the definition of the input dimension, including owner,
name, levels, hierarchies, and attributes.

VALIDATE DIMENSION Verify that the relationships specified in a dimension are correct.

You can use the DBMS_DIMENSION package to validate and display the structure of your
dimensions.

Enforcing Referential Integrity Among Materialized Views
The referential integrity between two related tables, both of which have simple materialized views
based on them, may not be enforced in their materialized views. If the tables are refreshed at
different times, or if transactions are occurring on the master tables during the refresh, it is possible
for the materialized views of those tables to not reflect the referential integrity of the master tables.

If, for example, the EMPLOYEES and DEPARTMENTS tables are related to each other via a
primary key/foreign key relationship, then simple materialized views of these tables may contain
violations of this relationship, including foreign keys without matching primary keys. In this example,
that could mean employees in the EMPLOYEES materialized view with DEPTNO values that do
not exist in the DEPARTMENTS materialized view.

This problem has a number of potential solutions. First, time the refreshes to occur when the
master tables are not in use. Second, perform the refreshes manually (see the following section for
information on this) immediately after locking the master tables or quiescing the database. Third,
you may join the tables in the materialized view, creating a complex materialized view that will
be based on the master tables (which will be properly related to each other). Fourth, you can force
the materialized view updates to occur when transactions are committed in the primary database.

Subprocedure Description

RESET_TASK Reset a task to its initial state.

SET_DEFAULT_SQLWKLD_PARAMETER Import data into a workload from schema evidence.

SET_DEFAULT_TASK_PARAMETER Modify a default task parameter.

SET_SQLWKLD_PARAMETER Set the value of a workload parameter.

SET_TASK_PARAMETER Set the specified task parameter value.

TUNE_MVIEW Show how to decompose a materialized view
into two or more materialized views or to restate
the materialized view in a way that is more
advantageous for fast refresh and query rewrite.

UPDATE_OBJECT Update a task object.

UPDATE_REC_ATTRIBUTES Update an existing recommendation for the
specified task.

UPDATE_SQLWKLD_ATTRIBUTES Update a workload object.

UPDATE_SQLWKLD_STATEMENT Update one or more SQL statements in a workload.

UPDATE_TASK_ATTRIBUTES Update a task’s attributes.

TABLE 17-2 DBMS_ADVISOR Subprograms (continued)

622 Oracle Database 11g DBA Handbook

Using refresh groups provides another solution to the referential integrity problem. You can
collect related materialized views into refresh groups. The purpose of a refresh group is to coordinate
the refresh schedules of its members. Materialized views whose master tables have relationships
with other master tables are good candidates for membership in refresh groups. Coordinating the
refresh schedules of the materialized views will maintain the master tables’ referential integrity in
the materialized views as well. If refresh groups are not used, the data in the materialized views
may be inconsistent with regard to the master tables’ referential integrity.

Manipulation of refresh groups is performed via the DBMS_REFRESH package. The procedures
within that package are MAKE, ADD, SUBTRACT, CHANGE, DESTROY, and REFRESH, as shown
in the following examples. Information about existing refresh groups can be queried from the
USER_REFRESH and USER_REFRESH_CHILDREN data dictionary views.

NOTE
Materialized views that belong to a refresh group do not have to
belong to the same schema, but they do have to be all stored within
the same database.

You can create a refresh group by executing the MAKE procedure in the DBMS_REFRESH
package, whose calling parameters are shown here:

DBMS_REFRESH.MAKE
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := FALSE,
 lax IN BOOLEAN := FALSE,
 job IN BINARY INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

All but the first four of the parameters for this procedure have default values that are usually
acceptable. The list and tab parameters are mutually exclusive. You can use the following
command to create a refresh group for materialized views names LOCAL_EMP and LOCAL_DEPT:

execute DBMS_REFRESH.MAKE
(name => 'emp_group', -
 list => 'local_emp, local_dept', -
 next_date => SysDate, -
 interval => 'SysDate+7');

NOTE
The list parameter, which is the second parameter in the listing, has a
single quote at its beginning and at its end, with none between. In this
example, two materialized views—LOCAL_EMP and LOCAL_DEPT—
are passed to the procedure via a single parameter.

Chapter 17: Managing Distributed Databases 623

The preceding command will create a refresh group named EMP_GROUP, with two materialized
views as its members. The refresh group name is enclosed in single quotes, as is the list of members—
but not each member.

If the refresh group is going to contain a materialized view that is already a member of another
refresh group (for example, during a move of a materialized view from an old refresh group to a
newly created refresh group), you must set the lax parameter to TRUE. A materialized view can
only belong to one refresh group at a time.

To add materialized views to an existing refresh group, use the ADD procedure of the DBMS_
REFRESH package, whose parameters are as follows:

DBMS_REFRESH.ADD
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 lax IN BOOLEAN := FALSE);

As with the MAKE procedure, the ADD procedure’s lax parameter does not have to be specified
unless a materialized view is being moved between two refresh groups. When this procedure is
executed with the lax parameter set to TRUE, the materialized view is moved to the new refresh
group and is automatically deleted from the old refresh group.

To remove materialized views from an existing refresh group, use the SUBTRACT procedure
of the DBMS_REFRESH package, as in the following example:

DBMS_REFRESH.SUBTRACT
(name IN VARCHAR2,
 list IN VARCHAR2, |
 tab IN DBMS_UTILITY.UNCL_ARRAY,
 lax IN BOOLEAN := FALSE);

As with the MAKE and ADD procedures, a single materialized view or a list of materialized
views (separated by commas) may serve as input to the SUBTRACT procedure. You can alter the
refresh schedule for a refresh group via the CHANGE procedure of the DBMS_REFRESH package;
here are the parameters:

DBMS_REFRESH.CHANGE
(name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

The next_date parameter is analogous to the start with clause in the create materialized view
command. For example, to change the EMP_GROUP’s schedule so that it will be replicated every
three days, you can execute the following command (which specifies a NULL value for the next_
date parameter, leaving that value unchanged):

execute DBMS_REFRESH.CHANGE
(name => 'emp_group',

624 Oracle Database 11g DBA Handbook

 next_date => null,
 interval => 'SysDate+3');

After this command is executed, the refresh cycle for the EMP_GROUP refresh group will be
changed to every three days.

NOTE
Refresh operations on refresh groups may take longer than comparable
materialized view refreshes. Group refreshes may also require
significant undo segment space to maintain data consistency during
the refresh.

You can manually refresh a refresh group via the REFRESH procedure of the DBMS_REFRESH
package. The REFRESH procedure accepts the name of the refresh group as its only parameter.
The command shown here will refresh the refresh group named EMP_GROUP:

execute DBMS_REFRESH.REFRESH('emp_group');

To delete a refresh group, use the DESTROY procedure of the DBMS_REFRESH package, as
shown in the following example. Its only parameter is the name of the refresh group.

execute DBMS_REFRESH.DESTROY(name => 'emp_group');

You may also implicitly destroy the refresh group. If you set the implicit_destroy parameter
to TRUE when you create the group with the MAKE procedure, the refresh group will be deleted
(destroyed) when its last member is removed from the group (usually via the SUBTRACT
procedure).

NOTE
For performance statistics related to materialized view refreshes, query
V$MVREFRESH.

Managing Materialized View Logs
A materialized view log is a table that maintains a record of modifications to the master table in a
materialized view. It is stored in the same database as the master table and is only used by simple
materialized views. The data in the materialized view log is used during fast refreshes. If you are
going to use fast refreshes, create the materialized view log before creating the materialized view.

To create a materialized view log, you must be able to create an AFTER ROW trigger on the
table, so you need CREATE TRIGGER and CREATE TABLE privileges. You cannot specify a name
for the materialized view log.

Because the materialized view log is a table, it has the full set of table storage clauses
available to it. The following example shows the creation of a materialized view log on a table
named EMPLOYEES:

create materialized view log on EMPLOYEES
tablespace DATA_2;

The pctfree value for the materialized view log can be set very low (even 0), since there will
not be any updates to this table! The size of the materialized view log depends on the number of
changes that will be processed during each refresh. The more frequently all the materialized
views that reference the master table are refreshed, the less space is needed for the log.

Chapter 17: Managing Distributed Databases 625

You can modify the storage parameters for the materialized view log via the alter materialized
view log command. When using this command, specify the name of the master table. An example
of altering the EMPLOYEES table’s materialized view log is shown in the following listing:

alter materialized view log on EMPLOYEES pctfree 10;

To drop a materialized view log, use the drop materialized view log command, as in this
example:

drop materialized view log on EMPLOYEES;

Purging the Materialized View Log
The materialized view log contains transient data; records are inserted into the log, used during
refreshes, and then deleted. If multiple materialized views use the same master table, they share
the same materialized view log. If one of the materialized views is not refreshed for a long period,
the materialized view log may never delete any of its records. As a result, the space requirements
of the materialized view log will grow.

To reduce the space used by log entries, you can use the PURGE_LOG procedure of the
DBMS_MVIEW package. PURGE_LOG takes three parameters: the name of the master table,
a num variable, and a DELETE flag. The num variable specifies the number of least recently
refreshed materialized views whose rows will be removed from the materialized view log.
For example, if you have three materialized views that use the materialized view log and one of
them has not been refreshed for a very long time, you would use a num value of 1.

The following listing shows an example of the PURGE_LOG procedure. In this example,
the EMPLOYEES table’s materialized view log will be purged of the entries required by the least
recently used materialized view:

execute DBMS_MVIEW.PURGE_LOG
(master => 'EMPLOYEES',
 num => 1,
 flag => 'DELETE');

To further support maintenance efforts, Oracle provides two materialized view–specific
options for the truncate command; if you want to truncate the master table without losing its
materialized view log entries, you can use the truncate command with options like the following:

truncate table EMPLOYEES preserve materialized view log;

If the EMPLOYEES table’s materialized views are based on primary key values (the default
behavior), the materialized view log values will still be valid following an export/import of the
EMPLOYEES table. However, if the EMPLOYEES table’s materialized views are based on ROWID
values, the materialized view log would be invalid following an export/import of the base table
(since different ROWIDs will most likely be assigned during the import). In that case, you should
truncate the materialized view log when you truncate the base table, as in this example:

truncate table EMPLOYEES purge materialized view log;

What Kind of Refreshes Can Be Performed?
To see what kind of refresh and rewrite capabilities are possible for your materialized views, you
can query the MV_CAPABILITIES_TABLE table. The capabilities may change between versions, so
you should reevaluate your refresh capabilities following Oracle software upgrades. To create this
table, execute the utlxmv.sql script located in the directory $ORACLE_HOME/rdbms/admin directory.

626 Oracle Database 11g DBA Handbook

The columns of MV_CAPABILITIES TABLE are shown here:

desc MV_CAPABILITIES_TABLE

 Name Null? Type
 --- -------- ----------------
 STATEMENT_ID VARCHAR2(30)
 MVOWNER VARCHAR2(30)
 MVNAME VARCHAR2(30)
 CAPABILITY_NAME VARCHAR2(30)
 POSSIBLE CHAR(1)
 RELATED_TEXT VARCHAR2(2000)
 RELATED_NUM NUMBER
 MSGNO NUMBER(38)
 MSGTXT VARCHAR2(2000)
 SEQ NUMBER

To populate the MV_CAPABILITIES table, execute the procedure DBMS_MVIEW.EXPLAIN_
MVIEW, using the name of the materialized view as the input value, as in this example:

execute DBMS_MVIEW.EXPLAIN_MVIEW('local_category_count');

The script utlxmv.sql provides guidance on the interpretation of the column values, as in this
listing:

CREATE TABLE MV_CAPABILITIES_TABLE
 (STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:
 -- REWRITE
 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at least full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast

Chapter 17: Managing Distributed Databases 627

 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated
 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000),-- Owner.table.column, alias name, etc.
 -- related to this message. The
 -- specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 -- The specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 MSGNO INTEGER, -- When available, QSM message #
 -- explaining why not possible or more
 -- details when enabled.
 MSGTXT VARCHAR(2000),-- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

Once the EXPLAIN_MVIEW procedure has been executed, you can query the MV_
CAPABILITIES_TABLE to determine your options:

select Capability_Name, Msgtxt
 from MV_CAPABILITIES_TABLE
 where Msgtxt is not null;

For the LOCAL_BOOKSHELF materialized view, the query returns the following:

CAPABILITY_NAME

MSGTXT
--
PCT_TABLE
relation is not a partitioned table

REFRESH_FAST_AFTER_INSERT
the detail table does not have a materialized view log

REFRESH_FAST_AFTER_ONETAB_DML

628 Oracle Database 11g DBA Handbook

see the reason why REFRESH_FAST_AFTER_INSERT is disabled

REFRESH_FAST_AFTER_ANY_DML
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_PCT
PCT is not possible on any of the detail tables in the
materialized view

REWRITE_FULL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_PARTIAL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_GENERAL
query rewrite is disabled on the materialized view

REWRITE_PCT
general rewrite is not possible or PCT is not possible on
any of the detail tables

PCT_TABLE_REWRITE
relation is not a partitioned table

10 rows selected.

Because the query rewrite clause was not specified during the creation of this materialized
view, the query rewrite capabilities are disabled for the LOCAL_BOOKSHELF table. Fast refresh
capabilities are not supported, because the base table does not have a materialized view log. If
you change your materialized view or its base table, you should regenerate the data in MV_
CAPABILITIES_TABLE to see the new options.

As shown in the preceding listing, the LOCAL_BOOKSHELF materialized view cannot use
a fast refresh because its base table does not have a materialized view log. Here are some other
constraints that will limit your ability to use fast refreshes:

The materialized view must not contain references to nonrepeating expressions such as
SYSDATE and ROWNUM.

The materialized view must not contain references to RAW or LONG RAW datatypes.

For materialized views based on joins, ROWIDs from all tables in the from list must be
part of the select list.

If there are outer joins, all the joins must be connected by ands, the where clause must
have no selections, and unique constraints must exist on the join columns of the inner
join table.

For materialized views based on aggregates, the materialized view logs must contain all
columns from the referenced tables, must specify the rowid and including new values
clauses, and must specify the sequence clause.

■

■

■

■

■

Chapter 17: Managing Distributed Databases 629

See the Oracle Database Data Warehousing Guide 11g Release 1 (11.1) for additional
restrictions related to fast refreshes of complex aggregates.

NOTE
You can specify an order by clause in the create materialized view
command. The order by clause will only affect the initial creation of
the materialized view; it will not affect any refreshes.

Using Materialized Views to Alter Query Execution Paths
For a large database, a materialized view may offer several performance benefits. You can use
materialized views to influence the optimizer to change the execution paths for queries. This
feature, called query rewrite, enables the optimizer to use a materialized view in place of the
table queried by the materialized view, even if the materialized view is not named in the query.
For example, if you have a large SALES table, you may create a materialized view that sums the
SALES data by region. If a user queries the SALES table for the sum of the SALES data for a region,
Oracle can redirect that query to use your materialized view in place of the SALES table. As a
result, you can reduce the number of accesses against your largest tables, thus improving the
system performance. Further, because the data in the materialized view is already grouped by
region, summarization does not have to be performed at the time the query is issued.

NOTE
You must specify enable query rewrite in the materialized view
definition for the view to be used as part of a query rewrite operation.

To use the query rewrite capability effectively, you should create a dimension that defines the
hierarchies within the table’s data. To execute the create dimension command, you must have the
CREATE DIMENSION system privilege. In this example, countries are part of continents, so you
can create tables and dimensions to support this hierarchy:

create dimension GEOGRAPHY
 level COUNTRY_ID is COUNTRY.Country
 level CONTINENT_id is CONTINENT.Continent
 hierarchy COUNTRY_ROLLUP (
 COUNTRY_ID child of
 CONTINENT_ID
 join key COUNTRY.Continent references CONTINENT_id);

To enable a materialized view for query rewrite, you must place all the master tables for the
materialized view in the materialized view’s schema, and you must have the QUERY REWRITE
system privilege. In general, you should create materialized views in the same schema as the
tables on which they are based; otherwise, you will need to manage the permissions and grants
required to create and maintain the materialized views.

NOTE
You can enable or disable query rewrite at the SQL statement level via
the REWRITE and NOREWRITE hints. When using the REWRITE hint,
you can specify materialized views for the optimizer to consider.

630 Oracle Database 11g DBA Handbook

NOTE
Query rewrite decisions are based on the costs of the different
execution paths, so your statistics should be kept up to date.

For query rewrite to be enabled, you must set the following initialization parameters:

OPTIMIZER_MODE = ALL_ROWS or FIRST_ROWS or FIRST_ROWS_n

QUERY_REWRITE_ENABLED = TRUE

QUERY_REWRITE_INTEGRITY = STALE_TOLERATED, TRUSTED, or ENFORCED

By default, QUERY_REWRITE_INTEGRITY is set to ENFORCED; in this mode, all constraints
must be validated. The optimizer only uses fresh data from the materialized views and only uses
those relationships that are based on ENABLED and VALIDATED primary, unique, or foreign key
constraints. In TRUSTED mode, the optimizer trusts that the data in the materialized view is fresh
and the relationships declared in dimensions and constraints are correct. In STALE_TOLERATED
mode, the optimizer uses materialized views that are valid but contain stale data as well as those
that contain fresh data.

If you set QUERY_REWRITE_ENABLED to FORCE, the optimizer will rewrite queries to use
materialized views even when the estimated query cost of the original query is lower.

If query rewrite occurs, the explain plan for the query will list the materialized view as one of
the objects accessed, along with an operation listed as “MAT_VIEW REWRITE ACCESS.” You can
use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to see if rewrite is possible for a query and
which materialized views would be involved. If the query cannot be rewritten, the procedure will
document the reasons.

EXPLAIN_REWRITE takes three input parameters—the query, a materialized view name, and a
statement identifier—and can store its output in a table. Oracle provides the create table command
for the output table in a script named utlxrw.sql in the $ORACLE_HOME/rdbms/admin directory.
The utlxrw.sql script creates a table named REWRITE_TABLE.

You can query REWRITE_TABLE for the original cost, rewritten cost, and the optimizer’s decision.
The MESSAGE column will display the reasons for the optimizer’s decision.

If you have used the build deferred option of the create materialized view or alter materialized
view command, the query rewrite feature will not be enabled until after the first time the materialized
view is refreshed.

NOTE
If bind variables have been used within the query, the optimizer will
not rewrite it even though query rewrite has been enabled.

Managing Distributed Transactions
A single logical unit of work may include transactions against multiple databases. For example, a
commit may be executed after two tables in separate databases have been updated. Oracle will
transparently maintain the integrity between the two databases by ensuring that all the transactions
involved either commit or roll back (using the rollback command or a session failure) as a group.
This is accomplished automatically via Oracle’s Two-Phase Commit (2PC) mechanism.

■

■

■

Chapter 17: Managing Distributed Databases 631

The first phase of the 2PC is the prepare phase. In this phase, each node involved in a
transaction prepares the data that it will need to either commit or roll back the data. Once
prepared, a node is said to be “in doubt.” The nodes notify the initiating node for the transaction
(known as the global coordinator) of their status.

Once all nodes are prepared, the transaction enters the commit phase, and all nodes are
instructed to commit their portion of the logical transaction. The databases all commit the data
at the same logical time, preserving the integrity of the distributed data.

Resolving In-Doubt Transactions
Transactions against standalone databases may fail due to problems with the database server; for
example, there may be a media failure. Working with distributed databases increases the number
of potential failure causes during a set of related transactions.

When a distributed transaction is pending, an entry for that transaction will appear in the
DBA_2PC_PENDING data dictionary view. When the transaction completes, its DBA_2PC_
PENDING record is removed. If the transaction is pending but is not able to complete, its record
stays in DBA_2PC_PENDING.

The RECO (Recoverer) background process periodically checks the DBA_2PC_PENDING
view for distributed transactions that failed to complete. Using the information there, the RECO
process on a node will automatically attempt to recover the local portion of an in-doubt
transaction. It then attempts to establish connections to any other databases involved in the
transaction and resolves the distributed portions of the transaction. The related rows in the DBA_
2PC_PENDING view in each database are then removed.

NOTE
You can enable and disable the RECO process via the enable
distributed recovery and disable distributed recovery clauses
of the alter system command.

The recovery of distributed transactions is performed automatically by the RECO process. You
can manually recover the local portions of a distributed transaction, but this will usually result in
inconsistent data between the distributed databases. If a local recovery is performed, the remote
data will be out of sync.

To minimize the number of distributed recoveries necessary, you can influence the way that
the distributed transaction is processed. The transaction processing is influenced via the use of
commit point strength to tell the database how to structure the transaction.

Commit Point Strength
Each set of distributed transactions may reference multiple hosts and databases. Of those, one
host and database can normally be singled out as being the most reliable, or as owning the most
critical data. This database is known as the commit point site. If data is committed there, it should
be committed for all databases. If the transaction against the commit point site fails, the transactions
against the other nodes are rolled back. The commit point site also stores information about the
status of the distributed transaction.

The commit point site will be selected by Oracle based on each database’s commit point
strength. This is set via the initialization file, as shown in the following example:

COMMIT_POINT_STRENGTH=100

632 Oracle Database 11g DBA Handbook

The values for the COMMIT_POINT_STRENGTH parameter are set on a scale relative to other
nodes participating in distributed transactions. In the preceding example, the value is set to 100
(the default is 1). If another database has a value of 200 for this parameter, that database would be
the commit point site for a distributed transaction involving those two databases. The COMMIT_
POINT_STRENGTH cannot exceed 255.

Because the scale is relative, you should set up a site-specific scale. Set the commit point on
your most reliable database to 200. Then, grade the other servers and databases relative to the
most reliable database. If, for example, another database is only 80 percent as reliable as the most
reliable database, assign it a commit point strength of 160 (80 percent of 200). Fixing a single
database at a definite point (in this case, 200) allows the rest of the databases to be graded on an
even scale. This scale should result in the proper commit point site being used for each transaction.

Monitoring Distributed Databases
Several key environmental performance measures must be taken into account for databases:

The performance of the host

The distribution of I/O across disks and controllers

The usage of available memory

For distributed databases, you must also consider the following:

The capacity of the network and its hardware

The load on the network segments

The usage of different physical access paths between hosts

None of these can be measured from within the database. The focus of monitoring efforts for
distributed databases shifts from being database-centric to being network-centric. The database
becomes one part of the monitored environment, rather than the only part that is monitored.

You still need to monitor those aspects of the database that are critical to its success, such
as the free space in tablespaces. However, the performance of distributed databases cannot be
measured except as part of the performance of the network that supports them. Therefore, all
performance-related tests, such as stress tests, must be coordinated with the network management
staff. That staff may also be able to verify the effectiveness of your attempts to reduce the database
load on the network.

The performance of the individual hosts can usually be monitored via a network monitoring
package. This monitoring is performed in a top-down fashion, from network to host to database.
Use the monitoring system described in Chapter 6 as an extension to the network and host monitors.

Tuning Distributed Databases
When you’re tuning a stand-alone database, the goal is to reduce the amount of time it takes to
find data. As described in Chapter 8, you can use a number of database structures and options to
increase the likelihood that the data will be found in the buffer cache or via an index.

■

■

■

■

■

■

Chapter 17: Managing Distributed Databases 633

When working with distributed databases, you have an additional consideration: Because
data is now not only being retrieved but also being shipped across the network, the performance
of a query is made up of the performance of these two steps. You must therefore consider the ways
in which data is being transferred across the network, with a goal of reducing the network traffic.

A simple way to reduce network traffic is to replicate data from one node to another. You
can do this manually (via the SQL*Plus copy command), or it can be done automatically by the
database (via materialized views). Replicating data improves the performance of queries against
remote databases by bringing the data across the network once—usually during a slow period on
the local host. Local queries can use the local copy of the data, eliminating the network traffic
that would otherwise be required.

Let’s consider a simple task—selecting a value from a sequence. A company has created a
distributed application in which a new sequence value is generated for each row. However, the
sequence is local, whereas the insert is being performed in a far distant database. Because the
trigger that generates the sequence value is executed for each row, each insert generates a remote
operation to generate the next sequence value.

The impact of this design is apparent when a session’s trace file is examined:

SELECT NEWID_SEQ.NEXTVAL
FROM
 DUAL

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.13 0 0 0 0
Execute 53 0.01 0.01 0 0 0 0
Fetch 53 0.06 6.34 0 159 0 53
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 107 0.09 6.50 0 159 0 53

Misses in library cache during parse: 0
Optimizer goal: CHOOSE

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 SEQUENCE (REMOTE)
 0 TABLE ACCESS (FULL) OF 'DUAL'

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to dblink 53 0.00 0.00
 SQL*Net message from dblink 53 0.13 6.29

In this case, the query is very simple—it selects the next value of the sequence from the DUAL
table. But the sequence is remote (as seen in the execution plan), so the time required to fetch the
values is 6.29 seconds for 53 rows, out of a total of 6.5 seconds. To tune the application, you
either need to reduce the number of trips (such as by performing batch operations instead of row-
by-row operations) or eliminate the remote architecture component of the insert. If the remote
object (the sequence) and the local object (the DUAL table) can reside on the same database, the
wait times associated with the remote operations can be eliminated.

634 Oracle Database 11g DBA Handbook

NOTE
As of Oracle Database 10g, the DUAL table is an internal table, not a
physical table, and therefore does not generate consistent gets as long
as you don’t use * as the column list in a query referencing DUAL.

Two problems commonly arise with replicated solutions: First, the local data may become out
of sync with the remote data. This is a standard problem with derived data; it limits the usefulness
of this option to tables whose data is fairly static. Even if a simple materialized view is used with a
materialized view log, the data will not be refreshed continuously—only when scheduled.

The second problem with the replicated data solution is that the copy of the table may not be
able to pass updates back to the master table. That is, if a read-only materialized view is used to
make a local copy of a remote table, the snapshot cannot be updated. If you are using materialized
views, you can use updatable materialized views to send changes back to the master site, or you
can use writable materialized views to support local ownership of data.

Any updates that must be processed against replicas must also be performed against the
master tables. If the table is frequently updated, then replicating the data will not improve your
performance unless you are using Oracle’s multimaster replication options. When there is
multisite ownership of data, users can make changes in any database designated as an owner
of the data. The management of Oracle’s multimaster replication is very involved and requires
creating a database environment (with database links and so on) specifically designed to support
multidirectional replication of data. See the Oracle replication documentation for details on
implementing a multimaster environment.

The performance of the refreshes generally won’t concern your users. What may concern them
is the validity and timeliness of the data. If the remote tables are frequently modified and are of
considerable size, you are almost forced to use simple materialized views with materialized view
logs to keep the data current. Performing complete refreshes in the middle of a workday is generally
unacceptable. Therefore, it is the frequency of the refreshes rather than the size of them that
determines which type of materialized view will better serve the users. After all, users are most
concerned about the performance of the system while they are using it; refreshes performed late
at night do not directly affect them. If the tables need to be frequently synchronized, use simple
materialized views with materialized view logs.

As was noted previously in this chapter, you may index the underlying tables that are created
by the materialized view in the local database. Indexing should also help to improve query
performance, at the expense of slowing down the refreshes.

Another means of reducing network traffic, via remote procedure calls, is described in Chapter 8.
That chapter also includes information on tuning SQL and the application design. If the database
was properly structured, tuning the way the application processes data will yield the most significant
performance improvements.

APPENDIX

Installation and
Configuration

635

636 Oracle Database 11g DBA Handbook

nstalling Oracle Database 10g is easy; installing Oracle Database 11g is even
easier. In this appendix, I’ll give you an overview of what you need to do before
you start the installation process, including the configuration of the operating
system software and server hardware. There is no “one size fits all” version of
Oracle Database 11g; I’ll briefly describe what options are available in each edition.

Next, I’ll step through the Oracle Database 11g software installation process using the Oracle
Universal Installer (OUI), then creating a database using the Database Creation Assistant (DBCA).
Although you can create a new database using OUI, running DBCA as a separate step gives you a
bit more configuration flexibility.

Finally, I’ll give you the steps for creating a database manually; unless you have some very
specific reasons to do everything on a command line, you can perform most of your installation
and configuration tasks using Oracle’s GUI tools.

Software Installation
Although Oracle’s installation software becomes easier and easier to use, it is very tempting to
open the box of CDs (or download the ISO images) and start the installation right away. Although
this is fine if you’re going to experiment with some new database features, a lot more planning is
required to perform a successful installation without a lot of rework or even reinstallation a month
from now. Although the complete details of all possible options of an Oracle Database 11g
installation is beyond the scope of this book, we will cover the basics of an Oracle install using
the Oracle Universal Installer (OUI) along with a basic template for doing a manual install of the
database using the create database command. In any case, a thorough review of the installation
guide for your specific platform is another key to a successful Oracle database deployment.

Here is a checklist of issues that should be addressed or resolved before starting the installation:

Decide on the local database name and which domain will contain this database. These
names are set in the initialization parameters DB_NAME and DB_DOMAIN.

For the first project to use the database, estimate the number of tables and indexes, as
well as their size, to plan for disk space estimates beyond what is required for the Oracle
SYSTEM tablespace and the associated Oracle software and tools.

Plan the locations of the physical datafiles on the server’s disk to maximize performance
and recoverability. The more physical disks, the better. If a RAID or network-attached
storage (NAS) area will be used for the datafiles, then consider OMF to manage the
placement of the datafiles. Better yet, see if you have additional memory to support an
Automatic Storage Management (ASM) instance, making it easier to manage redundant
storage if you don’t have RAID. Review and understand the basic initialization parameters,
and plan on using an SPFILE before going live, if not using an SPFILE right away.

Select the database character set, along with an alternate character set. Although it’s easy
to let the character sets default on install, you may need to consider where the users of
the database are located and their language requirements. Character sets can be changed
after installation only if the new character set is a superset of the existing character set.

Decide on the best default database block size. The default block size defined by DB_
BLOCK_SIZE cannot be changed later without reinstalling the database. Although this
decision is not critical to future expansion of the database because Oracle can support

■

■

■

■

■

I

Appendix: Installation and Configuration 637

tablespaces with multiple block sizes, having an incorrectly sized default block size can
reduce the performance of operations using the SYSTEM, TEMP, or SYSAUX tablespaces.

Make sure that all non-administrative users are assigned a non-SYSTEM tablespace as
their default tablespace. No user objects should ever be stored in the SYSTEM tablespace.
This recommendation is easy to implement using Oracle’s default permanent tablespace
and default temporary tablespace settings.

Automatic Undo Management is a must to ease the administration of transaction undo
information. The extra space needed in the undo tablespace is well worth the investment
in productivity for both the DBA and users.

Plan a backup and recovery strategy. Decide how often the database needs to be backed
up; use more than one method to back up the database. One of the key questions to ask
when selecting a backup strategy is, How long can we afford to have our database down?
If the database only processes batch jobs at night, then a full backup every week and
daily incremental backups are probably fine. If you’re running a website in front of your
database that sells widgets to customers all over the world, 24/7, and the cost of being
down is six figures a minute, then the investment in an Oracle Real Applications Cluster
(RAC) environment along with Data Guard for disaster recovery is probably cost-justified.
Familiarity with a couple key websites is a must. Oracle Technology Network (OTN), at
http://otn.oracle.com, has a wealth of information, including white papers, free tools,
sample code, and the online version of Oracle Magazine. There is no charge for using
OTN, other than registering on the site.

Purchasing a license for Oracle database software is a good start, but an Oracle support contract
with web support is the key to a successful installation and deployment. Using Oracle’s Metalink
(http://metalink.oracle.com) means you might never have to leave the friendly confines of your
web browser to keep your database up and running. Through Metalink, you can submit a support
request, search through other support requests, download patches, download white papers, and
search the bug database.

A successful initial software installation is the first step. The database environment grows and
evolves with every new business requirement and application that comes your way. For more
information on how to successfully plan the implementation of a large database development
project, see Chapter 5.

Overview of Licensing and Installation Options
Regardless of the software and hardware platform you’re installing Oracle on, the types of
installations you can perform are the same:

Enterprise Edition This is the most feature-laden and extensible version of the Oracle
database. It includes features such as Flashback Database and allows you to add additional
pieces of licensed functionality, such as Oracle Spatial, Real Application Clusters, Oracle
OLAP, Oracle Label Security, and Oracle Data Mining.

Standard Edition This edition provides a good subset of the features of the Enterprise
Edition, including Real Application Clusters for up to four total CPUs, but the additional
add-on pieces, such as Oracle Label Security, cannot be added to the Standard Edition.

■

■

■

■

■

http://otn.oracle.com
http://metalink.oracle.com

638 Oracle Database 11g DBA Handbook

Standard Edition One This edition provides the same features of Standard Edition, except
for Real Application Clusters, and is limited to a single server with a maximum of two CPUs.

Personal Edition Allows for the development of applications that will run on either the
Standard or Enterprise Edition. This edition cannot be used in a production environment.

Express Edition Oracle Database Express Edition is an entry-level edition of Oracle
database that is simple to install and manage, and is free to develop, deploy, and
distribute with your applications. It supports use of one CPU (or a dual-core CPU) and
is only restricted to 1GB of RAM and 4GB of disk space for user data. Using the Express
Edition makes it easy, if not trivial, to upgrade Oracle Database to another edition.

As of Oracle 10g, licensing for the Oracle Database is only by named user or CPU, and there
is no longer a concurrent user licensing option. Therefore, the DBA should use the initialization
parameter LICENSE_MAX_USERS to specify the maximum number of users that can be created
in the database. As a result, LICENSE_MAX_SESSIONS and LICENSE_SESSIONS_WARNING are
deprecated in Oracle 10g.

Using OUI to Install the Oracle Software
The Oracle Universal Installer (OUI) is used to install and manage all Oracle components for both
the server-side and client-side components. You can also uninstall any Oracle products from the
initial OUI windows.

During the server installation, you will choose the version of Oracle Database 11g from the
list in the preceding section: Enterprise Edition, Standard Edition, or Standard Edition One.

It is strongly recommended that you create a starter database when prompted during the install.
Creating the starter database is a good way to make sure the server environment is set up correctly,
as well as to review any new features of Oracle Database 11g. The starter database may also be a
good candidate as a Grid Control repository for either Enterprise Manager or Recovery Manager.

At some point in the software installation, the Database Configuration Assistant (DBCA) takes
over and prompts you for the parameters necessary to size and configure your database. The
installation steps in the next session assume you have already completed the software installation
and have created a starter database; we will create and configure a second database on the same
server with the DBCA.

NOTE
As of Oracle 10g, the DBCA can configure nodes in a Real
Application Clusters environment.

Using the DBCA to Create a Database
At the operating system command prompt, launch the DBCA by typing dbca. In the subsections
that follow, we will provide additional tips and guidance for most of the windows during the
creation of the database.

DBCA Options
After an initial welcome window, you are presented with five options:

Create a Database This one is fairly straightforward; you are creating a new database
from scratch, using a create database command from scratch or doing an RMAN restore
of a template database with many options you might not need.

■

■

■

■

Appendix: Installation and Configuration 639

Configure Database Options in a Database Some of the system parameters for an existing
database installation can be changed, such as changing from a dedicated server mode to
shared server or changing the default auditing settings, new to Oracle Database 11g.

Delete a Database This one is also straightforward, and very dangerous! It will shut
down the database and delete all the datafiles and control files associated with the
database. You will need the SYS or SYSTEM password to proceed with this option if
you are not using operating system authentication.

Manage Templates This option allows you to add, modify, or delete templates. During
a DBCA session, once all database parameters have been gathered, you have the option
to save your settings as a template. In many cases, the predefined templates that Oracle
provides are not quite perfect for your environment, and it is a timesaver to be able to
save your database options for selection as a template in a future DBCA session.

Configure Automatic Storage Management? You can use this option to create, modify,
or delete disk groups in an ASM instance for an existing or soon to be installed database.

Selecting a Database Template
In Figure A-1, you are presented with the list of templates available. If you have created your own
templates in previous DBCA sessions, they will appear on this window also.

■

■

■

■

FIGURE A-1 Database template selection

640 Oracle Database 11g DBA Handbook

The template choices are as follows:

Custom Database Use this option if you have performed many installations and know
ahead of time the values for all the options you need in the database. This option is good
if you are creating a new template from scratch or have very specific requirements for the
configuration of your database.

Data Warehouse This template is for database environments where users are
performing numerous, complex queries that join many large tables for reporting,
forecasting, and analytics.

General Purpose or Transaction Processing In 24/7 environments where the number of
users is high, the transactions are heavy, but short, and the bulk of the activity is creating
and updating, use this template. This template is also appropriate for a general-purpose
database, such as for development or testing.

In this installation, we are choosing the General Purpose or Transaction Processing template.
It combines the features of both a data warehouse and an OLTP environment into a single
database; use this option if you must use this database for both environments. Ideally, however,
any database you create should be configured and tuned for the types of users and transactions
on the database.

Database Identification
In step 3 of the DBCA, you will identify the name of the instance along with the global database
name; if you type the fully qualified database name, it will use all characters up to the first
period as the instance name, or Oracle System Identifier (SID). Figure A-2 shows the Database
Identification window.

Note the distinction between a SID, an instance name, and a database. You may have one
or more databases on a server; each database may have one or more instances opening each
database. The instance names that use the same database must be unique. On the server, if
there is more than one instance with the same name (but opening different databases), the SID
associated with the instance must be unique.

TIP
If the global database name needs to be changed in the future, you
must use the alter database command to change it, in addition to
changing it in the initialization parameter file. The global database
name is stored in the data dictionary when the database is created.

Unless you have an existing domain, use the default domain name .world. Check with your
system administrator to see if a specific global database name should be used.

Management Options
The next window, shown in Figure A-3, specifies the database management options available. If
you want to set up web services to control this database with the web-enabled Oracle Enterprise
Manager, check the first box. If there is a Grid Control management service running on the network
(known as an Enterprise Manager Repository agent in previous Oracle versions), you have the option
to specify which management service will control this database.

■

■

■

Appendix: Installation and Configuration 641

If there is no Grid Control management service available, you can manage the database locally
with Database Control. Within the Database Control choice, you can specify where alerts, warnings,
and other database notifications are sent by specifying an e-mail address and the mail server name
that will forward the e-mail messages. If you want to set up automated daily backups, you can
specify the time of day for the backups.

In our example, we don’t have any Grid Control management service agents available, so we
choose Database Control to manage our Enterprise Manager interface. We also specify the e-mail
address where we want our server alerts to be sent (in this case, dba@example.com). After clicking
Next, you will be prompted to run the netca utility to create a default listener if there is not a
listener already configured on this server. On the netca configuration pages, select the default
listener named LISTENER with a protocol of TCP and the default port number of 1521.

Database Credentials
In Figure A-4, you provide the initial passwords for the administrative user accounts. After the
installation, be sure to create at least one account with DBA privileges to use instead of SYS or
SYSTEM for day-to-day administrative tasks.

If you wish to use different passwords for the SYS, SYSTEM, DBSNMP, and SYSMAN accounts,
you can do that on this window; later in the installation, after the database has been created, you
will have the opportunity to change the passwords for all of the approximately 40 user accounts
created in a typical installation.

FIGURE A-2 Database Identification window

642 Oracle Database 11g DBA Handbook

FIGURE A-3 Database Management Options window

FIGURE A-4 Database Credentials window

Appendix: Installation and Configuration 643

Storage Options
The database can use a number of different methods for storing datafiles, control files, and redo
log files. If you have the extra memory to dedicate another database instance for managing disk
space, choose ASM. An instance to manage ASM is fairly lightweight; typically, it will use no
more than 100MB of RAM, and only enough disk space for an SPFILE. If you are in a Real
Application Clusters environment and you don’t have a cluster file system available (such as
OCFS), then choose Raw Devices. Figure A-5 shows these options on the Storage Options window.

File Locations
The next window after you configure your ASM environment, shown in Figure A-6, is where you
select the locations for datafiles, control files, and redo log files, as well as the archiving and
backup and recovery locations. You can use the locations provided with the template, provide
your own single location for all files, or configure OMF (Oracle-Managed Files) for this database.
In all cases, you will have the option to fine-tune these locations in a later step. In this example,
you use the ASM disk group +DATA to store all files.

New to Oracle 10g is the concept of a Flash Recovery Area. This is a dedicated location on
disk, separate from the location of the database’s operational files, containing the backup files
from RMAN. It is highly recommended that you use a Flash Recovery Area so that RMAN can
more easily manage backup and recovery operations. As mentioned previously in this chapter,
be sure that the Flash Recovery Area is large enough to hold at least two copies of all datafiles,
incremental backups, control files, SPFILEs, and archived redo log files that are still on disk.
Figure A-7 shows the window where you specify the location of the Flash Recovery Area, along
with its size; in this example, the Flash Recovery Area will reside in the ASM disk group +RECOV
with a maximum size of 8GB.

FIGURE A-5 Storage Options window

644 Oracle Database 11g DBA Handbook

FIGURE A-6 Database File Locations window

FIGURE A-7 Recovery Configuration and Locations window

Appendix: Installation and Configuration 645

You can also enable ARCHIVELOG mode, as well as specify the location or locations for
the archived redo log files. It is recommended that you leave archiving off until the database is
installed, because this will increase the database creation time. The parameters for ARCHIVELOG
mode can easily be changed after the database is up and running; see Chapter 11 for details on
configuring the archive log destination and enabling ARCHIVELOG mode.

Database Components
In step 10 of the DBCA session, you are asked about installing sample schemas. It is highly
recommended that you install the sample schemas for testing purposes; many tutorials and study
guides (as well as this book!) rely on the sample schemas being in a test database. They are also
useful in that the samples demonstrate nearly all datatypes and constructs available in the
database, ranging from bitmapped indexes to clustered tables and object types. The window
shown in Figure A-8 allows you to specify the installation of the sample schemas. The second
tab on this window gives you the option to specify other scripts that you need to run against this
database once it is created, such as scripts to create tablespaces for existing applications, special
user accounts, and so forth.

NOTE
Sample schemas should not be installed in a production database for
security and performance reasons.

If you choose to not install the sample schemas at this time, they can be created using the
scripts in the directory $ORACLE_HOME/demo/schema after the database has been created.

FIGURE A-8 Selecting a sample schema installation

646 Oracle Database 11g DBA Handbook

Initialization Parameters
The tabs in Figure A-9 allow you to adjust the key initialization parameters for the database. In
previous sections of this chapter, we described many of the basic initialization parameters that
a DBA needs to understand. Unless you have specific memory requirements, such as other
memory-intensive applications running on the same server, select the Typical radio button to
specify 40% of system memory for the combined SGA and PGA areas. If you select Automatic
Memory Management, Oracle will automatically reallocate memory within the SGA and between
the SGA and PGA for optimal performance. On this same window you can click the All Initialization
Parameters button to review the settings for all other initialization parameters.

Security Settings
On the window in Figure A-10, you can enable or disable the enhanced default security settings,
which are new to Oracle Database 11g. The default security settings turn on auditing for many
different system privileges such as creating a session (connecting to the database) and creating
or dropping users, profiles, or procedures. If this auditing becomes a performance issue, you can
run DBCA after the database has been created to turn off these enhanced audit settings. For more
information on security and auditing, see Chapter 9.

Database Storage
On the DBCA Database Storage window in Figure A-11, you can review and revise the locations
of the control files, datafiles, and redo log files, as well as multiplex the control files and create
redo log file groups. The names and locations of the control files on this window determine the
value of CONTROL_FILES in the initialization parameter file or SPFILE.

FIGURE A-9 Editing the initialization parameters

Appendix: Installation and Configuration 647

FIGURE A-10 Security Settings window

FIGURE A-11 Database Storage window

648 Oracle Database 11g DBA Handbook

Creation Options
In Figure A-12, we are ready to create the database. In addition, we can use the information we
provided in the previous windows and save it to a template. If in doubt, save it as a template; the
storage required to save a template is minimal, and it can easily be deleted later by rerunning
the DBCA. Generating database creation scripts is also good practice so that you can more easily
document the options you used when you created a database; the storage required for the scripts
is also trivial compared to the documentation value.

Before the database is created, an HTML summary of your template is presented, and you
have the option to save this report as an HTML file for documentation purposes.

Completing the Installation
After you click OK on the HTML Summary window, the DBCA performs the tasks to create the
database and start the instance. A standard set of scripts is run when the database first starts; this
includes the scripts that create the sample schemas, plus any custom scripts you may have
specified earlier. Figure A-13 shows the DBCA performing the initialization tasks.

Once the initialization and creation scripts have completed, a summary window is presented
giving the location of the log file for this installation. It is recommended that you review this log
file to ensure that there were no unexpected errors during the install. You should also save this log
file with the other documentation for this database; it can also be useful for future installations as
a baseline.

FIGURE A-12 Database and template creation options

Appendix: Installation and Configuration 649

Manually Creating a Database
In some situations, it is preferable to manually create a database instead of using the DBCA. For
example, a DBA may have to create the same database on 20 different servers, or the database
may need some parameters in the create database command that aren’t adjustable using the
DBCA. Oracle provides a sample database-creation script that can be customized for a manual
install. Alternatively, the DBA can use the DBCA to save a database script to a file, which can be
edited later and run at the SQL*Plus command line.

Here are the basic steps needed to create a database manually. Some of these steps are operating
system or platform dependent. Be sure to review the installation guide for your specific platform
before attempting a manual installation. For example, under Windows, you will need to run the
utility oradim.exe to create the Oracle background process and to set the relevant Registry values.

 1. Decide on a directory structure for the database; it is recommended that you comply with
Oracle’s Optimal Flexible Architecture (OFA) standards when placing your files on disk.
See Chapter 4 for more information on OFA.

 2. Select an Oracle SID to distinguish this instance from any other ones running on this
server. Frequently this is the same as the database name specified in the DB_NAME
initialization parameter. In a Windows command prompt, you will type the following:

set ORACLE_SID=dw

FIGURE A-13 Creating and starting the Oracle instance

650 Oracle Database 11g DBA Handbook

Under Unix, you will use either

export ORACLE_SID=dw

or

setenv ORACLE_SID=dw

depending on your default command shell.

 3. Establish an authentication method for connecting privileged users to the database.
Use the orapwd command-line utility to create a password file if you want Oracle to
authenticate the privileged users, and you will set the initialization parameter REMOTE_
LOGIN_PASSWORDFILE to EXCLUSIVE. If you are using operating system authentication,
there is no need for a password file; set REMOTE_LOGIN_PASSWORDFILE to NONE.

 4. Create an initialization parameter file and place it in the default location for your platform,
at least initially for the install. Under Unix, the default location is $ORACLE_HOME/dbs;
under Windows it is $ORACLE_HOME\database. Here is an excerpt from the initialization
file created by DBCA when you specify the option to save the database creation scripts:

###
Cache and I/O
###
db_block_size=8192

###
Cursors and Library Cache
###
open_cursors=300

###
Database Identification
###
db_domain=world
db_name=dw

###
File Configuration
###
db_create_file_dest=+DATA
db_recovery_file_dest=+RECOV
db_recovery_file_dest_size=2147483648

###
Miscellaneous
###
compatible=11.1.0.0.0
diagnostic_dest=/u01/app/oracle
memory_target=422576128

###
Processes and Sessions
###
processes=150

Appendix: Installation and Configuration 651

###
Security and Auditing
###
audit_file_dest=/u01/app/oracle/admin/dw/adump
audit_trail=db
remote_login_passwordfile=EXCLUSIVE

 5. Connect to the instance using SQL*Plus, as show here:

sqlplus /nolog
connect SYS/password as sysdba

Note that while the instance itself exists, there is not much that we can do with it because
we have not started the database yet.

 6. Create a server parameter file (SPFILE). If the initialization file is in the default location,
this command will create the SPFILE:

create spfile from pfile;

 7. Start the instance using the following command:

startup nomount

Note that because we do not have a database created yet, this is the only option we can
use with the startup command.

 8. Issue the create database statement. Here is an example:

CREATE DATABASE dw
 USER SYS IDENTIFIED BY clarkson404
 USER SYSTEM IDENTIFIED BY kelly68
 LOGFILE GROUP 1 ('/u02/oracle11g/oradata/dw/redo01.log') SIZE 100M,
 GROUP 2 ('/u04/oracle11g/oradata/dw/redo02.log') SIZE 100M,
 GROUP 3 ('/u06/oracle11g/oradata/dw/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 MAXINSTANCES 1
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 DATAFILE '/u01/oracle11g/oradata/dw/system01.dbf' SIZE 325M REUSE
 EXTENT MANAGEMENT LOCAL
 SYSAUX DATAFILE '/u01/oracle11g/oradata/dw/sysaux01.dbf'
 SIZE 325M REUSE
 DEFAULT TABLESPACE USERS01
 DATAFILE '/u01/oracle11g/oradata/dw/users01.dbf'
 SIZE 500M REUSE
 DEFAULT TEMPORARY TABLESPACE temp01
 TEMPFILE '/u01/oracle11g/oradata/dw/temp01.dbf'
 SIZE 100M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u02/oracle11g/oradata/dw/undotbs01.dbf'
 SIZE 400M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

After the create database command completes successfully, the database is mounted and
opened for use.

652 Oracle Database 11g DBA Handbook

 9. Create additional tablespaces for users, indexes, and applications.

 10. Build data dictionary views with the supplied scripts catalog.sql and catproc.sql found
in $ORACLE_HOME/rdbms/admin. The script catalog.sql creates views against the data
dictionary tables, dynamic performance views, and public synonyms for most of the views.
The group PUBLIC is granted read-only access to the views. The script catproc.sql sets
up PL/SQL.

 11. Back up the database either using a cold backup or using Recovery Manager (RMAN).
In case of a database failure in the early stages of deployment, you have a complete
and running database to fall back on, and most likely you will not have to re-create the
database from scratch.

Index

eliminating the need to query undo
segments, 128–129

eliminating unnecessary sorts, 128
entity relationship (E-R) diagram, 134
execution plans, 135
goals, 134
hinting where needed, 129
keeping statistics updated, 129
materialized views, 131
maximizing throughput in the

environment, 129–130
parallelism, 131
partitions, 130–131
physical database diagram, 134
security requirements, 134–135
space requirements, 134
standard deliverables, 133–135
storing data the way users will query

it, 127
stretch goals, 134
telling the database what it needs to

know, 129
testing, 131–133
using a larger database block size, 130
using disk caching, 129–130
using fewer, faster processors, 130
using the right indexes, 127
See also iterative development;

package development

*_TABLESPACES, 552
2PC, 602–603

AA

abstract datatypes, 150–151
indexing attributes, 156–157
security for, 154–156
using object views, 151–154

ADR. See Automatic Diagnostic Repository
(ADR)

alert log files, 28
aliases, 516–517
application design best practices

acceptance test procedures, 135
avoiding repeated connections to the

database, 127
avoiding trips to the database, 126
avoiding use of temporary segments,

130
breaking large queries into its atomic

components, 127–128
data requirements, 135
designing to throughput, 130
dividing and conquering data, 130–131
doing as little as possible, 124–127
doing it as simply as possible, 127–129
effective application design, 245–246
eliminating logical reads, 125–126

653

654 Oracle Database 11g DBA Handbook

application-controlled (system)
partitioning, 570

archived log files, 27
archived redo log files

backup, 444–445
management of, 184
multiplexing, 32

archiver process. See ARCn
archiving, Flashback Data Archive,

236–239
ARCn, 37
ASM. See Automatic Storage

Management (ASM)
ASM_DISKGROUPS parameter, 102
ASM_DISKSTRING parameter, 102
ASM_POWER_LIMIT parameter, 102
ASM_PREFERRED_READ_FAILURE_

GROUPS parameter, 102
asmcmd command, 116–119
ASMLib library, 358–360
ASSM. See Automatic Segment Space

Management (ASSM)
auditing, 40, 278, 331

data dictionary views,
339–340

enhanced auditing, 340–341
fine-grained, 40–41, 338–339
locations, 331–332
privilege auditing, 336
protecting the audit trail, 340
schema object auditing, 337–338
statement auditing, 332–336
types, 331

authentication, 278, 279–280
3-tier, 286
altering users, 289–291
becoming another user, 291–292
client-side, 286
creating users, 288–289, 290
database administrator authentication,

280–283
database authentication, 280
dropping users, 291
network, 284–285

operating system authentication,
283–284

Oracle Identity Management (IM),
286–287

user-related data dictionary views, 292
authorization, 278, 292

create profile command, 293–294
object privileges, 302–306
profile management, 292–293
profiles and password control, 293–297
profiles and resource control, 297–299
roles, 306–313
system privileges, 299–302

AUTOEXTEND attribute, 165
Automatic Database Diagnostic Monitor,

running reports, 272, 273
Automatic Diagnostic Repository (ADR),

managing alert and trace files with,
195–197

Automatic Segment Space Management
(ASSM), 169

Automatic SQL Tuning Advisor, 272–275
Automatic Storage Management (ASM),

29–30, 98, 179, 636
accessing an ASM instance, 101
administering disk groups, 107–119
alias names, 104–105
alias with template names, 105
architecture, 98–99
automatic rebalancing, 98
background processes, 180
creating an ASM instance, 99–101
creating objects using, 180–181
disk group redundancy, 179–180
dynamic performance views, 103
file types and templates, 105–107
filename formats, 103–105
fully qualified names, 104
incomplete names, 105
incomplete names with templates, 105
initialization parameters, 101–102
instance components, 101–103
instance startup and shutdown,

102–103

Index 655

instances, 180
mirroring, 98
numeric names, 104
using to tune physical storage, 267

Automatic Undo Management, 637
migrating to, 239–240
and rollback segments, 8

Automatic Workload Repository, 187–189,
270–271

baselines, 271–272
generating reports, 272
running ADDM reports, 272, 273
snapshots, 271
using the Automatic SQL Tuning

Advisor, 272–275
AWR. See Automatic Workload Repository

BB

background processes, 35–37, 36, 180
backup

archived redo log files, 444–445
block change tracking, 450–451
capabilities, 392
cataloging backups made outside of

RMAN, 470–471
compressed backups, 422–423,

451–452
consistent and inconsistent backups,

421–422
control files, 444
datafiles, 442
full and incremental backups, 422
full database backups, 435–439
image copies, 422, 442–443
incremental backups, 445–447
incrementally updated backups,

447–450
integrating database and operating

system backups, 416
integrating logical and physical

backups, 415–416
logical backups, 392–393
offline backups, 38, 393–394, 411

online backups, 39, 394–395, 411–414
physical backups, 393–395
and software installation, 637
SPFILE, 444
tablespaces, 439–442
validating backups, 453–455
See also export; import; RMAN

backup files, 28
backup pieces, 422
backupsets, 28, 422
base tables, 20
baselines, 271–272
bigfile tablespaces, 6, 62, 67–68, 178–179

basics, 545–546
creating and modifying, 546
data dictionary changes, 552
and DBMS_ROWID, 547–550
initialization parameters, 551–552
resizing, 76–77, 91
ROWID format, 546–547
using DBVERIFY with, 550–551

bitmap indexes, 19, 249, 589–590
sizing, 148–149

bitmap join indexes, 19, 590–591
block change tracking, 450–451
block media recovery, 455–456
block size, 130

increasing, 259–260
blocks, 7
buffer caches, 33
bulk data moves, using external tables,

263–264
bulk deletes, using the truncate command,

265–266
bulk inserts

common traps and successful tricks,
264–265

using the SQL*Loader Direct Path
option, 262–263

CC

cardinality, 19
chained rows, identifying, 258–259

656 Oracle Database 11g DBA Handbook

change tracking file, 451
checkpoint process. See CKPT
CKPT, 37
client/server configuration, 512, 513
client-side authentication, 286
cluster key value, 13
Cluster Ready Services (CRS), 351

adding a node to a cluster with CRS,
386–387

installation, 360–368
See also Real Application

Clusters (RACs)
Cluster Synchronization Services (CSS), 363
clustered tables, 13
clusters, 249
CMADMIN process, 532
CMCTL, 534

command options, 535
CMGW process, 532
coarse striping, 107
commit point strength, 631–632
COMPATIBLE parameter, 44–45
complex in-line integrity, 17
composite indexes, 247
composite list-hash, list-list, and list-range

partitioning, 565–566
composite partitions, 15
composite range-hash partitioning,

561–563
composite range-list partitioning, 563–565
composite range-range partitioning,

566–567
compressed partitioned tables, 571
compute statistics option, 257
concatenated indexes, 247
connect descriptors, 515–516
connected users, 606
Connection Manager. See Oracle

Connection Manager
constraints, 15–16

complex in-line integrity, 17
disabling, 265
null rule, 16
primary key values, 16
referential integrity values, 17

trigger-based integrity, 17
unique column values, 16

control files, 26–27
backup, 444
moving, 96–98
multiplexing, 30
restoring, 456

CONTROL_FILE_RECORD_KEEP_TIME
parameter, 432

CONTROL_FILES parameter, 45
cost-based optimizer, 256–257
CPU, distribution of CPU requirements,

244–245
CREATE DATABASE command, 210–211
create profile command, 293–294
CREATE TABLESPACE command, 211
CRS. See Cluster Ready Services (CRS)
cursor sharing, forcing, 159–160

DD

data access, tuning, 257–262
data blocks, 167–169
data dictionary cache, 34
data dictionary views, 171–174

auditing, 339–340
Flashback Data Archive, 237
object privileges, 306
RMAN, 433–434
roles, 311–313
system privileges, 302
user accounts, 292

data encryption, 342
creating an Oracle wallet, 343–345
DBMS_CRYPTO package, 342
tables, 345
tablespaces, 345–346
transparent, 342–346

Data Guard
architecture, 476–477
creating logical standby databases,

484–485
creating the standby database

configuration, 479–485
data protection modes, 477–478

Index 657

failovers, 490–491
LOG_ARCHIVE_DEST_n parameter

attributes, 478–479
managing datafiles, 492
managing gaps in archive log

sequences, 486
managing roles, 487–491
opening physical standby databases in

read-only mode, 491
performing DDL on a logical standby

database, 492–493
physical vs. logical standby

databases, 477
preparing the primary database,

480–484
real-time apply, 486
startup and shutdown of physical

standby databases, 491
switchovers, 487–489

data manipulation, tuning, 262–266
data protection modes, 477–478
Data Pump, 50, 52, 591
Data Pump Export, 392–393, 395, 592

comparing to original Export utility, 410
creating a directory, 395–396
exporting from another database, 401
options, 396–399
starting a Data Pump export job,

399–403
stopping and restarting running jobs,

400–401
using EXCLUDE, INCLUDE and

QUERY, 401–403
Data Pump Import, 395, 592–593

comparing to original Import
utility, 410

generating SQL, 409–410
options, 403–406
starting a Data Pump import job,

406–410
stopping and restarting running

jobs, 408
transforming imported objects,

408–409

using EXCLUDE, INCLUDE and
QUERY, 408

Data Recovery Advisor, 465–470
data segments, 7
database block size, default, 636–637
database creation

with DBCA, 638–649
manual, 649–652

Database Creation Assistant. See DBCA
database domains, 607–608
database files, 69–70
database links, 24, 538–539, 601
database names, 636
Database Resource Manager, 136–139

distribution of CPU requirements, 244
switching consumer groups, 140

database triggers, 603, 610–612
Database Upgrade Assistant (DBUA), 50,

51, 53–54
database writer process. See DBWn
DATABASE_PROPERTIES, 552
databases

defined, 4–5
restoring, 461–463
standby databases, 477
See also logical standby databases;

physical standby databases; VLDB
environments

datafiles, 25–26
adding to a smallfile tablespace, 82–84
backup, 442
dropping from a tablespace, 84–91
extension clauses, 78
managing in Data Guard

environments, 492
moving with ALTER DATABASE, 92–93
moving with ALTER TABLESPACE,

93–94
moving with EM Database Control, 94
resizing, 76–91
restoring, 459–461

datatypes
ANSI-equivalent, 10
built-in, 9–10

658 Oracle Database 11g DBA Handbook

DB_BLOCK_SIZE parameter, 46
DB_CACHE_SIZE parameter, 46
DB_DOMAIN parameter, 45
DB_FILES, 551
DB_NAME parameter, 45
DB_nK_CACHE_SIZE parameter, 46
DB_RECOVERY_FILE_DEST parameter,

45, 432
DB_RECOVERY_FILE_DEST_SIZE

parameter, 45, 432–433
DB_UNIQUE_NAME parameter, 102
DBA_ALERT_HISTORY, 174
DBA_EXTENTS, 172–173
DBA_FREE_SPACE, 173
DBA_LMT_FREE_SPACE, 173
DBA_OUTSTANDING_ALERTS, 174
DBA_SEGMENTS, 172
DBA_TABLESPACES, 171–172
DBA_THRESHOLDS, 173–174
DBCA

completing the installation, 648, 649
creating a database with, 638–649
creating a RAC database, 372–378
creation options, 648
database components, 645
database credentials, 641, 642
database identification, 640, 641
database storage, 646, 647
enabling enhanced auditing, 340–341
file locations, 643–645
initialization parameters, 646
management options, 640–641, 642
options, 638–639
security settings, 646, 647
selecting a database template, 639–640
storage options, 643

DBMS_ADVISOR, 616–625
DBMS_CRYPTO package, 342
DBMS_FLASHBACK, 225–227
DBMS_MVIEW, 616–625
DBMS_RLS, 317–320
DBMS_ROWID, and bigfile tablespaces,

547–550
DBMS_SCHEDULER, automating and

streamlining the notification process, 199

DBUA. See Database Upgrade Assistant
(DBUA)

DBVERIFY, 550–551
DBWn, 37
DCE. See Distributed Computing

Environment (DCE)
dedicated server environment, 35
dictionary-managed tablespaces, 7
disk caching, 129–130
disk groups, 107

altering, 112–114
architecture, 107
the asmcmd command, 116–119
coarse striping, 107
dynamic rebalancing, 108–111
and EM Database Control, 114–116
external redundancy, 108
failure groups, 108
fast mirror resync, 111–112
fine striping, 107
high redundancy, 108
mirroring, 108
normal redundancy, 108
redundancy, 179–180

Distributed Computing Environment
(DCE), 285

distributed database environments, 600
distributed transactions, 630–632
dynamic data replication, 603–604
enforcing location transparency,

604–609
managing database links, 609–610
managing database triggers, 610–612
managing materialized views, 612–615
monitoring distributed databases, 632
refreshes, 625–629
remote queries, 601–602
tuning distributed databases, 632–634
Two-Phase Commit, 602–603
using materialized views to alter query

execution paths, 629–630
distributed transactions, 630–632
DML, vs. read consistency, 222–223
domains, 607–608
dynamic data replication, 603–604

Index 659

dynamic performance views, 103, 174–175
RMAN, 433–434
undo tablespace views, 216

EE

easy connect naming, 537–538
EM Database Control

adding a datafile to a smallfile
tablespace, 82–84

and ASM disk groups, 114–116
creating an undo tablespace, 211–214
managing partitions, 582–588
moving datafiles, 94
resizing a datafile in a smallfile

tablespace, 78–82
tuning a RAC node, 389

enhanced auditing, 340–341
See also auditing

Enterprise Edition, 637
equivalence queries, 249
EXAMPLE tablespace, 73
explain plans, 250–252
export, 38

upgrading to Oracle Database 11g,
50, 52, 57–58

Express Edition, 638
extents, 7, 167, 169–170

impact of extent size on performance,
144–145

external file access, 23–24
external tables, 12, 263–264

and VLDB environments, 555–557

FF

failovers, 490–491
fast mirror resync, 111–112
fat-client architecture, 512
FIFO processing, 14
fine striping, 107
fine-grained auditing, 40–41, 338–339

See also auditing
first in, first out processing. See FIFO

processing

fixed users, 606
Flash Recovery Area, 452, 643
Flashback, 210, 223

Data Archive, 236–239
DBMS_FLASHBACK, 225–227
Drop, 496–498
and LOBs, 239
Query, 223–225
Table, 227–232
Transaction Blackout, 227
Transaction Query, 234–235
Version Query, 232–234

flashback database command, 498–500
fourth normal form, 243
full table scans, 247
function-based indexes, 18–19, 249–250
functions, 22–23

GG

global coordinator, 603
global object names, 515, 605
global temporary tables, and VLDB

environments, 553–555
granules, 33

HH

hash clusters, 13
sorted hash clusters, 13–14

hash partitions, 15, 560–561
headers, 167
hints, 129

II

IM. See Oracle Identity Management (IM)
image copies, 422, 442–443
import, 38

upgrading to Oracle Database 11g,
50, 52, 57–58

incremental backups, 445–447
incremental extents, 169
incrementally updated backups, 447–450
index range scans, 247–248

660 Oracle Database 11g DBA Handbook

index segments, 7
indexes, 17–18

bitmap indexes, 19, 249
coalescing online, 506
concatenated indexes, 247
creating online, 506
disabling, 264–265
estimating space requirements for,

146–147
function-based indexes, 18–19,

249–250
hash-partitioned global indexes,

574–575
impact of order on load rates, 248–249
index range scans, 247–248
indexing partitions, 571–575
local partitioned indexes, 572–573
nonpartitioned global indexes, 575
non-unique indexes, 18
range-partitioned global indexes,

573–574
rebuilding online, 506
reverse indexes, 249
reverse key indexes, 18
and space management, 189–190
text indexes, 250
unique indexes, 18
using key compression on partitioned

indexes, 575
index-organized tables, 11, 17, 149,

260–262
partitioned, 575
rebuilding online, 506–507
and VLDB environments, 553

in-doubt transactions, 631
initial extents, 169
initialization parameters, 27–28, 43

advanced, 47
ASM initialization parameters,

101–102
basic, 43–47
bigfile tablespaces, 551–552
Real Application Clusters (RACs), 380
for undo tablespaces, 216–217

in-line integrity, 17

installing software, 636–637
installation options, 637–638
using Oracle Universal Installer

(OUI), 638
INSTANCE_TYPE parameter, 102
instances

ASM, 180
ASM instance components, 101–103
creating an ASM instance, 99–101
defined, 5
startup and shutdown, 102–103

interval partitioning, 567–569
IOTs. See index-organized tables
iterative development, 158

forcing cursor sharing, 159–160
iterative column definitions, 159

JJ

Java pool, 34
JAVA_POOL_SIZE parameter, 47

KK

Kerberos, 285

LL

Label Security, 41
large pool, 34
LARGE_POOL_SIZE parameter, 47, 102
least recently used (LRU) algorithms, 252
LGWR, 37
library cache, 33–34
licensing, 637–638
list command, 472–473
list partitions, 15, 561
listeners, 517–519

listener.ora parameters, 519–520
LMTs. See locally managed tablespaces
load rates, impact of order on, 248–249
LOBs

and Flashback, 239
sizing tables containing, 149

Index 661

locally managed tablespaces, 7, 176–177,
257–258

Log Writer. See LGWR
LOG_ARCHIVE_DEST_n parameter

attributes, 478–479
logical backups, 392–393

integrating logical and physical
backups, 415–416

logical database structures
constraints, 15–17
database links and remote databases, 24
external file access, 23–24
indexes, 17–19
PL/SQL, 22–23
profiles, 21
sequences, 22
synonyms, 22
tables, 8–15
users and schemas, 21
views, 19–21

logical reads, eliminating, 125–126
logical standby databases, 484–485

failovers to, 490–491
performing DDL on, 492–493
switchovers to, 489

logical storage structures, 6
blocks, 7
extents, 7
segments, 7–8
tablespaces, 6–7

LogMiner, 500–501
analyzing one or more redo log files,

502–504
extracting the data dictionary, 501–502
features introduced in Oracle

Database 10g, 504–505
features introduced in Oracle

Database 11g, 505

MM

management repository, 42
See also Oracle Enterprise Manager

(OEM)
manual database creation, 649–652

manual upgrade, 50, 51, 54–57
materialized view logs, 624–625
materialized views, 19, 20–21, 131,

268–269, 589, 603–604
altering query execution paths,

629–630
managing, 612–615
referential integrity, 621–624

MAXDATAFILES, 552
Mean Time to Recovery (MTTR), 37
memory structures, 32

background processes, 35–37
Program Global Area (PGA), 35
software code area, 35
System Global Area (SGA), 32–34

memory usage, tuning, 252–257
MEMORY_TARGET parameter, 46
Metalink, 637
MTTR. See Mean Time to Recovery (MTTR)
multiplexing, 29

manual, 30–32
See also Automatic Storage

Management (ASM)

NN

named blocks, 22
net service names, 516–517
network authentication, 284–285
non-unique indexes, 18
null rule, 16

OO

object identifiers (OIDs), 153
object privileges, 39, 40, 302–303

data dictionary views, 306
procedure privileges, 305–306
table privileges, 304, 305
view privileges, 304

object tables, 11–12
object views, 21, 151–154
OCFS2. See Oracle Cluster File System

(OCFS2)
OEM. See Oracle Enterprise Manager (OEM)

662 Oracle Database 11g DBA Handbook

OFA. See Optimal Flexible
Architecture (OFA)

offline backups, 38, 393–394
implementing, 411

OID. See Oracle Internet Directory
OIDs. See object identifiers (OIDs)
OMF. See Oracle Managed Files (OMF)
online backups, 39, 394–395

implementing, 411–414
online object reorganization

coalescing indexes online, 506
creating indexes online, 506
rebuilding indexes online, 506
rebuilding index-organized tables

online, 506–507
redefining tables online, 507–508

online redo log files, moving, 94–95
operating systems, authentication, 283–284
Optimal Flexible Architecture (OFA), 68

ASM environment, 71
database files, 69–70
non-ASM environment, 68–70
OFA-compliant naming

conventions, 70
software executables, 68–69

Oracle Cluster File System (OCFS2),
352–353

Oracle Connection Manager, 531–534
Oracle Data Pump. See Data Pump
Oracle Enterprise Manager (OEM), 42

job control and monitoring, 200–206
Oracle Identity Management (IM), 286–287
Oracle Internet Directory

directory naming, 534–537
replacing tnsnames.ora with, 517

Oracle Managed Files (OMF), 6, 29
initialization parameters, 178
managing space with, 177–178
using for undo tablespaces, 215

Oracle Net
connect descriptors, 515–516
controlling the listener server process,

528–531
database links, 538–539

debugging connection problems,
541–542

directory naming with Oracle Internet
Directory, 534–537

Directory Usage Configuration,
524–525

easy connect naming, 537–538
limiting resource usage, 541
Listener Control utility commands,

529–530
listeners, 517–520, 521–522
Local Net Service Name

Configuration, 523
naming methods configuration, 523
net service names, 516–517
Oracle Connection Manager, 531–534
Oracle Net Configuration Assistant,

520–525
Oracle Net Manager, 525–527
overview, 512–515
replacing tnsnames.ora with Oracle

Internet Directory, 517
starting the listener server process,

527–528
tuning, 540–542

Oracle Network Configuration
Assistant, 376

Oracle Streams, 42
Oracle System Identifier (SID), 640
Oracle Technology Network (OTN), 637
Oracle Universal Installer (OUI), 638
OS space management, 197
OTN. See Oracle Technology

Network (OTN)
OUI. See Oracle Universal Installer (OUI)

PP

package development, 160
acceptance test procedures, 162
data requirements, 161
execution plans, 161–162
generating diagrams, 160
security requirements, 161

Index 663

space requirements, 160
testing, 162
tuning goals, 161
version requirements, 161

packages, 23
Parallel Query, and distribution of CPU

requirements, 244
parallelism, 131, 244–245
partition elimination, 130
partition keys, 14
partitioned indexes, 15
partitioned tables, 14–15, 557

application-controlled (system)
partitioning, 570

coalescing table partitions, 579–580
composite list-hash, list-list, and list-

range partitioning, 565–566
composite range-hash partitioning,

561–563
composite range-list partitioning,

563–565
composite range-range partitioning,

566–567
compressed partitioned tables, 571
creating, 557
hash partitioning, 560–561
indexing partitions, 571–575
interval partitioning, 567–569
list partitioning, 561
maintaining index partitions, 580
maintaining table partitions, 576–577
managing with EM Database Control,

582–588
merging partitions, 580
range partitioning, 557–559
reference partitioning, 569–570
renaming local index partitions,

581–582
splitting, adding, and dropping

partitions, 577–579
splitting global index partitions,

580–581
virtual column partitioning, 570

Partitioning Option, 131

partitions, 130–131, 266
sizing, 149

password files, 29, 280–283
password-enabled roles, 311
pctfree, estimating the proper value of,

147–148
permanent tablespaces, 62–65
permissions, Flashback Data Archive,

237–238
Personal Edition, 638
PGA. See Program Global Area (PGA)
physical backups, 393–395

integrating logical and physical
backups, 415–416

physical standby databases
failovers to, 490
opening in read-only mode, 491
startup and shutdown, 491
switchovers to, 487–489

physical storage structures, 24–25
alert log files, 28
archived log files, 27
backup files, 28
control files, 26–27
datafiles, 25–26
initialization parameter files, 27–28
Oracle Managed Files (OMF), 29
password files, 29
redo log files, 26
trace log files, 28

PITR, 465
PKI. See Public Key Infrastructure (PKI)
PL/SQL, 22

packages, 23
procedures/functions, 22–23
triggers, 23

PMON, 36–37
point in time recovery, 465
primary key values, 16
privileges, 39–40

auditing, 336
granting privileges to a role, 309

procedures, 22–23
privileges, 305–306

664 Oracle Database 11g DBA Handbook

Process Monitor. See PMON
PROCESSES parameter, 47
processors, 130
profiles, 21

create profile command, 293–294
management, 292–293
and password control, 293–297
and resource control, 297–299

Program Global Area (PGA), 35
Public Key Infrastructure (PKI), 285

QQ

query rewrite, 629–630
quiescing databases, 157–158
quotas, 289

RR

RACs. See Real Application Clusters (RACs)
RADIUS, 285
range partitions, 15, 557–559
range queries, 248
rapid connect-time failover, 352
raw devices, 267
read consistency, 209–210

vs. successful DML, 222–223
Real Application Clusters (RACs), 5,

41–42, 350
adding a node to a cluster with CRS,

386–387
ASMLib library, 358–360
Cluster Ready Services (CRS), 351,

360–368
Cluster Synchronization Services

(CSS), 363
creating a new Oracle instance,

387–389
creating the RAC database with the

DBCA, 372–378
database software installation, 368–371
disadvantages, 350
disk storage, 352–353
distribution of CPU requirements, 244

dynamic performance views, 380–382
failover scenarios and TAF, 383–385
hardware configuration, 351
initialization parameters, 380
installing Oracle software on a new

node, 387
kernel parameters, 354–355
memory and disk requirements, 354
network configuration, 351–352, 356
node failure scenario, 385–389
operating system configuration,

354–360
operating system software

installation, 386
Oracle Cluster File System (OCFS2),

352–353
Oracle Cluster Registry, 354, 360
rapid connect-time failover, 352
redo log files, 383
removing a node from a cluster,

385–386
removing an instance, 385
server parameter file characteristics,

379–380
software configuration, 351
software directories, 358
software installation, 360–378
starting up a RAC, 382–383
stretch clusters, 351
tablespace management, 390
tuning a RAC node, 389
undo tablespaces, 383
user accounts, 356–357
voting disk, 354, 360

real-time apply, 486
RECO, 37
recoverer process. See RECO
recovery

block media recovery, 455–456
point in time recovery, 465
restoring a control file, 456
restoring a datafile, 459–461
restoring a tablespace, 456–458
restoring an entire database, 461–463
and software installation, 637

Index 665

and undo tablespaces, 210
See also backup; export; import; RMAN

Recovery Manager. See RMAN
recovery window, 430
recursive calls, 34
redo log buffer, 34
redo log files, 26

analyzing with LogMiner, 502–504
multiplexing, 30–31
in a RAC environment, 383

redundancy, 430
disk groups, 179–180

reference partitioning, 569–570
referential integrity values, 17
refresh intervals, 266
refreshes, 625–629
regular views, 20
relational tables, 9–10
remote databases, 24
remote procedure calls, 270
remote queries, 601–602
replication of data using materialized

views, 268–269
report command, 472–474
resizing tablespaces and datafiles, 76–77

bigfile tablespaces, 91
smallfile tablespaces, 77–91

restore preview command, 464–465
restore validate command, 465
Resumable Space Allocation, 192–195
reverse indexes, 249
reverse key indexes, 18, 148
RMAN, 39, 418

archived redo log files, 444–445
backup compression, 420, 432,

451–452
backup types, 421–423
backupsets and backup pieces, 422
block change tracking, 450–451
block media recovery, 455–456
block-level recovery, 420
catalog maintenance, 471–472
cataloging, 421
cataloging other backups, 470–471
commands, 423, 424–425

components, 419–420
compressed backups, 422–423
consistent and inconsistent backups,

421–422
control file and SPFILE backup, 444
control file autobackup, 431
data dictionary views, 433–434
Data Recovery Advisor, 465–470
datafile backup, 442
device type, 430–431
dynamic performance views, 433–434
encrypted backups, 421
Flash Recovery Area, 452
full and incremental backups, 422
full database backups, 435–439
image copies, 422, 442–443
incremental backup block change

tracking, 450–451
incremental backups, 420, 445–447
incrementally updated backups,

447–450
initialization parameters, 432–433
list command, 472–473
multiple I/O channels, 421
online backups, 394
open database backups, 420
persisting RMAN settings, 428–432
platform independence, 421
point in time recovery, 465
recovery window, 430
redundancy, 430
registering a database, 428
report command, 472–474
restoring a control file, 456
restoring a datafile, 459–461
restoring a tablespace, 456–458
restoring an entire database, 461–463
retention policy, 430
scripting capabilities, 421
setting up a repository, 423–427
skipping unused blocks, 420
tablespace backup, 439–442
tape manager support, 421
vs. traditional backup methods,

420–421

666 Oracle Database 11g DBA Handbook

validating backups, 453–455
validating restore operations, 464–465

roles, 39–40, 306
assigning roles, 310
creating roles, 308–309
data dictionary views, 311–313
default, 310–311
dropping roles, 309
granting privileges to a role, 309
password-enabled, 311
predefined, 307–308
revoking roles, 310
secure application roles, 308

rollback, 209
rollback segments, 8
row directories, 167
row migration, 148, 259

SS

SAME, 267
schema object auditing, 337–338

See also auditing
schemas, 21
SCN, 37
Secure Sockets Layer. See SSL
security

for abstract datatypes, 154–156
non-database, 279

Segment Advisor, 185–187, 200–204
segments, 7, 167, 170–171

data segments, 7
fragmented, 166
index segments, 7
rollback segments, 8
segment segregation, 73–74
temporary segments, 8
See also Automatic Segment Space

Management (ASSM)
sequences, 22
SGA. See System Global Area (SGA)
SGA_TARGET parameter, 46
shared database links, 608–609

shared pool, 33
shared server configuration, 35
SHARED_POOL_SIZE parameter, 47
SID. See Oracle System Identifier (SID)
sizing objects, 143

bitmap indexes, 148–149
estimating proper value for pctfree,

147–148
estimating space requirements for

indexes, 146–147
estimating space requirements for

tables, 145–146
impact of extent size on performance,

144–145
index-organized tables, 149
partitions, 149
reasons for, 143
reverse key indexes, 148
space calculation rules, 143–144
tables containing large objects

(LOBs), 149
smallfile tablespaces

resizing, 76
resizing using ALTER DATABASE,

77–78
resizing using EM Database Control,

78–84
SMON, 35
snapshots, 271
software code area, 35
software executables, 68–69
software installation, 636–637

installation options, 637–638
using Oracle Universal Installer

(OUI), 638
sorted hash clusters, 13–14
sorts, eliminating unnecessary sorts, 128
space management

archived redo log file management, 184
Automatic Storage Management

(ASM), 179–181
Automatic Workload Repository,

187–189
bigfile tablespaces, 178–179

RMAN (continued)

Index 667

fragmented tablespaces and
segments, 166

index usage, 189–190
insufficient space for temporary

segments, 165
locally managed tablespaces, 176–177
managing alert and trace files with

ADR, 195–197
OS space management, 197
Resumable Space Allocation, 192–195
running out of free space in a

tablespace, 165
scripts, 197–199
Segment Advisor, 185–187, 200–204
segments that cannot allocate

additional extents, 197–198
SYSAUX monitoring and usage,

182–184
too much or too little undo space

allocated, 165–166
Undo Advisor, 187–189, 204–206
undo management considerations,

181–182
used and free space by tablespace and

datafile, 198–199
using DBMS_SCHEDULER to

automate and streamline
notification, 199

using OEM job control and
monitoring, 200–206

using OMF to manage space, 177–178
warning levels, 190–192

SPFILE, backup, 444
SQL

generating SQL from Data Pump
import jobs, 409–410

profiles, 143
See also Automatic SQL Tuning

Advisor; tuning SQL
SQL Access Advisor, 617–621
SQL*Loader, Direct Path option, 262–263
SSL, 284–285
standard deliverables, 133–135
Standard Edition, 637

Standard Edition One, 638
standby databases

configuration, 479–485
physical vs. logical, 477
See also Data Guard; logical standby

databases; physical standby
databases

statement auditing, 332–336
See also auditing

statistics, 129
STATSPACK, 270–271

See also Automatic Workload
Repository

stored outlines, 140–142
editing, 142–143
SQL profiles, 143

streams pool, 34
STREAMS_POOL_SIZE parameter, 47
stretch clusters, 351
suspending databases, 157–158
switchovers, 487–489
synonyms, 22
SYSAUX tablespace, 54, 63–65, 72

monitoring and usage, 182–184
System Change Number. See SCN
System Global Area (SGA), 5, 32–33

buffer caches, 33
data dictionary cache, 34
Java pool, 34
large pool, 34
library cache, 33–34
redo log buffer, 34
shared pool, 33
specifying the size of,

255–256
streams pool, 34

System Monitor. See SMON
system privileges, 39, 40, 299–300

auditing, 336
common system privileges, 301
data dictionary views, 302
granting, 300–302

SYSTEM tablespace, 63, 72
system triggers, 194–195

668 Oracle Database 11g DBA Handbook

TT

table directories, 167
tables, 8

clustered tables, 13
effective table design, 243–244
encrypting, 345
estimating space requirements for,

145–146
external tables, 12, 263–264, 555–557
Flashback Table, 227–232
hash clusters, 13
object tables, 11–12
partitioned indexes, 15
privileges, 304, 305
recovering dropped tables using

Flashback Drop, 496–498
redefining online, 507–508
relational tables, 9–10
sorted hash clusters, 13–14
temporary tables, 11
See also index-organized tables;

partitioned tables
tablespaces, 6–7

backup, 439–442
bigfile tablespaces, 62, 67–68, 76–77,

91, 178–179, 545–552
creating in a VLDB environment,

545–552
dropping a datafile from a tablespace,

84–91
encrypting, 345–346
EXAMPLE tablespace, 73
fragmented, 166
installation tablespaces, 72–73
locally managed tablespaces, 7,

176–177
managing in a RAC environment, 390
permanent tablespaces, 62–65
reorganizing, 85–91
resizing, 76–91
restoring, 456–458
running out of free space in a

tablespace, 165
segment segregation, 73–74

smallfile tablespaces, 76, 77–84
SYSAUX tablespace, 54, 63–65, 72
SYSTEM tablespace, 63, 72
TEMP tablespace, 72
temporary tablespaces, 62, 65–67
transportable tablespaces, 593–597
undo tablespaces, 62, 65
UNDOTBS1 tablespace, 73
USERS tablespace, 73
See also Optimal Flexible

Architecture (OFA)
TEMP tablespace, 72
templates, selecting, 639–640
temporary segments, 8, 170–171

avoiding use of, 130
insufficient space for, 165

temporary tables, 11, 149–150
temporary tablespace groups, 65–67
temporary tablespaces, 62, 65–67

default, 171
testing, 131–133, 162
text indexes, 250
thin-client architecture, 512, 514
third normal form, 243
three-tier architecture, 512
three-tier authentication, 286
throughput, designing to, 130
TNS. See Transparent Network

Substrate (TNS)
trace log files, 28
traffic reduction, 268

replication of data using materialized
views, 268–269

using remote procedure calls, 270
transactions, 208–209

distributed transactions, 630–632
Flashback Transaction Blackout, 227
Flashback Transaction Query,

234–235
resolving in-doubt transactions, 631

Transparent Data Encryption, 342–346
See also data encryption

Transparent Network Substrate (TNS), 515
transportable tablespaces, 593–597
trigger-based integrity, 17

Index 669

triggers, 23, 603, 610–612
disabling, 264–265
system triggers, 194–195

truncate command, 265–266
tuning, 275–276

distribution of CPU requirements,
244–245

effective application design, 245–246
effective table design, 243–244

tuning a RAC node, 389
tuning data access, 257

identifying chained rows, 258–259
increasing the Oracle block size,

259–260
locally managed tablespaces, 257–258
using index-organized tables, 260–262

tuning data manipulation, 262
bulk data moves, 263–264
bulk deletes, 265–266
bulk inserts, 262–263, 264–265
using external tables, 263–264
using partitions, 266
using the SQL*Loader Direct Path

option, 262–263
using the truncate command, 265–266

tuning distributed databases, 632–634
tuning memory usage, 252–255

compute statistics option, 257
specifying the size of the SGA, 255–256
using the cost-based optimizer,

256–257
tuning Oracle Net, 540–542
tuning physical storage, 267

using ASM, 267
using raw devices, 267

tuning SQL, 247–248
bitmap indexes, 249
clusters, 249
concatenated indexes, 247
equivalence queries, 249
explain plans, 250–252
full table scans, 247
function-based indexes, 249–250
impact of order on load rates, 248–249
index range scans, 247–248

range queries, 248
reverse indexes, 249
text indexes, 250

Two-Phase Commit, 602–603
two-tier architecture, 512

UU

Undo Advisor, 187–189, 204–206, 221
undo segments

eliminating the need to query, 128–129
too much or too little undo space

allocated, 165–166
undo tablespaces, 62, 65, 209

controlling undo usage, 222
creating, 210–214
and database recovery, 210
dropping, 214–215
dynamic performance views, 216
Flashback, 210, 223–239
initialization parameters, 216–217
management considerations, 181–182
modifying, 215
multiple, 217–220
in a RAC environment, 383
read consistency, 209–210
read consistency vs. successful DML,

222–223
rollback, 209
sizing and monitoring, 220–222
too much or too little undo space

allocated, 165–166
Undo Advisor, 221
using OMF for, 215

UNDO_MANAGEMENT parameter, 47,
216, 217

UNDO_RETENTION parameter, 217
UNDO_TABLESPACE parameter, 47,

216–217
UNDOTBS1 tablespace, 73
unique column values, 16
unique indexes, 18
upgrading to Oracle Database 11g

after upgrading, 59
choosing an upgrade method, 51–52

670 Oracle Database 11g DBA Handbook

copying data from an earlier version,
50, 52, 58–59

Database Upgrade Assistant (DBUA),
50, 51, 53–54

direct upgrade, 51
with Export and Import utilities, 50,

57–58
manual upgrade, 50, 51, 54–57
options, 50–51
with Oracle Data Pump, 50, 52
steps prior to upgrading, 52–53

user accounts
altering users, 289–291
becoming another user, 291–292
creating users, 288–289, 290
data dictionary views, 292
dropping users, 291

users, 21
USERS tablespace, 73

VV

V$ALERT_TYPES, 174–175
V$OBJECT_USAGE, 175
V$SORT_SEGMENT, 175
V$TABLESPACE, 552
V$TEMPSEG_USAGE, 175
V$UNDOSTAT, 175

validating backups, 453–455
versioning, 158
Very Large Databases. See VLDB

environments
views, 19–20

materialized views, 19, 20–21, 131,
268–269, 589, 603–604, 612–615

object views, 21
privileges, 304
regular views, 20

virtual column partitioning, 570
Virtual Private Database, 41, 313–314

creating a VPD, 320–328
creating application contexts, 314–316
developing a VPD policy, 328–330
security policy implementation,

316–317
using DBMS_RLS, 317–320

VLDB environments, 544
bitmap indexes, 589–591
creating tablespaces in, 545–552
and external tables, 555–557
and global temporary tables, 553–555
and index-organized tables, 553
partitioned tables, 557–588

VPD. See Virtual Private Database

WW

wallets, creating, 343–345

upgrading to Oracle Database 11g
(continued)

FREE SUBSCRIPTION

YOU MUST ANSWER ALL TEN QUESTIONS BELOW.

100103

Yes, please send me a FREE subscription to Oracle Magazine. NO
To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date it
(incomplete cards cannot be processed or acknowledged). You can also fax your application to +1.847.763.9638.
Or subscribe at our Web site at otn.oracle.com/oraclemagazine

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

s i g n a t u r e (r e q u i r e d) d a t e

x

From time to time, Oracle Publishing allows
our partners exclusive access to our e-mail
addresses for special promotions and
announcements. To be included in this pro-
gram, please check this circle.

Oracle Publishing allows sharing of our
mailing list with selected third parties. If you
prefer your mailing address not to be
included in this program, please check here.
If at any time you would like to be removed
from this mailing list, please contact
Customer Service at +1.847.647.9630 or send
an e-mail to oracle@halldata.com.

W H A T I S T H E P R I M A R Y B U S I N E S S
A C T I V I T Y O F Y O U R F I R M A T T H I S
L O C A T I O N ? (check one only)
▫ 01 Aerospace and Defense Manufacturing
▫ 02 Application Service Provider
▫ 03 Automotive Manufacturing
▫ 04 Chemicals, Oil and Gas
▫ 05 Communications and Media
▫ 06 Construction/Engineering
▫ 07 Consumer Sector/Consumer Packaged Goods
▫ 08 Education
▫ 09 Financial Services/Insurance
▫ 10 Government (civil)
▫ 11 Government (military)
▫ 12 Healthcare
▫ 13 High Technology Manufacturing, OEM
▫ 14 Integrated Software Vendor
▫ 15 Life Sciences (Biotech, Pharmaceuticals)
▫ 16 Mining
▫ 17 Retail/Wholesale/Distribution
▫ 18 Systems Integrator, VAR/VAD
▫ 19 Telecommunications
▫ 20 Travel and Transportation
▫ 21 Utilities (electric, gas, sanitation, water)
▫ 98 Other Business and Services

W H I C H O F T H E F O L L O W I N G B E S T
D E S C R I B E S Y O U R P R I M A R Y J O B
F U N C T I O N ? (check one only)
C o r p o r a t e M a n a g e m e n t / S t a f f
▫ 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
▫ 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

▫ 03 Sales/Marketing Management
(VP/Director/Manager)

▫ 04 Computer Systems/Operations Management
(CIO/VP/Director/ Manager MIS, Operations)

I S / I T S t a f f
▫ 05 Systems Development/

Programming Management
▫ 06 Systems Development/ Programming Staff
▫ 07 Consulting
▫ 08 DBA/Systems Administrator
▫ 09 Education/Training
▫ 10 Technical Support Director/Manager
▫ 11 Other Technical Management/Staff
▫ 98 Other

W H A T I S Y O U R C U R R E N T P R I M A R Y
O P E R A T I N G P L A T F O R M ? (select all that apply)
▫ 01 Digital Equipment UNIX
▫ 02 Digital Equipment VAX VMS
▫ 03 HP UNIX

▫ 04 IBM AIX
▫ 05 IBM UNIX
▫ 06 Java
▫ 07 Linux
▫ 08 Macintosh
▫ 09 MS-DOS
▫ 10 MVS
▫ 11 NetWare
▫ 12 Network Computing
▫ 13 OpenVMS
▫ 14 SCO UNIX
▫ 15 Sequent DYNIX/ptx
▫ 16 Sun Solaris/SunOS
▫ 17 SVR4
▫ 18 UnixWare
▫ 19 Windows
▫ 20 Windows NT
▫ 21 Other UNIX
▫ 98 Other
99 ▫ None of the above

D O Y O U E V A L U A T E , S P E C I F Y ,
R E C O M M E N D , O R A U T H O R I Z E T H E
P U R C H A S E O F A N Y O F T H E F O L L O W I N G ?
(check all that apply)
▫ 01 Hardware
▫ 02 Software
▫ 03 Application Development Tools
▫ 04 Database Products
▫ 05 Internet or Intranet Products
99 ▫ None of the above

I N Y O U R J O B , D O Y O U U S E O R P L A N T O
P U R C H A S E A N Y O F T H E F O L L O W I N G
P R O D U C T S ? (check all that apply)
S o f t w a r e
▫ 01 Business Graphics
▫ 02 CAD/CAE/CAM
▫ 03 CASE
▫ 04 Communications
▫ 05 Database Management
▫ 06 File Management
▫ 07 Finance
▫ 08 Java
▫ 09 Materials Resource Planning
▫ 10 Multimedia Authoring
▫ 11 Networking
▫ 12 Office Automation
▫ 13 Order Entry/Inventory Control
▫ 14 Programming
▫ 15 Project Management
▫ 16 Scientific and Engineering
▫ 17 Spreadsheets
▫ 18 Systems Management
▫ 19 Workflow

H a r d w a r e
▫ 20 Macintosh
▫ 21 Mainframe
▫ 22 Massively Parallel Processing
▫ 23 Minicomputer
▫ 24 PC
▫ 25 Network Computer
▫ 26 Symmetric Multiprocessing
▫ 27 Workstation
P e r i p h e r a l s
▫ 28 Bridges/Routers/Hubs/Gateways
▫ 29 CD-ROM Drives
▫ 30 Disk Drives/Subsystems
▫ 31 Modems
▫ 32 Tape Drives/Subsystems
▫ 33 Video Boards/Multimedia
S e r v i c e s
▫ 34 Application Service Provider
▫ 35 Consulting
▫ 36 Education/Training
▫ 37 Maintenance
▫ 38 Online Database Services
▫ 39 Support
▫ 40 Technology-Based Training
▫ 98 Other
99 ▫ None of the above

W H A T O R A C L E P R O D U C T S A R E I N U S E
A T Y O U R S I T E ? (check all that apply)
O r a c l e E - B u s i n e s s S u i t e
▫ 01 Oracle Marketing
▫ 02 Oracle Sales
▫ 03 Oracle Order Fulfillment
▫ 04 Oracle Supply Chain Management
▫ 05 Oracle Procurement
▫ 06 Oracle Manufacturing
▫ 07 Oracle Maintenance Management
▫ 08 Oracle Service
▫ 09 Oracle Contracts
▫ 10 Oracle Projects
▫ 11 Oracle Financials
▫ 12 Oracle Human Resources
▫ 13 Oracle Interaction Center
▫ 14 Oracle Communications/Utilities (modules)
▫ 15 Oracle Public Sector/University (modules)
▫ 16 Oracle Financial Services (modules)
S e r v e r / S o f t w a r e
▫ 17 Oracle9i
▫ 18 Oracle9i Lite
▫ 19 Oracle8i
▫ 20 Other Oracle database
▫ 21 Oracle9i Application Server
▫ 22 Oracle9i Application Server Wireless
▫ 23 Oracle Small Business Suite

T o o l s
▫ 24 Oracle Developer Suite
▫ 25 Oracle Discoverer
▫ 26 Oracle JDeveloper
▫ 27 Oracle Migration Workbench
▫ 28 Oracle9i AS Portal
▫ 29 Oracle Warehouse Builder
O r a c l e S e r v i c e s
▫ 30 Oracle Outsourcing
▫ 31 Oracle Consulting
▫ 32 Oracle Education
▫ 33 Oracle Support
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R D A T A B A S E P R O D U C T S A R E
I N U S E A T Y O U R S I T E ? (check all that apply)
▫ 01 Access ▫ 08 Microsoft Access
▫ 02 Baan ▫ 09 Microsoft SQL Server
▫ 03 dbase ▫ 10 PeopleSoft
▫ 04 Gupta ▫ 11 Progress
▫ 05 IBM DB2 ▫ 12 SAP
▫ 06 Informix ▫ 13 Sybase
▫ 07 Ingres ▫ 14 VSAM
▫ 98 Other
99 ▫ None of the above

W H A T O T H E R A P P L I C A T I O N S E R V E R
P R O D U C T S A R E I N U S E A T Y O U R S I T E ?
(check all that apply)
▫ 01 BEA
▫ 02 IBM
▫ 03 Sybase
▫ 04 Sun
▫ 05 Other

D U R I N G T H E N E X T 1 2 M O N T H S , H O W
M U C H D O Y O U A N T I C I P A T E Y O U R
O R G A N I Z A T I O N W I L L S P E N D O N
C O M P U T E R H A R D W A R E , S O F T W A R E ,
P E R I P H E R A L S , A N D S E R V I C E S
F O R Y O U R L O C A T I O N ? (check only one)
▫ 01 Less than $10,000
▫ 02 $10,000 to $49,999
▫ 03 $50,000 to $99,999
▫ 04 $100,000 to $499,999
▫ 05 $500,000 to $999,999
▫ 06 $1,000,000 and over

W H A T I S Y O U R C O M P A N Y ’ S Y E A R L Y
S A L E S R E V E N U E ? (please choose one)
▫ 01 $500, 000, 000 and above
▫ 02 $100, 000, 000 to $500, 000, 000
▫ 03 $50, 000, 000 to $100, 000, 000
▫ 04 $5, 000, 000 to $50, 000, 000
▫ 05 $1, 000, 000 to $5, 000, 000

1

2

3

4

8

9

10

6

5

7

	Copyright © 2008 by The McGraw-Hill Companies, Inc:
	 Click here for terms of use:

	Acknowledgments:
	Introduction:
	Part I: Database Architecture:
	1 Getting Started with the Oracle Architecture:
	An Overview of Databases and Instances:
	Oracle Logical Storage Structures:
	Oracle Logical Database Structures:
	Oracle Physical Storage Structures:
	Multiplexing Database Files:
	Oracle Memory Structures:
	Backup/Recovery Overview:
	Security Capabilities:
	Real Application Clusters:
	Oracle Streams:
	Oracle Enterprise Manager:
	Oracle Initialization Parameters:
	2 Upgrading to Oracle Database 11g:
	Choosing an Upgrade Method:
	Before Upgrading:
	Using the Database Upgrade Assistant:
	Performing a Manual Direct Upgrade:
	Using Export and Import:
	Using the Data-Copying Method:
	After Upgrading:
	3 Planning and Managing Tablespaces:
	Tablespace Architecture:
	Oracle Installation Tablespaces:
	Segment Segregation:
	4 Physical Database Layouts and Storage Management:
	Traditional Disk Space Storage:
	Automatic Storage Management:
	Part II: Database Management:
	5 Developing and Implementing Applications:
	Tuning by Design: Best Practices:
	Resource Management and Stored Outlines:
	Supporting Tables Based on Abstract Datatypes:
	Quiescing and Suspending the Database:
	Supporting Iterative Development:
	Managing Package Development:
	6 Monitoring Space Usage:
	Common Space Management Problems:
	Oracle Segments, Extents, and Blocks:
	Data Dictionary Views and Dynamic Performance Views:
	Space Management Methodologies:
	SYSAUX Monitoring and Usage:
	Archived Redo Log File Management:
	Built-in Space Management Tools:
	Space Management Scripts:
	Automating and Streamlining the Notification Process:
	7 Managing Transactions with Undo Tablespaces:
	Transaction Basics:
	Undo Basics:
	Managing Undo Tablespaces:
	Flashback Features:
	Migrating to Automatic Undo Management:
	8 Database Tuning:
	Tuning Application Design:
	Tuning SQL:
	Tuning Memory Usage:
	Tuning Data Access:
	Tuning Data Manipulation:
	Tuning Physical Storage:
	Reducing Network Traffic:
	Using the Automatic Workload Repository:
	Tuning Solutions:
	9 Database Security and Auditing:
	Non-Database Security:
	Database Authentication Methods:
	Database Authorization Methods:
	Auditing:
	Data Encryption Techniques:
	Part III: High Availability:
	10 Real Application Clusters:
	Overview of Real Application Clusters:
	Installation and Setup:
	RAC Characteristics:
	RAC Maintenance:
	11 Backup and Recovery Options:
	Capabilities:
	Logical Backups:
	Physical Backups:
	Using Data Pump Export and Import:
	Data Pump Import Options:
	Integration of Backup Procedures:
	12 Using Recovery Manager (RMAN):
	RMAN Features and Components:
	Overview of RMAN Commands and Options:
	Backup Operations:
	Recovery Operations:
	Miscellaneous Operations:
	13 Oracle Data Guard:
	Data Guard Architecture:
	LOG_ARCHIVE_DEST_n Parameter Attributes:
	Creating the Standby Database Configuration:
	Using Real-Time Apply:
	Managing Gaps in Archive Log Sequences:
	Managing Roles—Switchovers and Failovers:
	Administering the Databases:
	14 Miscellaneous High Availability Features:
	Recovering Dropped Tables Using Flashback Drop:
	The Flashback Database Command:
	Using LogMiner:
	Online Object Reorganization:
	Part IV: Networked Oracle:
	15 Oracle Net:
	Overview of Oracle Net:
	Using the Oracle Net Configuration Assistant:
	Using the Oracle Net Manager:
	Starting the Listener Server Process:
	Controlling the Listener Server Process:
	Using Easy Connect Naming:
	Using Database Links:
	Tuning Oracle Net:
	16 Managing Large Databases:
	Creating Tablespaces in a VLDB Environment:
	Advanced Oracle Table Types:
	Using Bitmap Indexes:
	Oracle Data Pump:
	17 Managing Distributed Databases:
	Remote Queries:
	Remote Data Manipulation: Two-Phase Commit:
	Dynamic Data Replication:
	Managing Distributed Data:
	Managing Distributed Transactions:
	Monitoring Distributed Databases:
	Tuning Distributed Databases:
	Appendix: Installation and Configuration:
	Software Installation:
	Index:

